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The problem of maximizing the expected utility from terminal wealth in the

presence of a stochastic endowment and constraints on the portfolio choices is

examined. We model short-sale and borrowing constraints, as well as incom-

plete markets, as special cases of constraints. The existence of optimal policies

is established under fairly general assumptions on the security price coeÆcients

and the individual's utility function. This result is obtained by using martin-

gale techniques to reformulate the individual's dynamic optimization problem

as an equivalent static one. Journal of Economic Literature Classi�cation
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1. INTRODUCTION

This paper examines the problem of maximizing the expected utility

from terminal wealth in a continuous-time, �nite-horizon economy when

labor income follows an arbitrary bounded stochastic process and the dollar

amounts invested in the traded assets are constrained to take values in a

given closed, convex set. Short-sale and borrowing constraints, as well as

incomplete markets, can be modeled as special cases of this setting.

The problem of maximizing the expected utility from terminal wealth

is well solved in the context of a complete �nancial market in three steps.

First, on the underlying probability space we determine a new measure

that discounts the growth inherent in the market; under this measure, the

expected value of the �nal wealth attained by any reasonable portfolio is

equal to the initial endowment. Second, among all random variables whose
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expectation under the new measure is equal to the initial endowment, we

determine the most desirable one. Third, it is shown that an optimal

portfolio can be constructed, which attains this most desirable random

variable as its terminal wealth.

Results on the characterization and existence of optimal consumption

and investment policies with a �nite horizon and with security prices fol-

lowing general Itô processes have been obtained using martingale and du-

ality techniques by He and Pearson (1991), Karatzas, Lehoczky, and Xu

(1991), and Xu and Shreve (1992). They have examined the optimal con-

sumption/investment problem with incomplete markets and/or short-sale

constraints. Cvitanic and Karatzas (1992) have considered the more gen-

eral case in which the portfolio weights are constrained to take values in a

closed convex subset. All of these papers assume, however, that the agent

is only endowed with some nonnegative amount of wealth at the initial

date and there is no labor income. Hence, they do not address the prob-

lem of a nontraded endowment. Their approaches transform the primal

constrained-maximization problem into a dual unconstrained-minimization

problem that solves for the individual shadow state prices (intertemporal

marginal rates of substitution). Because this dual problem is, in general,

not convex in the preference of a nontraded endowment process, the possi-

bility of directly extending their results to models with stochastic income

is precluded.

A recent paper by Cuoco (1997) is the only successful application of mar-

tingale technique in a continuous-time setting to establish the existence of

optimal policies in the presence of stochastic income and constraints on

investment policies. Cuoco considers the intertemporal optimal consump-

tion and investment problem in the presence of a stochastic endowment

and constraints on the portfolio choices.

In contrast this paper allows for the presence of nontraded stochastic

income and portfolio constraints to obtain optimal investment and portfolio

rules about the preference from terminal wealth in a very general setting.

We emphasize that we focus on the case of constraints on the dollar amounts

invested in risky assets, rather than on the portfolio weights: this di�erent

formulation is required by the fact that with a nontrival income process,

and hence possibly negative wealth, portfolio weights are not de�ned. It

should, however, be easy to see that, with a nonnegative wealth process,

our setting includes the case of constraints on the portfolio weights as a

special case.

The rest of this paper is organized as follows. In sections 2, 3, and 4,

we describe the model with the corresponding notations and de�nitions.

Section 5 obtains a static characterization of the feasible terminal wealth

policies as those satisfying a budget constraint with respect to all of the

state-price densities consistent with the absence of arbitrage opportuni-
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ties. Section 6 shows that the primal problem of maximizing the expected

utility on the set of feasible terminal wealth policies admits a solution.

Section 7 characterizes optimal policies. Section 8 makes some concluding

remarks. Proofs of theorems are included in the appendix. Our proof of

existence in the primal problem uses the relaxation-projection technique for

optimization without compactness introduced by Levin (1976), and further

developed by Fougeres (1979).

2. THE ECONOMIC SETTING

We consider a continuous-time economy on the �nite time span [0; T ],

in which an individual endowed with some initial wealth and a stochas-

tic income ow chooses an optimal investment policy. Let � denote the

Lebesgue measure on [0; T ]:

Information structure. The uncertainty is represented by a �ltered

probability space (
;F; F ; P )on which is de�ned an n-dimensional Brown-

ian motion

w = f(w1(t); � � � ; wn(t))
T : t 2 [0; T ]g:

The �ltration F = fFtg is the augmentation under P of the �ltration

generated by w. We assume that F = �

8<
:

[
0�t�T

Ft

9=
; , or that the true state

of nature is completely determined by the sample paths of w on [0; T ]. We

interpret the sigma-�eld Ft as representing the information of the individual

at time t and the probability measure P as representing his beliefs. All the

stochastic processes in the sequel are progressively measurable with respect

to F and all the equalities involving random variables are understood to

hold P -a.s..

Securities market. The investment opportunities are represented by

(n+1) long-lived securities. The �rst security, which we term the \bond",

is locally riskless and pays no dividends. Its price process, denoted by B,

is given by

B(t; !) = exp

�Z
t

0

r(�; !)d�

�
(1)

for some interest rate process r.

Assumption 1. The interest rate process r is bounded uniformly in

(t; !) 2 [0; T ]� 
 : r � rB for some rB > 0.

The remaining n assets are risky. Letting S = (S1; � � � ; Sn) denote their
price process and D = (D1;D2; � � � ;Dn) their cumulative dividend process,



120 YUNHONG YANG

we assume that S +D is an Itô process,

S(t; !) +D(t; !)

= S(0) +

Z
t

0

IS(�; !)�(�; !)d� +

Z
t

0

IS(�; !)�(�; !)dw(�; !); (2)

where IS(t) denotes the n� n diagonal matrix with elements S(t) and

Z
T

0

jIS(t)�(t)jdt+

Z
T

0

jIS(t)�(t)j
2
dt <1:

Assumption 2. The di�usion matrix � satis�es the nondegeneracy

condition

x

T
�(t)�(t)Tx � "jxj2 (3)

almost surely for all (x; t) 2 R
n � [0; T ] and for some " > 0. Moreover,

letting

k0 = ���1(�� r1); (4)

where 1 = (1; � � � ; 1)T 2 Rn, we have

E

"
exp

 
1

2

Z
T

0

jk0 (t)j
2
dt

!#
<1: (5)

Condition (3) implies in particular that �(t) has full rank a.s. for all

t 2 [0; T ], so that in the absence of portfolio constraints markets are dy-

namically complete, and that �(t; !)�1 has an essentially bounded matrix

norm, uniformly in (t; !) 2 [0; T ]�
 (Karatzas and Shreve, 1988, Problem

5.8.1). Condition (5) is a \Novikov condition" (Karatzas and Shreve, 1988,

Corollary 3.5.13) and is used to guarantee the existence of an equivalent

martingale measure.

Trading strategies. Trading takes place continuously and there are no

market frictions. An admissible trading strategy is an (n+ 1)-dimensional

vector process (�; �)-where �(t) and �k(t) denote, respectively, the dollar

amount invested at time t in the bond and the kth risky asset-satisfying

Z
T

0

j� (t) r (t)j dt+

Z
T

0

���� (t)T � (t)��� dt+ Z T

0

���� (t)T � (t)���2 dt <1: (6)

The set of admissible trading strategies is denoted by �.
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Preferences and endowments. The agent in our model has a utility

function U : (0;1)! R for wealth. U is strictly increasing, strictly

concave, continuous and continuously di�erentiable, and satis�es

U

0(0) , lim
x!0

U

0(x) =1; U

0(1) , lim
x!1

U

0(x) = 0: (7)

The (continuous, strictly decreasing) inverse of the function U
0 will be

denoted by f : (0;1)! (0;1); by analogy with (7), it satis�es

f(0) , lim
y!0

f(y) =1; f(1) , lim
y!1

f(y) = 0: (8)

We introduce also the function

U(y) , max
x>0

[U(x)� xy] = U(f(y))� yf(y); 0 < y <1; (9)

which is the convex conjugate of �U(x), with U extended to be �1 on the

negative real axis. The function U is strictly decreasing, strictly convex,

and satis�es

U

0
(y) = �f(y); 0 < y <1; (10)

U(x) = min
y>0

[U(y) + xy] = U(U 0(x)) + xU

0(x); 0 < x <1: (11)

The useful inequalities

U(f(y)) � U(x) + y[f(y)� x]; 8x > 0; y > 0; (12)

U(U 0(x)) � U(y)� x[U 0(x)� y]; 8x > 0; y > 0; (13)

then follow directly from (9) and (11).

The monotonicity of U and U guarantees that the limits

U(0) , lim
x!0

U(x); U(1) , lim
x!1

U(x);

U(0) , lim
y!0

U(y); U(1) , lim
y!1

U(y);

exist in the extended real-number system. Furthermore,

U(0) = U(1); U(0) = U(1)

(The proof of the above equalities is in Karatzas, Shreve, and Xu (1991)).

The agent is endowed with some initial wealth d0 � 0 and a nonnegative

stochastic income process d withZ
T

0

B(t)�1d(t)dt � Kd (14)
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for some Kd > 0.

3. PORTFOLIO CONSTRAINT SETS

We �x from now on a nonempty, closed, and convex set A � R
n+1 and

assume that the agent's portfolio (�; �) is constrained to take values in A.

As we will see shortly, several constraints of practical interest such as short-

sale prohibitions, nontradeable assets, or minimum capital requirements,

can be modeled as special cases of this class of constraints.

For v = (v0; v�) 2 R �R
n, let

Æ(v) = sup
(�;�)2A

�(�v0 + �

T
v�)

denote the support function of �A and let

A =
�
v 2 Rn+1 : Æ(v) <1

	
denote its e�ective domain. We note that Æ is a positively homogeneous,

lower semicontinuous, and proper convex function on Rn+1 and that A is

a closed convex cone (the barrier cone of �A). We will assume that the

constraint set A is such that the following condition is satis�ed.

Assumption 3. The function Æ is upper semicontinuous and bounded

above on A . Moreover, v0 � 0 for all v 2 A.

Remark 3.1. It is easily veri�ed that the set
�
v0 : v 2 A

	
must be

bounded below by 0 as long as lending and investing nothing in the risky

assets is admissible (i.e., as long as (�; �) 2 A for all � large enough). Also,

since Æ is positively homogeneous and A is a cone, the condition that Æ be

bounded abov on A is equivalent to Æ being nonpositive on A. In particular,

this condition is satis�ed if A is a cone, in which case Æ � 0 on A.

We now provide some examples of constraint sets A satisfying Assump-

tion 3, together with the associated support functions and dual sets.

(a) No constraints :

A = R
n+1

;

A = f0g ;

Æ (v) = 0 for v 2 A:

This is the problem studied by Cox and Huang (1989, 1991).
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(b) Nontradeable assets (incomplete markets):

A =
�
(�; �) 2 Rn+1 : �k = 0; k = m+ 1; � � � ; n

	
;

A =
�
v 2 Rn+1 : vk = 0; k = 0; � � � ;m

	
;

Æ (v) = 0 for v 2 A:

For the case of no stochastic income (y � 0), this problem was originally

approached using martingale techniques by He and Pearson (1991), and

Karatzas, Shreve, and Xu (1991).

(c) Short-sale constraints :

A =
�
(�; �) 2 Rn+1 : �k � 0; k = m+ 1; � � � ; n

	
;

A =
�
v 2 Rn+1 : vk = 0; k = 1; � � � ;m; vk � 0; k = m+ 1; � � � ; n

	
;

Æ (v) = 0 for v 2 A:

Again assuming no income stream, this problem was examined by Xu and

Shreve (1992).

(d) Buying constraints :

A =
�
(�; �) 2 Rn+1 : �k � 0; k = m+ 1; � � � ; n

	
;

A =
�
v 2 Rn+1 : vk = 0; k = 1; � � � ;m; vk � 0; k = m+ 1; � � � ; n

	
;

Æ (v) = 0 for v 2 A:

(e) Portfolio-mix constraints :

A =

(
(�; �) 2 Rn+1 : �+

nX
k=1

�k � 0; � 2M

 
�+

nX
k=1

�k

!)
;

where M is any nonempty, closed, and convex subset that contains the

origin,

A =
�
v 2 Rn+1 : vT (�; �) � 0;8 (�; �) 2 A

	
;

Æ (v) = 0 for v 2 A:

For the case of no income stream, and hence a nonbinding nonnegativity

constraint on wealth, this problem was examined by Cvitanic and Karatzas

(1992).

(f) Minimum capital requirements :

A =

(
(�; �) 2 Rn+1 : �+

nX
k=1

�k � K

)
;

where K � 0,

A =
�
k1 : k � 0

	
;

Æ (v) = �Kv0 for v 2 A:
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Special cases of minimum-capital requirements are the borrowing con-

straints studied by He and Pages (1993) (where K = 0 ) and the portfolio-

insurance constraint studied by Bardhan (1994) and Basak (1995) (where

K > 0 ).

4. THE INDIVIDUAL INVESTMENT PROBLEM

Given the price coeÆcients P = (r; �; �), a random variable B is said to

be feasible terminal wealth if there exists an admissible trading strategy

(�; �) 2 � and a nonnegative, increasing process C such that, letting

W (t) = � (t) +

nX
k=1

�k (t)

denote the value of the agent's portfolio at time t, we have

W (t) = d0 +

Z
t

0

�
� (�) r (�) + � (�)

T
� (�)

�
d�

+

Z
t

0

� (�)
T
� (�) dw (�) +

Z
t

0

(d (�)) d� � C (t) ; (15)

W (t) � �K; (16)

B = W (T ) � 0; (17)

min
�
E (U (W (T )))

+
; E (U (W (T )))

�
�
<1 (18)

for all t 2 [0; T ] and some K 2 R, where x+ and x� denote, respectively,

the positive and the negative part of the real number x. The terminal

wealth B is said to be A-feasible if the above conditions are satis�ed and

(� (t) ; � (t)) 2 A for all t 2 [0; T ]. We will let B(P; A) denote the set of

A-feasible terminal wealth given the price system P.

The process C in (15) captures the possibility of free disposal of wealth:

in other words, the agent is allowed not to reinvest some of his wealth if

he chooses to do so. The total amount of wealth \wasted" up to time t

is given by C(t). Equation (14) is then the usual dynamic budget con-

straint: it states that the wealth at any time t equals the initial wealth,

plus the trading gains, minus the cumulative net withdrawals. Equations
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(16) and (17) state that, while the investor is allowed to borrow against

future income and thus to have short-term de�cits, the �nal wealth must

be suÆcient to cover any amount borrowed. Moreover, the wealth process

must admit a uniform lower bound: this is suÆcient to rule out arbitrage

opportunities, such as the doubling strategies discussed by Harrison and

Kreps (1979).

The individual investment problem can now be formally stated as that

of maximizing the expected utility functional E(U) over the set fB : B 2
B(P; A)g.

5. STATE PRICES AND FEASIBLE WEALTH PROCESSES

Since security prices and the income stream in this model allow possibly

non-Markovian processes, stochastic dynamic programming cannot be ap-

plied to analyze the agent's consumption problem. Therefore we will use

martingale techniques to transform the dynamic budget constraint in (15)

into a set of equivalent static constraints.

In order to motivate the static characterization of feasible consumption

plans, consider �rst the unconstrained case (A = R
n+1). De�ne the dis-

count process

�0 (t) = B (t)
�1

= exp

�
�

Z
t

0

r (�) d�

�

and the exponential local martingale

�0 (t) = exp

�Z
t

0

k0 (�)
T
dw(�)�

1

2

Z
t

0

jk0 (�)j
2
d�

�
; (19)

where k0 is the process of (4). By (5), �0 is in fact a strictly positive martin-

gale, so that it is possible to de�ne a probability measure Q0 equivalent to

P by dQ0

dP
= �0 (T ). Also, it is well-known (and easily veri�ed by Girsanov's

theorem) that Q0 has the property that the discounted gain process

G0 (t) = �0 (t)S (t) +

Z
t

0

�0 (s) dD(s)

becomes a local martingale under it, andQ0 is in fact the unique probability

measure equivalent to P with this property: it is alternatively known in the

�nance literature as the risk-neutral probability or the equivalent martingale

measure. The process �0 = �0�0 then identi�es the unique state-price

density for the economy, in the sense that the value at time 0 of any wealth

process W satisfying an integrability condition is given by

E [�0 (T )W (T )] = E

Q0 [�0 (T )W (T )] ;
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where EQ0 denotes the expectation operator under Q0. Without con-

straints on the set of admissible portfolio policies, it follows that a terminal

wealth is feasible if and only if its value does not exceed the value of the

individual's endowment, i.e., if only if

E

Q0

"
�0 (T )W (T )�

Z
T

0

�0 (t) d (t) dt

#
� d0: (20)

We will refer to (20) as a static budget constraint. The dynamic problem

of maximizing the expected utility over the terminal wealth W (T ) satisfy-

ing (15)-(17) can then be restated as the equivalent problem of maximizing

the expected utility subject to the single budget constraint in (20).

We will now show that a similar transformation of the optimal invest-

ment problem into an equivalent static one is possible in the presence of

constraints and that conditions similar to those in Cox and Huang (1991)

are suÆcient to guarantee the existence of an optimal investment plan. The

main di�erences are that, with unconstrained portfolio policies (A = R
n+1)

�0 is the unique state-price density consistent with the absence of arbitrage

opportunities; but with constrained portfolios (A � R
n+1) there exist in-

�nitely many state-price densities that are consistent with no arbitrage,

and a family of static budget constraints needs to be considered in order

to ensure feasibility.

Following the lead of Cvitanic and Karatzas (1992, 1993), let N denote

the set of A-valued processes v satisfying

E

"Z
T

0

jv (t)j2 dt

#
<1: (21)

For each v 2 N, the processes

�v (t) = exp
�
�
R
t

0
(r (�) + v0 (�)) d�

�
;

kv (t) = �� (t)�1
�
� (t) + v� (t)� (r (t) + v0 (t)) 1

�
;

�v (t) = exp
�R

t

0
kv (�)

T
dw(�)� 1

2

R
t

0
jkv (�)j

2
d�

�
;

�v (t) = �v (t) �v (t) ;

are well-de�ned, and �v is a strictly positive local martingale. Let N�

denote the subset of elements v 2 N for which �v is in fact a martingale.

Note that N� is nonempty, since (5) and the fact that A is a cone ensure

that we always have 0 2 N�.
Each �v with v 2 N� can be interpreted as the density process cor-

responding to some probability measure Qv equivalent to P . Also, it is

clear that each �v with v 2 N� can be interpreted as the unique state-

price density in a �ctitious unconstrained economy with price coeÆcients
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P=(r + v0; �+ v�; �). More generally, the following result shows that each

�v with v 2 N
� constitutes an arbitrage-free state-price density in the orig-

inal economy when the portfolio policies are constrained to be in A, and

that the satisfaction of a budget constraint with respect to all of these

state-price densities is also suÆcient to guarantee the A-feasibility.

Theorem 5.1. A random variable B is A-feasible if and only if

E

Qv [�v (T )B] � d0 + E

Qv

"Z
T

0

�v (t) (Æ (v (t)) + d (t)) dt

#
; 8v 2 N�:

(22)

Proof. Suppose �rst that B is A-feasible, i.e., that (15)-(18) are satis�ed

for some investment strategy (�; �) with (� (t) ; � (t)) 2 A for all t 2 [0; T ].

Using Itô's lemma, it is easy to show that (15) implies

�v (t)W (t)�

Z
t

0

�v (�) d (�) d�

� �v (t)W (t)�

Z
t

0

�v (�) d (�) d� +

Z
t

0

�v (�) dC (�)

= d0 �

Z
t

0

�v (�)
�
� (�) v0 (�) + � (�)

T
v� (�)

�
d�

+

Z
t

0

�v (�) � (�)
T
� (�) dwv (�)

� d0 +

Z
t

0

�v (�) Æ (�(�)) d� +

Z
t

0

�v (�) � (�)
T
� (�) dwv (�) ; (23)

for all v 2 N� , where

wv (t) = w (t)�

Z
t

0

kv (�) d�;

is a Brownian motion under Qv. For each positive integer n, letting

�n = T ^ inf

�
t 2 [0; T ] :

Z
t

0

���� (�)T � (�)���2 d� � n

�
;

with the usual convention maintained for the remainder of the paper, i.e.,

inf (?) =1. Since the stochastic integral on the right-hand side of (23) is
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a Qv-martingale on [0; �n], taking expectations gives

E

Qv [�v (�n)W (�n)]� E

Qv

�Z
�n

0

�v (t) d (t) dt

�

� d0 +E

Qv

�Z
�n

0

�v (t) Æ (v (t)) dt

�
: (24)

Letting n " 1, we have �n " T (because of (6)). Applying the monotone

convergence theorem twice and using the fact that

E

Qv

"Z
T

0

�v (t) d (t) dt

#
� E

Qv

"Z
T

0

�0 (t) d (t) dt

#
� Ky

because of (14) and Assumption 3, shows that

lim
n!1

E

Qv

�Z
�n

0

�v (t) d (t) dt

�
= E

Qv

"Z
T

0

�v (t) d (t) dt

#
:

Applying the dominated convergence theorem and Assumption 3, shows

that

lim
n!1

E

Qv

�Z
�n

0

�v (t) Æ (v (t)) dt

�
= E

Qv

"Z
T

0

�v (t) Æ (v (t)) dt

#
:

As for the �rst term in (24), we have from (16) and Assumption 3

(�v (�n)W (�n))
� � (�0 (�n)W (�n))

� � Kexp

 Z
T

0

jr (t)j dt

!
<1;

for all n. Fatou's lemma then gives

lim inf
n!1

E

Qv [�v (�n)W (�n)] � E

Qv [�v (T )W (T )] � 0;

where the last inequality follows from (17). Therefore, we have

E

Qv [�v (T )W (T )] � lim inf
n!1

E

Qv [�v (�n)W (�n)]

� lim inf
n!1

E

Qv

�Z
�n

0

�v (t) d (t) dt

�
+ d0

+ lim inf
n!1

E

Qv

�Z
�n

0

�v (t) Æ (v (t)) dt

�

= E

Qv

"Z
T

0

�v (t) (d(t) + Æ (v (t)))dt

#
+ d0:
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This establishes (22).

To show the converse, let T denote the set of stopping time � with � � T ,

and for any � 2 T let

W (�) = sup
v2N�

�v (�)
�1
E

Qv

"
�v (T )W (T )�

Z
T

�

�v (t) (d(t) + Æ (v (t)))dt j F�

#
:

Since W (0) � d0 and the family of random variables

Xv (�) =

Z
T

�

exp

�
�

Z
t

�

(r (s) + v0 (s)) ds

�
(y(t) + Æ (v (t)))dt;

is uniformly bounded above (because of (14) and Assumption 3), it follows

from the argument used in the proof of Propositions 6.2 and 6.3 in Cvitanic

and Karatzas (1993) thatW satis�es the equation of dynamic programming

W (�1) = sup
v2N�

[EQv

Z
�2

�1

exp

�
�

Z
t

�1

(r (s) + v0 (s)) ds

�
(d(t) + Æ (v (t)))dt

+ exp

�
�

Z
�2

�1

(r (s) + v0 (s)) ds

�
W (�2) j F�1 ]

for all �1; �2 2 T with �1 < �2, and hence that the process

Mv (t) = �v (t)W (t)�

Z
t

0

�v (s) (d(s) + Æ (v (s)))ds

is a Qv-supermartingale for all v 2 N�. By the Doob decomposition and

the martingale representation theorem, for each v 2 N� there exists an

increasing real-valued process Av with Av (0) = 0 and a Rn-valued process

 v with
R
T

0
j v (t)j

2
dt <1 such that

Mv (t) = W (0) +

Z
t

0

 v (�)
T
dwv (�)�Av (t) :

Since

�v (t)
�1

�
Mv (t) +

Z
t

0

�v (s) (d(s) + Æ (v (s)))ds

�

= W (t) = �0 (t)
�1

�
M0 (t) +

Z
t

0

�0 (s) d(s)ds

�
; (25)
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we must have

�v (t)
�1
 v (t) = �0 (t)

�1
 0 (t)

and

Z
t

0

�
Æ (v (�)) + v0W (�) + �v (�)

�1
 v (�)

T
� (�)

�1 �
v� (�)� v0 (�) 1

��
d�

�

Z
t

0

�v (�)
�1
dAv (�) = �

Z
t

0

�0 (�)
�1
dA0 (�) (26)

for all v 2 N� and all t 2 [0; T ]. Now, letting

� (t)
T
= �0 (t)

�1
 0 (t)

T
� (t)

�1
;

and

� (t) =W (t)�

nX
k=1

�k (t) ;

we intend to show that (�; �) is an admissible trading strategy.

Conditions (16) and (17) follow immediately from the de�nition of W ,

(14), and Assumption 3. Next, observe that the process

C (t) = d0 �W (0) +

Z
t

0

�0 (�)
�1
dA0 (�)

is nonnegative and increasing, and that we have from (25) and Itô's lemma

W (t) = W (0) +

Z
t

0

r (�)W (�) d� +

Z
t

0

�0 (�)
�1

(dM0 (�) + d (�)�0 (�) d�)

= d0 +

Z
t

0

r (�)W (�) d� +

Z
t

0

� (�)
T
� (�) dw0 (�) +

Z
t

0

d (�) d� � C (t)

= d0 +

Z
t

0

�
� (�) r (�) + � (�)

T
� (�)

�
d� +

Z
t

0

� (�)
T
� (�) dw (�)

+

Z
t

0

d (�) d� � C (t) ;

thus (15) is also satis�ed, and we are only left to show that (�; �) take

values in A.
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By (26) and the de�nition of (�; �), we have

0 �

Z
t

0

�v (�)
�1
dAv (�)

=

Z
t

0

�0 (�)
�1
dA0 (�) +

Z
t

0

�
Æ (v (�)) + � (�) v0 (�) + � (�)

T
v� (�)

�
d�:

Since v(2 N�) is arbitrary, A is a convex cone and Æ is positively homo-

geneous, this implies the existence of a set E having full (�� P ) measure

(where � denotes the Lebesgue measure on [0; T ]) such that

Æ (v) + � (t; !) v0 + � (t; !)
T
v� � 0; 8 (t; !) 2 E; v 2 A:

By Theorem 14.1 in Rockafellar(1970), this implies (�; �) 2 A, (�� P )-

a.e..

6. EXISTENCE OF OPTIMAL POLICIES

Theorem 5.1 implies that it is possible to reformulate the agent's invest-

ment problem as

maxV , maxEU (B)

s.t.

E

Qv [�v (T )B] � d0+E
Qv

"Z
T

0

�v (t) (Æ (v (t)) + d (t)) dt

#
8v 2 N�; (P)

B � 0:

This can be regarded as a convex optimization problem over a closed and

norm-bounded subset of L1 (Q0). Unfortunately L
1 (Q0) spaces are not

reexive, and hence the feasible set in (P) lacks (weak) compactness. To

circumvent this diÆculty, all of the existing papers approaching the optimal

consumption problem under constraints using martingale techniques have

focused on a dual minimization problem.

The motivation for the dual problem is the following. Let B� denote

the optimal �nal wealth plan, and suppose that at least one of the budget

constraints in (P) is tight. Since the set f�v : v 2 N
�g is convex, this sug-

gests the existence of a state-price density �v� and a Lagrangian mutiplier



132 YUNHONG YANG

 
�
> 0 such that (B�;  �; v�) is a saddle point of the map

L (B; ; v) = E [U (B)]�  E

"
�v (T )B �

Z
T

0

�v (t) (Æ (v (t)) + d (t)) dt� d0

#
;

(27)

where we maximize with respect to B and minimize with respect to ( ; v).

Maximizing (27) with respect to B leads to the dual shadow state-price

problem

min
( ;v)2(0;1)�n�

J ( ; v) = E

"
U ( �v (T ))+ 

�
d0 +

Z T

0

�v (t) (Æ (v (t)) + d (t)) dt

�#
:

(P
�
)

From (7)-(13), we have the following proposition:

Proposition 6.1. Suppose that the utility function U(x) satis�es the

Inada conditions in (7) and that there exist constants � 2 [0; 1] and  2
(0;1) such that

�U

0 (B) � U

0 (B) ; 8B 2 (0;1) : (28)

If there exists a solution ( �; v�) to the dual state price problem (P�) and

E

"
f ( ��v� (T ))�v� (T )�

Z
T

0

�v� (t) Æ (v
� (t)) dt

#
<1; (29)

then there exists a constrained optimal wealth B* and the equality

U

0 (B�) =  

�
�v� (T ) (30)

holds for some  
�
> 0, such that

E

"
�v� (T ) f ( 

�
�v� (T ))�

Z
T

0

�v� (t) (d (t) + Æ (v� (t))) dt

#
= d0: (31)

Conversely, if (30) and (31) hold for some ( �; v�) 2 (0;1)�N�and some

B
� 2 B(P; A), then ( �; v�) solves the dual problem.

Proof. See Appendix A.

The diÆculty in using the duality approach in the presence of a stochastic

income should now be apparent: unless Æ � 0; d � 0 (or, more generally, d
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is �nanced by an admissible trading strategy), and the utility function U

has an Arrow-Pratt coeÆcient of relative risk aversion that is everywhere

strictly less than one, the map v ! J( ; v) is not convex. If these rather

restrictive assumptions are satis�ed, the problem can be relaxed by looking

for a solution in (0;1) �N (i.e., by allowing the density process to be a

local martingale, rather then a martingale), and the existence of a solution

to (P*) can then be shown using the technique of Cvitanic and Karatzas

(1992).

In the present paper, we depart from the previous literature and show

the existence of an optimal plan by attacking directly the primal problem

(P). We deal with the lack of compactness in the set of feasible terminal

wealth by using the so-called technique of relaxation-projection introduced

by Levin (1976) for optimization in non-reexive spaces. The following

theorem represents the main result of the paper.

Theorem 6.1. Suppose that:

(i) there exists a B 2 B(P; A) with E[U(B)] > �1;

(ii) either U is bounded above on (0;1), or there exist constants k �
0; b 2 (0; 1) and p > 1 such that

U (x) � k

�
1 + x

1�b
�
; 8x 2 (0;1) ; (32)

and

�

�1
0 (T ) 2 L

p

b (Q0) : (33)

Then there exists a constrained optimal terminal wealth.

Proof. See Appendix B.

7. CHARACTERIZATION OF OPTIMAL POLICIES

While Theorem 6.1 guarantees the existence of an optimal terminal

wealth B
�, it gives no indications as to the nature of such a policy. In

the unconstrained case (i.e., with a single budget constraint ), it follows

immediately from the Lagrangian theory of optimization that the optimal

consumption plan satis�es the Kuhn-Tucker condition

(U 0 (B�)�  �0 (T ))B
� = 0;

P -a.e. for some Lagarangian multiplier  > 0. In other words, the indi-

vidual's marginal rates of substitution at the optimum equal the unique
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state-price density �0 whenever the nonnegativity constraint on terminal

wealth is nonbinding. The following proposition gives a generalization of

this result.

Proposition 7.1. Let B* denote the optimal terminal wealth and sup-

pose that B
� 6= 0 and that there exists a  2 (0; 1) such that

E [U 0 (B�)] <1: (34)

Then there exists a sequence f n�vng with  n > 0 and vn 2 N
�
for all n

such that

(U 0 (B�)�  n�vn
(T ))B� ! 0; P-a.e. and in L

1(P ): (35)

If in addition

inf
v2N�

E [�v (T )B
�] > 0; (36)

then (35) holds with  n =  > 0 for all n.

Proof. De�ne the subset M and N in L1(P ) by

M = f �vB
� :  > 0; v 2 N�g ;

N =
�
U
0 (B�)�m : m 2M

	
;

whereM denotes the closure ofM in L1(P ). Arguing by contradiction, sup-

pose that there is no sequence f n�vng such that  n�vnB
� ! U

0 (B�)B�

in L1(P ). ThenN\f0g = ?. Moreover, it is easily veri�ed thatN is convex

and closed in L1(P ). Therefore, it follows from the separating hyperplane

theorem that there exists a ' 2 L1 (P ) such that

E [U 0 (B�)B�']�  E [�v (T )B
�
'] > 0;

for all v 2 N� and  2 R+. Letting ' = B
�
'� k'k

L1
, the above implies

E [U 0 (B�)'] > 0 � E [�v (T )'] ; 8v 2 N�: (37)

But then for each " 2 (0; 1� )(where  is the constant of (34)) the terminal

wealth B" = B
� + "' � B

� is A-feasible, and hence it follows from the

optimality of B� that

0 � lim
"#0

V (B")� V (B�)

"

= E [U 0 (B�)'] ;
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where the last equality follows from the dominated convergence theorem,

the fact that

jU (B")� U (B�)j

"

� U

0 (B�)
jB" �B

�j

"

� U

0 (B�)B�;

and that the last expression is integrable by (34). This contradicts (37), and

hence establishes (35) in the part concerning convergence in L1(P ). Almost

everywhere convergence can be ensured by passing to a subsequence.

Next, suppose that (36) also holds and let f n�vnB
�g �M be such that

 n�vn
B
� ! U

0 (B�)B� in L1(P ). Since  n k�vnB
�k
L1 ! kU 0 (B�)B�k

L1

and k�vnB
�k
L1 is bounded below away from zero, f ng is bounded. Hence,

we can assume (by possibly passing to a subsequence) that  n !  > 0

and we are only left to show that k �vnB
� � U

0 (B�)B�k
L1 ! 0. But this

follows from the inequalities

k �vnB
� � U

0 (B�)B�k
L1

= k( �  n)�vnB
� +  n�vn

B

� � U

0 (B�)B�k
L1

� k�vnB
�k
L1 j �  nj+ k n�vnB

� � U

0 (B�)B�k
L1

� (d0 +Kd) j �  nj+ k n�vnB
� � U

0 (B�)B�k
L1 ! 0;

where Kd is the constant in (14).

An immediate implication of the previous proposition is that if the opti-

mal consumption plan is strictly positive (as must be the case with in�nite

marginal utility at zero), then, after scaling by a constant, the marginal

utility process for an optimizing agent must be the pointwise limit of a

sequence of state-price densities. We state this result in the next corollary.

Corollary 7.1. If B
�
> 0 a.e. and (34) and (36) hold, then there

exists a  > 0 and a sequence f�vng with vn 2 N
�
for all n such that

U

0 (B�) = lim
n!1

 �vn
(T ) (38)

for P -almost all ! 2 
.

8. CONCLUDING REMARKS

This paper studies the existence of optimal investment and portfolio rules

given the preference from terminal wealth in the presence of constraints on

portfolio choice and stochastic income. We apply the so-called technique

of relaxation projection for optimization without compactness. Though we



136 YUNHONG YANG

have assumed a state-independent utility function for terminal wealth, the

case of state-dependent utility functions is easily accommodated by our

existence result.

APPENDIX A

This Appendix is devoted to the proof of Proposition 6.1. The argument

is adapted from Cuoco (1997).

Proof (Proposition 6.1). Assume that ( �; v�) 2 (0;1) � n� solves

(P�), and that (29) holds. In accordance with (30), de�ne the terminal

wealth plan B
� by B

� = f ( ��v� (T )). In order to prove that B� is

constrained-optimal, we will proceed in two steps: �rst we will show that

V (B�) � V (B) holds for all B 2 B(P; A) and then that B� 2 B(P; A).

Step 1. Taking B = f(y) in (28), applying f (�) to both sides and iterat-

ing, shows that for all � 2 (0;1) there exists a  2 (0;1) such that

f (�y) � f (y) 8y 2 (0;1) :

Since Æ is bounded above on A, (29) then implies

E [f ( �v� (T ))�v� (T )] <1; (A.1)

for all  2 (0;1) :

By the optimality of  �, we have

0 = lim
"!0

J ( � + "; v
�)� J ( �; v�)

"

= E

�
lim
"!0

U (( � + ")�v� (T ))� U (( �)�v� (T ))

"

�

+E

"
d0 +

Z
T

0

�v� (t) (d (t) + Æ (v� (t))) dt

#

= d0 � E

"
�v� (T )B

� �

Z
T

0

�v� (t) (d (t) + Æ (v� (t))) dt

#
; (A.2)

where the second equality follows from Lebesgue's dominated convergence

theorem, using (A.1) and the fact that
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����U (( � + ")�v� (T ))� U (( �)�v� (T ))

"

����
�

U (( � + j"j)�v� (T ))� U (( �)�v� (T ))

j"j

� �v� (T ) f (( 
� � j"j)�v� (T ))

� �v� (T ) f

�
 
�

2
�v� (T )

�

for j"j <  
�

2
(because U (�) is decreasing and convex, U

0
(x) = �f(x) , and

f(x) is decreasing). By concavity,

U (f (x))� U (B) � x (f (x)�B) ;

it then follows from (22) and (A.2) that, for any terminal wealth B 2
B(P; A)

V (B�)� V (B) = E [U (B�)� U (B)]

= E [U (f ( ��v� (T )))� U (B)]

� 0:

Hence, B� must be optimal provided that it is A-feasible.

Step 2. By the continuity of f and �v� , it is clear 0 < B
�
< 1. Also,

from the inequality

U (1)� z � max
B�0

[U (B)� zB] = U (f (z))� zf (z) ;

we have

E

h
U (B�)

�
i
� U (1)

�
+  

�
E [�v� (T )] <1:

Therefore, we are only left to show that there exists an admissible trading

strategy (�; �) satisfying (15)-(17) and (� (t) ; � (t)) 2 A for 8t.
De�ne the wealth process W by

W (t) = �v� (t)
�1
E

"
�v� (T )B

� �

Z
T

t

�v� (�) (d (�) + Æ (v� (�))) d� j Ft

#

= �v� (t)
�1
E

Qv�

"
�v� (T )B

� �

Z
T

t

�v� (�) (d (�) + Æ (v� (�))) d� j Ft

#



138 YUNHONG YANG

(the expectation is �nite because of (14) and (29)). Clearly, W (T ) = B
�,

and W is bounded below (because of (14) and Assumption 3), so that (16)

and (17) are satis�ed. Also, since W (0) = d0 (because of (A.2)), it follows

from the martingale representation theorem that there exists a process  

with
R
T

0
j (t)j2 dt <1 a.s. such that

�v� (t)W (t)�

Z
t

0

�v� (�) (d (�) + Æ (v� (�))) d� = d0 +

Z
t

0

 (�)
T
dwv� (�) ;

(A.3)

where wv� = w (t) �
R
t

0
kv� (�) d� is a standard Brownian motion under

Qv� .

De�ne the trading strategy (�; �) 2 � by

� (t)
T
= �v� (t)

�1
 (t)

T
� (t)

�1
; (A.4)

and

� (t) = W (t)�

nX
k=1

�k (t) :

Using (A.3) and Itô's lemma shows that

W (t) = d0 +

Z
t

0

(r (�) + v

�
0 (�))W (�) d� +

Z
t

0

� (�)
T
� (�) dwv� (�)

+

Z
t

0

(d (�) + Æ (v� (�))) d�

= d0 +

Z
t

0

�
� (�) (r (�) + v

�
0 (�)) + � (�)

T
�
� (�) + v

�
� (�)

��
d�

+

Z
t

0

� (�)
T
� (�) dw (�) +

Z
t

0

(d (�) + Æ (v� (�))) d�:

A comparison with (15) then reveals that in order to prove that B� 2
B(P; A) we are only left to verify that

(� (t; !) ; � (t; !)) 2 A; (�� P )-a.e.; (A.5)

and that

� (t; !) v�0 (t; !) + � (t; !)
T
v

�
� (t; !) + Æ (v� (t; !)) = 0; (�� P )-a.e.:

(A.6)
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Fix an arbitrary v 2 N and de�ne the process

& (t) =

Z
t

0

(v�0 (�)� v0 (�)) d�

+

Z
t

0

�
� (�)

�1 �
v

�
� (�)� v� (�)� (v�0 (�)� v0 (�)) 1

��T
dwv� (�)

as well as the sequence of stopping times

�n = T ^ infft 2 [0; T ] : j& (t)j+ j�v� (t)j+ jW (t)j � n;

or

Z
t

0

���� (�)T � (�)���2 d� � n;

or

Z
t

0

jv�0 (�)� v0 (�)j
2
d� � n,

or

Z
t

0

���� (�)�1 �v�� (�)� v� (�)� (v�0 (�)� v0 (�)) 1
����2 d� � ng:

Then �n " T a.s.. Also, letting

v";n (t) = v

�(t) + " [v(t)� v

�(t)] 1ft��ng;

for " 2 (0; 1), we have v";n 2 N (because of the convexity of A) and

�v";n
(t) = �v� (t) exp

 
"& (t ^ �n)

�
"
2

2

Z
t^�n

0

���� (�)�1 �v�� (�)� v� (�)� (v�0 (�)� v0 (�)) 1
����2 d�

!
:

It then follows from the de�nition of the stopping times �n that

e

�2"n
�v� (t) � �v";n

(t) � e

2"n
�v� (t) ; (A.7)

and

e

�3"n
�v� (t) � �v";n

(t) � e

3"n
�v� (t) :

Therefore, �v";n is of class D, and hence v";n 2 N
� (Jacord and Shiryaev,

1987, Proposition I.1.47).
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We will show below that for any v 2 N � we have

lim
"!0

J ( �; v�)� J ( �; v";n)

"

�  

�
E

"Z
�n

0

�v� (t) (� (t) (v
�
0 (t)� v0 (t)) +

� (t)
T
(v�� (t)� v� (t)) + Æ(v� (t))� Æ(v (t)))dt

#
: (A.8)

Since J ( �; v";n) reaches a minimum at " = 0, the left-hand side of (A.8)

is nonpositive, and thus so is the right-hand side.

Taking v = v
� + �; � 2 N, it follows from the fact that A is a convex

cone that v 2 N, and hence (A.8) gives

E

�Z
�n

0

�v� (t)
�
� (t) �0 (t) + � (�)

T
��(t) + Æ(� (t))

�
dt

�
� 0;

where we have used the subadditivity of Æ. Since � 2 N was arbitrary, this

implies the existence of a set E having full measure (�� P ) such that

� (t; !) v0 (t; !) + � (t; !)
T
v� (t; !) + Æ (v (t; !)) � 0; 8 (t; !) 2 E; v 2 A:

By Theorem 14.1 in Rockafellar (1970), the above implies (A.5).

On the other hand, for v � 0, (A.8) gives

E

�Z
�n

0

�v� (t) (� (t) v
�
0 (t) + � (t)

T
v

�
� (t) + Æ(v� (t)))dt

�
� 0;

and it then follows, using the fact that � (t) v�0 (t)+� (t)
T
v
�
� (t)+Æ(v� (t)) �

0 for (� (t; !) ; � (t; !)) 2 A and v� (t) 2 A , that (A.6) also holds. To show
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the inequality in (A.8), we start by observing that�����U ( ��v� (T ))� U

�
 
�
�v";n

(T )
�

"

+ �
Z
T

0

(d(t) + Æ (v�))
�v� (t)� �v";n

(t)

"

dt

�����
� �

"
f

�
 
�
e
�2n"

�v� (T )
� ��
�v";n

(T )� �v� (T )
��

"

+

Z
T

0

(d(t) + Æ (v�))

��
�v� (t)� �v";n

(t)
��

"

dt

#

� �

"
Kn�v� (T ) f

�
 

�
e

�2n"
�v� (T )

�
+Kn

Z
T

0

�v� (t) (d(t) + Æ (v� (t))) dt

#
;

where

Kn = sup
"2(0;1)

e
2n" � 1

"

<1;

and that

�v";n
(t) (Æ (v� (t))� Æ (v (t)))

�
� �e2n"�v� (t) Æ (v

� (t)) :

It then follows from (29), (31), Lebesgue's dominated convergence theorem,

the convexity of Æ, and Fatou's lemma that

lim
"#0

J ( �; v�)� J ( �; v";n)

"

= lim
"#0

E[
U ( ��v� (T ))� U

�
 
�
�v";n

(T )
�

"

+  

�

Z
T

0

(d(t) + Æ (v�))
�v� (t)� �v";n

(t)

"

dt

+  

�

Z
T

0

�v";n
(t)

Æ (v� (t))� Æ (v";n (t))

"

dt

�E

"
lim
"#0

U ( ��v� (T ))� U

�
 
�
�v";n

(T )
�

"

#

+  

�
E

"Z
T

0

lim
"#0

�
(d(t) + Æ (v�))

�v� (t)� �v";n
(t)

"

�
dt

#
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+  

� lim
"#0

E

"Z
T

0

�v";n
(t)

Æ (v� (t))� Æ (v";n (t))

"

dt

#

=E

"
 

�
�v� (T )B

�
& (�n)�  

�

Z
T

0

�v� (t) & (t ^ �n) (d(t) + Æ (v� (t))) dt

#

+  

� lim
"#0

E

�Z
�n

0

�v";n
(t) Æ (v� (t))� Æ (v (t)) dt

�

� �E

�
�v� (�n)W (�n) & (�n)�

Z
�n

0

�v� (t) & (t ^ �n) (d(t) + Æ (v� (t))) dt

�

+  

�
E

�Z
�n

0

�v� (t) Æ (v
� (t))� Æ (v (t)) dt

�
: (A.9)

On the other hand, using (A.3) and (A.4), Itô's lemma shows that

�v� (�n)W (�n) & (�n)�

Z
�n

0

�v� (t) (d(t) + Æ (v� (t))) dt

=

Z
�n

0

�v� (t)
�
W (t)� (t)

�1 �
v

�
� (t)� v� (t)� (v�0 (t)� v0 (t)) 1

�
+ & (t) � (t)

T
� (t)

�
dwv� (t)

+

Z
�n

0

�v� (t)
�
� (t) (v�0 (t)� v0 (t)) + � (t)

T
�
v

�
� (t)� v� (t)

��
dt;

Since the stochastic integral in the above expression is a Qv�-martingale,

we have

E

�
�v� (�n)W (�n) & (�n)�

Z
�n

0

�v� (t) (d(t) + Æ (v� (t))) dt

�

= E

�Z
�n

0

�v� (t)
�
� (t) (v�0 (t)� v0 (t)) + � (t)

T
�
v

�
� (t)� v� (t)

��
dt

�
:

Substituting the above expression in (A.9) yields (A.8). This shows that

B
� 2 B(P; A) and hence that B� is optimal.
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To prove the converse, suppose that (30) and (31) are satis�ed by some

B
� 2 B(P; A). By the argument above, we have for all ( ; v) 2 (0;1)�N�

J ( ; v) = E

"
U ( �v (T )) +  

 
d0 +

Z
T

0

�v (t) (d(t) + Æ (v (t))) dt

!#

� E

�
U ( ��v� (T )) +B

�
 

�
�v� (T )

+  

 
d0 +

Z
T

0

�v (t) (d(t) + Æ (v (t))) dt

!
� �v (T )B

�

#

� E

"
U ( ��v� (T )) +  

�

 
d0 +

Z
T

0

�v� (t) (d(t) + Æ (v� (t))) dt

!#

= J ( �; v�) ;

where the last inequality follows from (22) and (31). This shows that

( �; v�) solves (P�).

APPENDIX B

This appendix is devoted to the proof of Theorem 6.1. The proof is based

on the following result, due to Levin (1976) (cf. also Fougeres(1979)).

Lemma B.1. Let F : L1 (S;�; �) ! R [ f+1g be a convex functional,

where (S;�; �) is a measure space with � �nite and nonnegative and �

complete. If F is lower semicontinuous in the topology � of convergence in

measure, then it attains a minimum on any convex set K � L
1 (S;�; �)

that is � -closed and norm-bounded.

Proof. See Levin (1976).

Lemma B.2. Let K denote the set of terminal wealth satisfying (22)

K =

�
B : B � 0; E

Qv
[�v(T )B] � d0 + E

Qv

�Z T

0

�v (t) (Æ (v (t)) + d (t)) dt

�
; 8v 2 N

�

�
:

Then K is a norm-bounded subset of L
1 (Q0).

Proof. 8B 2 K, since 0 2 N�, Æ � 0 and r � rB by Assumption 1, we

have

E

Q0 [�0 (T )B] � d0 + E

Q0

"Z
T

0

�0 (t) (Æ (v (t)) + d (t)) dt

#
� Kd + d0;
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so

E

Q0 [B] � E

Q0

�
e

rBT
�0 (T )B

�
� e

rBT (Kd + d0) :

Lemma B.3. Under the assumption of Theorem 6.1, K is convex and

closed in the topology of convergence in Q0-measure.

Proof. We start by noticing that, under the assumptions of Theorem

6.1, the requirement that min
�
E (U (W (T )))

+
; E (U (W (T )))

�
�
< +1

is satis�ed by all B 2 L1+ (Q0), since this implies B <1 a.s., and

E [U (B)]
+
� kE

�
1 +B

1�b
�

� k + kE

Q0

h
�0 (T )

�1
B

1�b
i

� k + k

�
E

Q0

h
�0 (T )

� 1

b

i�b �
E

Q0 [B]
�1�b

< 1; (B.1)

for some k � 0, b 2(0,1) (by Holder's inequality and Lemma B.2). The con-

vexity ofK is now immediately veri�ed and the closure follows from Fatou's

lemma and the fact that any sequence converging in Q0-measure has a sub-

sequence converging Q0-a.e..

We next record some properties of the utility functional U .

Lemma B.4. V is concave:

V (�B1 + (1� �)B2) � �V (B1) + (1� �)V (B2) :

Lemma B.5. Let V (B) � E[U(B)], then, under the assumptions of The-

orem 6.1, V is bounded above on K and upper semicontinuous with respect

to convergence in Q0-measure: i.e., for every fBng � K and B 2 L1 (Q0)

with Bn ! B in measure, we have V (B) � lim sup
n!1

V (Bn).

Proof. The fact that V is bounded above on K follows from (A1) and

the fact that K is bounded in the L1 (Q0)-norm.

Next, suppose that V is not upper semicontinuous on K. Then there

exists an a 2 R, a sequence fBng � K, and a B 2 K such that Bn ! B

in measure and

V (B) < a � V (Bn) ; for all n: (B.2)
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By passing to a subsequence, we can assume without loss of generality that

Bn ! B a.e.. We will show that, under the assumptions of Theorem 6.1,

the family

n
�0 (T )

�1
U (Bn)

o
(B.3)

is Q0-uniformly integrable. It then follows from Fatou's lemma that

V (B) = E

Q0 [�0(T )
�1
U(B)]

� lim sup
n!1

E

Q0

�
�0(T )

�1
U(Bn)

�
= lim sup

n!1
V (Bn):

This contradicts (B.2) and thus establishes the upper semicontinuity of V .

Finally, to prove our claim that the family in (B.3) is Q0-uniformly inte-

grable, we observe that this is immediate if U is bounded above. Otherwise,

we have

U

�
B

+
n

�
� k

�
1 +B

1�b
n

�
;

and it is enough to show that

sup
n

E

Q0

h�
�0(T )

�1
B

1�b
n

�pi
<1

holds for some p > 1. Taking p = p

b+p(1�b)
(where b 2 (0; 1) and p(> 1)

are the constants in (32) and (33) ), we have from Holder's inequality

E

Q0

h
�0(T )

p
B

(1�b)p
n

i
�
�
E

Q0

h
�0(T )

�
p

1�p(1�b)

i�1�p(1�b) �
E

Q0 [Bn]
�p(1�b)

=
�
E

Q0

h
�0 (T )

� p

b

i�1�p(1�b) �
E

Q0 [Bn]
�p(1�b)

< 1:

Proof (Theorem 6.1). Consider the map I : L1 (Q0) ! R [ f+1g
de�ned by I(B) = �V (B), if B 2 K; I(B) =+1, otherwise.

Since K is convex and closed with respect to convergence in measure, it

follows from the concavity V and Lemma B.5 that I is convex and lower

semicontinuous in measure. Also, K is nonempty and bounded in norm.

Therefore, it follows from Lemma B.1 and the fact that I(B) <1 for some
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B 2 K, that there exists a B� 2 K such that I (B�) � I (B) for all B 2

L
1 (Q0). This implies that B� solves (P).
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