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1. INTRODUCTION

The arbitrage pricing for contingent claims is one of major issues in math-

ematical �nance. Martingale method provides a convenient and powerful

tool for arbitrage pricing. When the market is incomplete, the martingale

measure is not unique. In this case, the arbitrage pricing cannot provide a

unique valuation rule for non-replicatable contingent claim. To get round

this problem several pricing rules have been proposed. One approach, called

the numeraire portfolio approach, was initiated by J. Long (1990) and de-

veloped by Bajeux and Portait (1995a, 1995b). The starting point of this

approach is to search for a suitable derivative asset as the numeraire such

that the denominated price processes of primitive assets are martingales

under the historical probability measure. It turns out that this numeraire

must be the wealth process of the growth optimal portfolio (see Bajeux and

Portait (1995a, 1995b)). For a market with asset returns being di�usion

processes the growth optimal portfolio is well known (see Karatzas and

Shreve, 1998).

Option pricing when underlying stock returns are discontinuous was �rst

studied by Merton (1976). In recent years, many researchers have used

more general discontinuous process (e.g., jump-di�usion process or L�evy

process) to model the asset returns (see references). This model has the

feature that it allows random jumps in asset values. The purpose of this

paper is to work out the growth optimal portfolio in a market with asset

returns being a jump-di�usion-like process or a L�evy process.

2. THE GROWTH OPTIMAL WEALTH PROCESS

In this section we show that in a market modeled by a vector-valued

semimartingale, when we choose the wealth process of an admissible self-

�nancing strategy as a numeraire such that the historical probability mea-

sure becomes a martingale measure, then this numeraire must be the wealth

process of a growth optimal portfolio. This result is stated in Bajeux and

Portait (1995a, 1995b) without giving a proof. For reader's convenience we

give below a complete proof for this result.

We �x a �nite time-horizon [0; T ] and consider a security market which

consists ofm+1 assets whose price processes (Sit); i = 0; � � � ;m, are assumed

to be strictly positive semimartingales, de�ned on a �ltered probability

space (
;F ; (Ft); P) satisfying the usual conditions. Moreover, we assume

that F0 is the trivial �-algebra. We take arbitrarily an asset, say asset 0, as

the numeraire asset. We set t=̂(S
0
t )
�1 and call t the deater at time t. We

set St = (S1
t ; � � � ; S

m
t ) and e

St = (eS1
t ; � � � ;

e
S
m
t ), where eSit = tS

i
t ; 1 � i � m.

We call (eSt) the deated price process of the assets. Note that the deated
price process of asset 0 is the constant 1.
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The continuous trading is modeled by a stochastic integral. In order

to be able to de�ne a trading strategy we need the notion of integration

w.r.t. a vector-valued semimartingale (see Jacod, 1980). If a vector valued

Ft-predictable process (H
0
; � � � ;H

m) is integrable w.r.t. a semimartingale

(X0
; � � � ;X

m), and if H0 is integrable w.r.t. X0, then we have

(H0
;H):(X0

;X) = H
0
:X

0 +H:X; (1)

where H = (H1
; � � � ;H

m),X = (X1
; � � � ;X

m), and H:X stands for the

integral of H w.r.t. X.

A trading strategy is a Rm+1 -valued Ft-predictable process � = f�
0
; �g

such that � is integrable w.r.t semimartingale (S0
t ; St), where

�(t) = (�1(t); � � � ; �m(t)); St = (S1
t ; � � � ; S

m
t );

and �
i(t) represents the numbers of units of asset i held at time t. The

wealth Vt(�) at time t of a trading strategy � = f�
0
; �g is

Vt(�) = �
0(t)S0

t + �(t) � St; (2)

where �(t) � St =
Pm

i=1 �
i(t)Sit . The deated wealth at time t is eVt(�) =

Vt(�)t. A trading strategy f�0; �g is said to be self-�nancing, if

Vt(�) = V0(�) +

Z t

0

�(u)d(S0
u; Su): (3)

Here and henceforth we use the notation
R t
0
HudXu or (H:X)t to denote

the integral of H w.r.t. X over the interval (0; t]. In particular, we have

(H:X)0 = 0.

It is easy to see that for any given Rm -valued predictable process �

which is integrable w.r.t (St) and a real number x, there exists a real-

valued predictable process (�0t ) such that f�0; �g is a self-�nancing strategy

with the initial wealth x.

A security market is said to be fair if there exists a probability measure

Q equivalent to the historical probability measure P such that the deated

price processes (eSt) is a (vector-valued) Q -martingale. We call such a Q

an equivalent martingale measure for the market.

We denote by Mj the set of all equivalent martingale measures for the

market, if asset j is taken as the numeraire asset. It is shown in Yan (1998)

that the fairness of a market is invariant under the change of numeraire.

A strategy is said to be admissible, if its wealth process is non-negative.

A strategy is said to be allowable, if there exists a positive constant c

such that its wealth process Vt is bounded from below by �c
Pm

i=0 S
i
t . An

admissible strategy is allowable.

The following lemma can be found in Yan (1998).
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Lemma 2.1. A strategy � = f�
0
; �g is self-�nancing if and only if its

wealth process (Vt) satis�es

d
e
Vt = �(t)deSt;

where eVt = Vtt. In particular, the deated wealth process of an allowable

self-�nancing strategy is a local Q -martingale and a Q -supermartingale for

any Q 2M
0.

Definition 2.1. An admissible self-�nancing strategy f�0; �g is called

a growth optimal strategy, if its wealth process Vt satis�es the following

condition: for the wealth process (Xt) of any other admissible self-�nancing

strategy with the same initial wealth V0, we have

E [logXt] � E [log Vt] ; t � 0: (4)

We call (Vt) a growth optimal wealth process.

According to Bajeux and Portait (1995a), the following well-known the-

orem can be traced to Samuelson (1963). For reader's convenience we

include its proof.

Theorem 2.1. Let (Vt) be the wealth process of an admissible self-�nancing

strategy with V0 = 1. Assume that for every 0 � j � m,
�
V
�1
t S

j
t

�
is a

P-martingale. Then (Vt) is the unique growth optimal wealth process with

initial value 1.

Proof. We �x arbitrarily a j. By assumption we can de�ne a probability

measure Pj such that

M

j
t b= dPj

dP

����
Ft

= V
�1
t S

j
t (S

j
0)
�1
: (5)

Since dP
dPj

jFt = (M
j
t )
�1, we know that for each 0 � i � m, Sit(S

j
t )
�1
S

j
0 =

(M
j
t )
�1
S
i
tV

�1
t is a Pj -martingale, thus Pj 2Mj .

Now we assume that (Xt) is the wealth process of an admissible self-

�nancing strategy with X0 = 1. By Lemma 2.1,
�
Xt(S

j
t )
�1
�
is a non-

negative Pj -local martingale, hence a Pj -supermartingale. Thus we have

E

�
Xt

Vt

�
= E (j)

"
Xt

Vt

dP

dPj

����
Ft

#
= E (j)

h
Xt(S

j
t )
�1
i
S

j
0 � 1: (6)
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By Jensen's inequality, this implies

E

�
log

Xt

Vt

�
� log E

�
Xt

Vt

�
� 0: (7)

Consequently, we have E [logXt] � E [log Vt]. This means that Vt is a growth

optimal wealth process. Its uniqueness can be proved as follows. Assume

that (Xt) is a growth optimal wealth process with initial value 1. Then we

have E logXt � E log Vt, i.e., log E
Xt

Vt
� 0, which together with (7) implies

E [log Xt

Vt
] = log E [Xt

Vt
] = 0. Consequently, both Xt=Vt and log(Xt=Vt) are

P-martingales, because they are already known to be P-supermartingale.

Therefore, Xt = Vt a:s:.

Recall that the relative entropy IQ (P) of a probability measure P with

respect to Q is de�ned by

IQ (P) = E Q

�
dP

d Q
log

dP

d Q

�
= �E P

�
log

d Q

d P

�
:

IQ (P) is a quantitative measure of the di�erence between Q and P. The

following theorem shows that the objective measure P has minimum relative

entropy with respect to the measure Pj within M
j . We refer the reader

to Chan (1999) for a similar result (in a \dual form") about the Esscher

transform.

Theorem 2.2. We have

E

"
log

�
dPj

dP

����
Ft

!#
� E

"
log

�
d Q

dP

����
Ft

!#
; 8 Q 2M

j
: (8)

Proof. Let Q 2 M
j . We put Nt =

d Q

dP

��
Ft

and Lt =
d Q

dPj

��
Ft
. Since

Vt is the wealth process of an admissible self-�nancing strategy, Vt(S
j
t )
�1

must be a non-negative Q -local martingale, hence a Q -supermartingale.

Thus LtV
�1
t S

j
t must be a Pj -supermartingale. Consequently, Lt is a P-

supermartingale, and we have E [Lt] � E [L0 ] = 1. Thus, By Jensen's

inequality, we have E [log Lt] � 0. But we have

E [logNt] = E [log Lt] + E [log(V �1
t S

j
t )]:

So (8) is proved.
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3. GROWTH OPTIMAL PORTFOLIO IN A MARKET

DRIVEN BY A JUMP-DIFFUSIN-LIKE PROCESS

In this section we will introduce a �nancial market with a jump-di�usion-

like process as asset returns and will work out a portfolio such that, if

we take its wealth process as a numeraire, then the historical probability

measure becomes a martingale measure. By Theorem 2.1 this portfolio

must be the growth optimal portfolio.

Let (
; F ; (Ft); P) be a �ltered probability space satisfying the usual

conditions. Consider a �nancial market which consists of a risk-free asset

(savings account) and a risky asset (stock) whose prices S0
t and St satisfy

dS
0
t = S

0
t r(t) dt; S0(0) = 1;

d St = St� fb(t)dt+ �(t)dBt + �(t) dNtg ;
(9)

where (Bt) is an (Ft; P)-standard Brownian motion, N(t) is Ft-adapted

counting process with intensity �(t) > 0, and r(t), b(t), �(t), �(t), and �(t)

are assumed to be bounded Ft-predictable processes. Furthermore, we

assume that �(t) > �1 and j�(t)j, j�(t)j, and �(t) are uniformly bounded

from below by a positive constant. If b(t); �(t), and �(t) are of the forms

b(t; St), �(t; St), and �(t; St) with b; �, and � being deterministic functions

and �(t) being a constant, St is a jump-di�usion process.

Let f�0(t); �(t)g be an admissible self-�nancing strategy. Its wealth pro-

cess Vt satis�es

dVt = �(t)dSt + �
0(t)S0

t r(t)dt: (10)

Set eVt = e
�

R
t

0
r(s)ds

Vt and e
St = e

�

R
t

0
r(s)ds

St. By (9) we have

d
e
Vt = �(t)d eSt

= �(t)eSt� ��b(t)dt+ �(t)dBt + �(t)dNt

�
= e
Vt��(t)

�
�
b(t)dt+ �(t)dBt + �(t)dNt

�
;

(11)

where �(t) = �(t)St�=Vt� and �
b(t) = b(t)� r(t). (eVt) is strictly positive if

�(t)�(t) > �1 for each t. In the following we assume that (Vt) is strictly

positive.

Lemma 3.1. The following equality holds:

e
V
�1
t � e

V
�1
t� + e

V
�2
t� �eVt = e

V
�1
t�

�(t)
2
�(t)

2

1 + �(t)�(t)
�Nt; (12)

here �X = X �X�.



GROWTH OPTIMAL PORTFOLIO IN A MARKET DRIVEN 107

Proof. By (11), �eVt = e
Vt��(t)�(t)�Nt. Thus we have

e
V
�1
t � e

V
�1
t� + e

V
�2
t� �eVt = �

�eVte
Vt
e
Vt�

+ e
V
�1
t� �(t)�(t)�Nt

= �
�(t)�(t)�Nte

Vt�(1 + �(t)�(t)�Nt)
+ e
V
�1
t� �(t)�(t)�Nt

= e
V
�1
t�

�(t)
2
�(t)

2

1 + �(t)�(t)
�Nt:

Theorem 3.1. If

� =
�(�2 � �

�
b) +

p
(�2 + �

�
b)2 + 4�2�2�

2�2�
; (13)

then (V �1
t S

0
t ) (i.e., (

e
V
�1
t )) and (V �1

t St) are P-martingales. In particular,

(�t) is the growth optimal portfolio. Moreover, we have

d
e
V
�1
t = e

V
�1
t�

�
��(t)�(t)dBt +

�
(1 + �(t)�(t))�1 � 1

�
dMt

�
; (14)

where (Mt) is the following (Ft; P)-martingale:

Mt = Nt �

Z t

0

�(s)ds: (15)

Proof. In the following we write dXt � dYt to stand for the fact that

(Xt � Yt) is a P-local martingale. By Itô's formula and (12),

d
e
V
�1
t = �eV �2

t� d
e
Vt + e

V
�3
t� d

De
V
c
;
e
V
c
E
t
+ d

X
0<s�t

�e
V
�1
s � e

V
�1
s� + e

V
�2
s� �eVs�

� �eV �1
t� [�(t)�b(t)dt+ �(t)�(t)�(t)dt] + e

V
�1
t� �(t)

2
�(t)

2
dt

+eV �1
t�

�(t)2�(t)2�(t)

1 + �(t)�(t)
dt

� e
V
�1
t� �(t)

�
�
b(t) + �(t)�(t)� �(t)�(t)

2
�
�(t)�(t)2�(t)

1 + �(t)�(t)

�
dt:

d

�
V
�1
t St

�
= d

�e
V
�1
t

e
St

�
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= e
St�d

e
V
�1 + e

V
�1
t� d

e
St + d[eV �1

;
e
S]t

� e
St�d

e
V
�1 + e

V
�1
t�

e
St�[�b(t)dt+ �(t)�(t)dt]� e

V
�2
t� d[eV �1

;
e
S]t

+d
X

0<s�t

�e
V
�1
s � e

V
�1
s� + e

V
�2
s� �eVs��e

Ss

= e
St�d

e
V
�1 + e

V
�1
t�

e
St�[�b(t)dt+ �(t)�(t)dt]

�eV �1
t�

e
St�[�(t)�(t)

2
dt+ �(t)�(t)2dNt]

+d
X

0<s�t

�e
V
�1
s � e

V
�1
s�

�(s)2�(s)2

1 + �(s)�(s)
�(t)�Ns

�
� e

St�d
e
V
�1

+eV �1
t�

e
St�

"
�
b(t) + �(t)�(t)� �(t)�(t)2 � �(t)�(t)2�(t)

+
�(t)2�(t)3�(t)

1 + �(t)�(t)

#
dt

= e
St�d

e
V
�1 + e

V
�1
t�

e
St�

"
�
b(t) + �(t)�(t)

��(t)�(t)2 �
�(t)�(t)2�(t)

1 + �(t)�(t)

#
dt:

Thus, in order that (eV �1
t ) and (V �1

t St) are P-local martingales, the above

\dt" terms must vanish, i.e., � must satisfy the following equation

�
b� ��

2 +
��

1 + ��

= 0: (16)

Equation (16) has two solutions. Only the solution given by (13) satis�es

the condition �� > �1. From the above proof, it is easy to see that for

such choice of � we have

d
e
V
�1
t = �eV �1

t� [�(t)�(t)dBt + �(t)�(t)dMt] + e
V
�1
t�

�(t)2�(t)2

1 + �(t)�(t)
dMt;

from which (14) follows.

Now we are going to prove that (eV �1
t ) and (V �1

t St) are actually P-

martingales. In fact, it is easy to see that

e
V
�1
t = V

�1
0 exp

�
�

Z t

0

�(s)�b(s)ds�

Z t

0

�(s)�(s)dBs
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�

Z t

0

log(1 + �(s)�(s))dNs �
1

2

Z t

0

�(s)2�(s)2ds

�
and

V
�1
t St = e

V
�1
t

e
St

= V
�1
0 S0 exp

�Z t

0

(1� �(s))�b(s)ds+

Z t

0

(1� �(s))�(s)dBs

+

Z t

0

log
1 + �(s)

1 + �(s)�(s)
dNs �

1

2

Z t

0

(1� �(s)2)�(s)2ds

�
:

Since the functions �;
�
b; �; � are all bounded, (eV �1

t ) and (V �1
t St)

are uniformly integrable on [0; T ], (eV �1
t ) and (V �1

t St) are P-martingales.

Remark 3.1. From the above proof it is easy to see that (eV �1
t ) and

(V �1
t St) are P-martingales i� � is given by (13). For those t 2 [0; T ] with

�
b(t) + �(t)�(t) = 0 we have �(t) = 0.

Theorem 3.2. Let �(t) be given by (13) and Vt be its corresponding

wealth process with V0 = 1. Put

d
bP
dP

�����
Ft

= e
V
�1
t ; 0 � t � T:

Then under bP, b
Bt = Bt +

R t
0
�(s)�(s)ds is an (Ft)-standard Brownian

motion and Nt is an (Ft)-adapted counting process with intensity (1 +

�(t)�(t))�1�(t). Moreover,

d
e
St = e

St�

h
�(t)d bBt + �(t)[dNt � ((1 + �(t)�(t))�1�(t))dt]

i
:

Proof. We have

d( bBt
e
V
�1
t ) � e

V
�1
t d

b
Bt + d[ bB; eV �1]t

= e
V
�1
t� (dBt + �(t)�(t)dt)� e

V
�1
t� �(t)�(t)dt

= e
V
�1
t� dBt:

This means that ( bBt
e
V
�1
t ) is a P-local martingale, i.e., ( bBt) is a bP-local mar-

tingale. On the other hand, under P, [ bB; bB]t = [B;B]t = t, and [ bB; bB] is
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invariant under the equivalent change of probability. Therefore, by the well-

known L�evy's theorem, ( bBt) is an (Ft; bP)-standard Brownian motion. Sim-

ilarly, we can prove that (Nt) is an (Ft; bP)-counting process with intensity

(1 + �(t)�(t))�1�(t):

4. GROWTH OPTIMAL PORTFOLIO IN A MARKET

DRIVEN BY A L�EVY PROCESS

Recently, Chan (1999) introduced a market model in which the stock

price (St) is driven by a L�evy process:

dSt = �tSt�dXt + btSt�dt;

where �t and bt are deterministic functions of t and X is a L�evy process of

type Xt = cBt+Nt+�t with (Bt) being a Brownian motion and Nt being

a purely discontinuous martingale.

Our model is little more general. Let (Xt) be a c�adl�ag version of a L�evy

process, i.e. a process with stationary and independent increments. Put

�(!; dt; dx) =
X
s>0

I[�Xs(!) 6=0](s)Æ(s;�Xs(!):

We call � the jump measure of X. For a Borel set � in Rnf0g, we put

Nt(!;�) = �(!; [0; t]� �) =
X

0<s�t

I�(�Xs(!)); �(�) = E[N1(�;�)]: (17)

Then for each t 2 R+ and ! 2 
, Nt(!; �) and � are �-�nite measures on

R n f0g. Moreover, for every n � 2, Nt(�; [
1
n
; 1)) is an integrable increas-

ing process, M
(n)
t =

R
[ 1
n
�jxj<1]

xNt(�; dx) � t

R
[ 1
n
�jxj<1]

x�(dx) is a square-

integrable martingale and the sequence (M
(n)
t ) tends to a square-integrable

martingale (Mt). We denote it by

Mt =

Z
[jxj<1]

x(Nt(�; dx)� t�(dx)): (18)

One should beware of that
R
[jxj<1]

xNt(�; dx) and
R
[jxj<1]

x�(dx) individ-

ually may make no sense or equal in�nity. What we only know is the fact

that
R
Rnf0g

(x2^ 1)�(dx) <1. It is well-known that (Xt) has the following

L�evy decomposition (see Protter, 1989)

Xt = �t+ cBt +Mt + At; (19)
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where � and c are constants, (Bt) is a standard Brownian motion, and

At =

Z
[xj�1]

xNt(�; dx) =
X

0<s�t

�XsI[j�Xsj�1]: (20)

In particular, (Xt) is a semimartingale.

Now we consider a security market in which there are two assets: a risky

asset and a savings account. We assume that the price process St of the

risky asset satis�es the following equation:

dSt = St�[�tdXt + btdt]; (21)

where �t and bt are deterministic functions of t. We assume that �t is

strictly positive. The value of the savings account at time t is �t =
R t
0
e
rs
ds,

and rt is a deterministic function of t. We assume that there exist c1 2 [0; 1)

and 0 < c2 � 1 such that �c1 � �X � c2. Consequently, the L�evy

measure � is supported by [�c1; c2]. We assume that c1�t < 1 to ensure

the strict positivity of St.

In the following we always assume � = 0, otherwise we can replace bt by

bt + ��t.

Let (Vt) be the wealth process of an admissible self-�nancing strategy

(�0t ; �t), i.e., Vt = �tSt + �
0
t �t. Then,

dVt = �tdSt + �
0
t rt�tdt: (22)

Let eVt = �
�1
t Vt;

e
St = �

�1
t St, and �t = �tSt�=Vt�, then

d
e
St = e

St�[(bt � rt)dt+ �t(cdBt + dMt + dAt)]; (23)

d
e
Vt = �td

e
St = e

Vt��t[(bt � rt)dt+ �t(cdBt + dMt + dAt)]: (24)

If �t�t takes values in (�c�12 ; c
�1
1 ), then (Vt) is strictly positive.

Lemma 4.1. We haveZ
Rnf0g

x
2

(1 + ax)2
�(dx) <1; a 2 (�c�12 ; c

�1
1 ): (25)

For given b; r, and � > 0, we put

f(a) = b� r � a�c
2 + �

Z
Rnf0g

�
x

1 + ax

� xI[jxj<1]

�
�(dx); a 2 (�c�12 ; c

�1
1 ):

(26)
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Then f(a) = 0 has a unique solution a
� in (�c�12 ; c

�1
1 ) if and only if

lim
a!�c

�1
2

f(a) > 0; lim
a!c

�1
1

f(a) < 0: (27)

Proof. For a 2 (�c�12 ; c
�1
1 ); x 2 [�c1; c2]; we have

x

1 + ax

� xI[jxj<1] =
x

1 + ax

I[jxj�1] �
ax

2

1 + ax

I[jxj<1];

jax
2
j

1 + ax

I[jxj<1] �
jajx

2

1� ac1

^
jaj

1� ac1

;

jxj

1 + ax

�
jxj

1� ac1

^
c2

1 + ac2

;

jxj

1 + ax

I[jxj�1] �
x
2

1� ac1

^
c2

1 + ac2

:

Since
R
Rnf0g

(x2 ^ 1)�(dx) < 1, we see that f(a) is well-de�ned and (25)

holds. Here c2
1+ac2

= 1
a
if c2 = 1. Thus by the dominated convergence

theorem it is easy to see that for each a 2 (�c�12 ; c
�1
1 ), f 0(a) exists and

f
0(a) = ��c

2
� �

Z
Rnf0g

x
2

(1 + ax)2
�(dx) < 0:

This implies that f(a) = 0 has a unique solution a
�
2 (�c�12 ; c

�1
1 ), if and

only if (27) holds.

In the sequel, for each t 2 [0; T ] and a 2 (�c�12 ; c
�1
1 ), we put

ft(a) = bt � rt � a�tc
2 + �t

Z
Rnf0g

�
x

1 + ax

� xI[jxj<1]

�
�(dx): (28)

We assume

lim
a!�c

�1
2

ft(a) > 0; lim
a!c

�1
1

ft(a) < 0; t 2 [0; T ]: (29)

By Lemma 4.1 there exists a unique solution a�t of ft(a) = 0 in (�c�12 ; c
�1
1 ).

We denote by (Vt) the wealth process corresponding to �
�

t = �
�1
t a

�

t with

V0 = 1.

Theorem 4.1. Assume (29) holds. IfZ T

0

(a�s)
2
ds <1;

Z T

0

(1� �
�

s )
2
�
2
sds <1; (30)
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Z t

0

Z
Rnf0g

(a�s)
2
x
2

(1 + a
�

sx)
2
�(dx)ds <1 (31)

and Z t

0

Z
Rnf0g

(1� �
�

s )
2
�
2
sx

2

(1 + a
�

sx)
2

�(dx)ds <1; (32)

then (V �1
t �t and (V

�1
t St) are strictly positive square integrable martingales.

In particular, (��t ) is the growth portfolio.

Proof. Let (Vt) be the wealth process of an admissible self-�nancing

strategy � such that for each t 2 [0; T ]�t�t takes values in (�c�12 ; c
�1
1 ).

We shall use the notation dYt � dZt to stand for the fact that Yt � Zt is a

local martingale. By Itô's formula, we have

d
e
V
�1
t

= �eV �2
t� d

e
Vt + e

V
�3
t� d hV

c
; V

c
it + d

X
0<s�t

�e
V
�1
s � e

V
�1
s� + e

V
�2
s� �eVs�

� �eV �1
t� [�t(bt � rt � �t�

2
t c

2)dt+ �t�tdAt] + d

X
0<s�t

e
V
�1
s�

�
2
s�

2
s�X

2
s

1 + �s�s�Xs

� �eV �1
t�

"
�t(bt � rt � �t�

2
t c

2)�

Z
Rnf0g

�
�
2
t �

2
t x

2

1 + �t�tx
� �t�txI[jxj�1]

�
�(dx)

#
dt

� �eV �1
t� �t

"
bt � rt � �t�

2
t c

2 + �t

Z
Rnf0g

�
x

1 + �t�tx
� xI[jxj<1]

�
�(dx)

#
dt:

Similarly, we have

d (V �1
t St) = d(eV �1

t
e
St) = e

V
�1
t� d

e
St + d[eV �1

;
e
S]t + e

St�d
e
V
�1
t

� e
V
�1
t�

e
St�[(bt � rt)dt+ �tdAt]� e

V
�2
t� d[eV ; eS]t

+d
X

0<s�t

�e
V
�1
s � e

V
�1
s� + e

V
�2
s� �eVs��e

Ss + e
St�d

e
V
�1
t

� e
V
�1
t�

e
St�(1� �t)

"
bt � rt � �t�

2
t c

2

+�t

Z
Rnf0g

�
x

1 + �t�tx
� xI[jxj<1]

�
�(dx)

#
dt:

Thus, if (Vt) is the wealth process corresponding to �
�

t = �
�1
t a

�

t , then

(V �1
t �t) and (V �1

t St) are local martingales.
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Now we are going to prove that (V �1
t �t) and (V �1

t St) are square inte-

grable martingales. In the following for any semimartingale Y with Y0 = 0

we denote by E(Y ) the Dol�eans' exponential of Y , i.e.,

E(Y )t = expfYt �
1

2
hY

c
; Y

c
itg

Y
0<s�t

(1 + �Ys)e
��Ys

;

where Y
c is the continuous martingale part of Y . E(Y ) is the unique

solution of the equation dWt =Wt�dYt with W0 = 1.

Since V �1
t �t = e

Vt, by (24) and Dol�eans exponential formula we have

V
�1
t �t = exp

n
�

R t
0
�
�

s [(bs � rs)ds+ c�sdBs �
c2�2s�

�
s

2
ds+ �s(dMs + dAs)]

o
�

Q
0<s�t(1 + a

�

s�Xs)
�1
e
a�s�Xs

= E(�c(a�:B)t) exp
n
�

R t
0
[��s(bs � rs � �

�
�
2
sc

2)ds+ a
�

s(dMs + dAs)]
o

�

Q
0<s�t(1�

a
�
s�Xs

1+a�s�Xs
)e

a�s�Xs

1+a�s�Xs
+
a�s

2
(�Xs)

2

1+a�s�Xs :

(33)

Put

Zt =

Z t

0

Z
Rnf0g

�sx

1 + a
�

sx
[�(�; ds; dx)� �(dx)ds]:

Then Z is well-de�ned local martingale. By (31), the stochastic integral

�
�
:Z is well-de�ned and its oblique bracket process is

h�
�
:Z; �

�
:Zit =

Z t

0

Z
Rnf0g

(�s�
�

s )
2
x
2

(1 + a
�

sx)
2
�(dx)ds <1:

Hence ��:Z is a square integrable martingale.

Since we have

E(���:Z)t = e
�(��:Z)t

Y
0<s�t

(1�
a
�

s�Xs

1 + a
�

s�Xs

)e
a�s�Xs

1+a�s�Xs ;

from the fact that ft(a
�

t ) = 0 we obtain

V
�1
t �t = E(���:(c�:B + Z))t:

The oblique bracket process at time T of the martingale ��:(c�:B + Z)

h�
�
:(c�:B + Z); ��:(c�:B + Z)iT = c

2

Z T

0

(a�s)
2
ds+ h�

�
:Z; �

�
:ZiT
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is a �nite constant. Thus, by a result of L�epingle-M�emin (1978),

E(���:(c�:B + Z)) is a square integrable martingale.

Similarly, we have

V
�1
t St = e

V
�1
t

e
St

= exp

�
�

Z t

0

[��s (bs � rs)�
(c�s�

�

s )
2

2
]ds� (a�:(cB +M +A))t

�
�

Y
0<s�t

(1 + a
�

s�Xs)
�1
e
a
�
s�Xs

� exp

�Z t

0

[bs � rs �
(c�s)

2

2
]ds+ (�:(cB +M + A))t

�
�

Y
0<s�t

(1 + �s�Xs)e
��s�Xs

;

from which and the fact that ft(a
�) = 0 it is easy to prove that

V
�1
t St = E((1� �

�):(c�:B + Z))t:

Therefore, by (30), (32), and a result of L�epingle-M�emin (1978) we know

that (V �1
t St) is also a square integrable martingale.

Remark 4.1. The condition (27) is also necessary for (Vt) to be strictly

positive, if [�c1; c2] is exactly the support of the L�evy measure �. This

condition is easily checked for some concrete models (e.g., the compound

Poisson process case).
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