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This paper develops a consistent test for the correct hazard rate specification
within the context of random right hand censoring of the dependent variable.
The test is based on comparing a parametric estimate with a kernel estimate of
the hazard rate. We establish the asymptotic distribution of the test statistic
under the null hypothesis of correct parametric specification of the hazard rate
and establish the consistency of the test. c© 2001 Peking University Press

Key Words: Consistent test; Hazard rate; Random censoring; Kernel estimation;
Boundary kernel.

JEL Classification Numbers: C14, C52.

1. INTRODUCTION

Most of the current research into consistent model specification testing
has focused on density and regression functions and on situations where
the sampling is assumed to be either random or at least stationary, see
Hart (1997) for a detailed discussion on nonparametric methods of func-
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tion estimation and their use in testing the adequacy of parametric function
specifications. This paper takes a similar approach but is concerned with
developing a consistent test for correct specification of hazard rates. Haz-
ard rate estimation is a very common task of applied econometricians. At
present there does not really exist a suitable method for consistently testing
if a parametric hazard rate has been correctly specified. As with regres-
sion and density analysis, a misspecified model can easily lead to incorrect
inferences.

In this paper we adapt some of the recent results of Fan and Li (1996) to
consistent model specification testing within the context of random right
hand censoring of the dependent variable. Since this sort of problem is
most often encountered in the context of duration analysis we will generally
assume that the focus of inference is a hazard rate with covariates. We
implicitly allow for situations where some of these may be unobserved. In
principle, one could focus on, say specification of the survivor function or
the integrated hazard. However, since it is usually the hazard rate which
is directly specified in duration analysis, it is reasonable to concentrate on
it.

There are currently several methods for testing these models. Nakamura
and Walker (1994) provide an overview. One can use traditional LM, LR,
and Wald tests. These are useful since they are based on maximum like-
lihood estimates and estimation in duration models is generally based on
maximizing a likelihood function. They obviously are not robust. It is
also popular to use Conditional Moment (CM) tests. They are often more
robust than the likelihood-based tests. However, since they are based on
a finite number of moments, it is generally possible to find alternatives
against which they have little or no power. We shall return to these again
below. Horowitz and Neumann (1992) have a variant of this based on mo-
ment restrictions. Perhaps the most popular form of model free testing is
a form of residual analysis based on the Kaplan-Meier estimate of the sur-
vivor function. While in some cases this form of residual analysis may be
informative, it is not in itself a rigorous test. Although the Kaplan-Meier
estimator may be interpreted as a maximum likelihood estimator and has
certain optimality features, its statistical properties are quite cumbersome
to work out. It is also designed for unconditional models and is quite
awkward to adapt to conditional models with covariates.

In this paper we develop a method for systematically evaluating the
distance between a parametric estimated hazard rate and its nonparamet-
ric counterpart. This approach to testing model specification has become
very popular recently, see e.g. Aït-Sahalia, Bickel, and Stoker (1994), Fan
and Li (1996), Gozalo (1993), Härdle and Mammen (1993), Hong (2000),
Hong and White (1995), Horowitz and Härdle (1994), Li and Wang (1998),
Wooldridge (1992), Yatchew (1992), Zheng (1996) to mention only a few.
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However, the existing tests are designed for testing the specification of a
density function or of a regression function. They are not directly appli-
cable to duration models for several reasons: First, in duration analysis,
one typically specifies the hazard function rather than the density function;
Second, there is often censoring in duration data which is not allowed in
existing work; Third, the duration variable is non-negative. Hence, the
kernel estimate suffers from the well known boundary effect. To the best
of our knowledge, this has not been taken into account explicitly in exist-
ing work on model specification testing. The current paper attempts to
bridge this gap. Specifically, we establish a consistent test for the paramet-
ric specification of the hazard rate allowing for the presence of censoring in
the data. To overcome the boundary effect, we use the class of boundary
kernels introduced in Müller (1991).

The remainder of this paper is organized as follows. In the next section
we introduce the kernel estimate and the parametric estimate of the hazard
function and present a measure of distance between the two estimates. This
measure forms the basis of our test. In Section 3 we first establish the
asymptotic distribution of the measure introduced in Section 2 under the
null hypothesis and then construct our test. The last section concludes.
The technical proofs are postponed to the Appendix.

2. THE NULL HYPOTHESIS AND THE KERNEL
ESTIMATE

Let T ∗ be a duration variable with the conditional density function
f(·|x), the conditional survivor function F (·|x), and the conditional haz-
ard function λ(·|x), where the covariate X takes values in Rl. Let τ be
a censoring variable with the conditional density function g(·|x) and the
conditional survivor function G(·|x). For simplicity, we consider random
censorship in this paper so that T ∗ and τ are independent.

Suppose n i.i.d. observations {ti, di, xi}n
i=1 are available, where ti =

min(t∗i , τi) and di = I{ti=t∗i } = I{t∗i≤τi}, where IA is the indicator function
of the set A. We are interested in testing the parametric functional form of
the conditional hazard function λ(·|x). Namely, if {λ0(·|x, β) : β ∈ B ∈ Rp}
is a family of parametric hazard functions, then the hypotheses of interest
can be formulated as

H0 : P (λ(T ∗|X) = λ0(T ∗|X,β0)) = 1 for some β0 ∈ B,

HA : P (λ(T ∗|X) = λ0(T ∗|X,β)) < 1 for all β ∈ B.

Note that under H0, the conditional density function and the condi-
tional survivor function of the duration variable T ∗ take respectively the
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parametric forms, f0(·|x, β0) and F0(·|x, β0) (say) such that λ0(·|x, β0) =
f0(·|x, β0)/F0(·|x, β0), where

f0(t|x, β0) = λ0(t|x, β0) exp(−
∫ t

0

λ0(s|x, β0)ds).

To test H0 versus HA, we take a similar approach to that in Fan (1994)
by comparing a kernel estimate of λ(·|·) with a parametric estimate of
λ0(·|·, β0). By choosing an appropriate measure between the two estimates,
we will develop a consistent test for H0.

2.1. The Nonparametric and Parametric Estimates
Let T be the random variable that is i.i.d. as ti and let h1(t, x) denote the

joint probability density function of T,X and d = 1. Then it can be shown
that h1(t, x) = f(t|x)G(t|x)f(x), where f(x) is the density function of X.
Similarly one can show that the conditional survivor function of T given
x is F (t|x)G(t|x). Set h2(t, x) = F (t|x)G(t|x)f(x). Then the conditional
hazard function λ(t|x) of T ∗ has the following expression

λ(t|x) =
h1(t, x)
h2(t, x)

=
f(t|x)
F (t|x)

. (1)

Although f(t|x) and F (t|x) are not directly estimable, the functions
h1(t, x) and h2(t, x) can be consistently estimated from the random sample
{ti, di, xi}n

i=1. Specifically, a kernel estimator of h1(t, x) is given by

ĥ1(t, x) =
1

(n− 1)γl+1

∑
j 6=i

djK1t(
t− tj
γ

)K2(
x− xj

γ
), (2)

where γ = γn → 0 is a smoothing parameter, K2(·) is an l dimensional
kernel function, and

K1t(z) =
{
K1+(1, z) if γ ≤ t <∞
K1+( t

γ , z) if 0 ≤ t < γ
(3)

with K1+ a boundary kernel satisfying Assumption (K1) introduced in
Section 3. Here and in (4) below, the boundary kernel K1+ is used for t in
the boundary region [0, γ] to overcome the boundary effect associated with
the duration variable T . Similarly, a kernel estimator of h2(t, x) is given
by

ĥ2(t, x) =
1

(n− 1)γl+1

∑
j 6=i

[
∫ ∞

t

K1t(
u− tj
γ

)du]K2(
x− xj

γ
). (4)
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The nonparametric estimator of the hazard function is defined as

λ̂(t|x) =
ĥ1(t, x)

ĥ2(t, x)
. (5)

Note that under regularity conditions, it can be shown that ĥ1(t, x) is
a consistent estimator of h1(t, x) and ĥ2(t, x) is a consistent estimator of
h2(t, x). Hence λ̂(t|x) is a consistent estimator of the hazard function of T ∗.
In fact, one can show that ĥ2(t, x) converges faster than ĥ1(t, x) because of
the integration involved in the definition of ĥ2(t, x). This resembles the well
known result that the kernel estimator of a distribution function converges
faster than the corresponding kernel estimator of the density function.

The kernel estimator λ̂ of the hazard function is to be compared with a
parametric estimator obtained under H0. Since the hazard function takes
the parametric form λ0(t|x, β0) under H0, the conditional density function
of T ∗ is given by f0(t|x, β0) = λ0(t|x, β0) exp(−

∫ t

0
λ0(s|x, β0)ds). Suppose

that the density function of the covariate X does not depend on β0. Then
under H0, β0 can be root-n consistently estimated by the maximum like-
lihood estimator β̂ (say). The corresponding parametric estimator of the
hazard function is λ0(t|x, β̂). Given the parametric estimator of the hazard
function, we can obtain a parametric estimator of the density function of
T ∗, f0(t|x, β̂) and of the survivor function F0(t|x, β̂).

2.2. The Basis of the Test
For any β, define

S(β) =
1
n

n∑
i=1

[λ0(ti|xi, β)− λ̂i]2[ĥ2(ti, xi)]2widi, (6)

where λ̂i = λ̂(ti|xi) is the nonparametric estimator of the hazard function
defined in (5), ĥ2(ti, xi) is given in (4), and wi = w(ti, xi) is a positive
weighting function which can be used to direct power of the test towards
different directions.

Our test for H0 will be based on S(β̂). Note that by using a weighted
average squared difference between the two estimates in S(β̂) instead of
the integrated squared difference as in Fan (1994), we avoid having to
evaluate an (l+1) dimensional integral numerically. The multiplication by
[ĥ2(ti, xi)]2 in (6) gets rid of the denominator in λ̂i. This greatly simplifies
the technical analysis.

Intuitively, one would expect that under certain regularity conditions,

S(β̂) →
∫ ∫

[λ0(t|x, β∗)−λ(t|x)]2h2
2(t, x)w(t, x)h1(t, x)dtdx in probability,
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where β∗ = β0 under H0 (see White (1982) or Assumption (P) introduced
in Section 3). Since the latter term is non-negative and is zero if and only
if the null hypothesis holds, the test based on S(β̂) proposed in the next
section will be consistent for testing H0 against HA.

3. THE TEST AND ITS ASYMPTOTIC PROPERTIES

The derivation of the asymptotic null distribution of S(β̂) is very tedious
algebraically, because it depends on three estimators ĥ1(ti, xi), ĥ2(ti, xi),
and β̂. However, the idea underlying the derivation is not difficult to un-
derstand. To see this, we introduce

S̄(β) =
1
n

n∑
i=1

[λ0(ti|xi, β)− ĥ1(ti, xi)
h2(ti, xi)

]2[h2(ti, xi)]2widi. (7)

Note from (5), (6), and (7) that the only difference between S(β) and S̄(β)
is the replacement of ĥ2(ti, xi) in S(β) by h2(ti, xi) in S̄(β). Heuristically,
since ĥ2(t, x) converges at a faster rate than ĥ1(t, x), under certain condi-
tions, the asymptotic null distribution of S(β0) is the same as that of S̄(β0)
apart from the center terms. By the same token, one can show that the
asymptotic null distribution of S(β̂) is the same as that of S(β0), because
β̂ converges faster than both ĥ1 and ĥ2. Consequently, the asymptotic null
distribution of S(β̂) is given by that of S̄(β0) apart from the center term.

3.1. Assumptions
Throughout this section, we will work with the following assumptions.

(f) The functions F (t|x), G(t|x), and f(x) and their m-th order partial
derivatives with respect to t and/or x are bounded and uniformly continu-
ous on R+×Rl, where m is a positive integer. The weight function w(t, x)
is Lipschitz continuous.

(K1) The support of K1+(q, z) is [0, 1]× [−1, q]. For a fixed q, K1+(q, ·)
is of order m on [−1, q], that is

∫ q

−1

ziK1+(q, z)dz =

 1, i = 0,
0, 0 < i < m,
(−1)mm!kmq, i = m.

For some finite constants L,C > 0, supz,q|K1+(q, z)| < C and supq|K1+(q, z1)−
K1+(q, z2)| ≤ L|z1 − z2| for all z1, z2 ∈ [−1, q].

(K2) The kernel function K2(·) is a bounded, symmetric function on Rl

that satisfies
∫
|K2(u)|du < ∞, ||u||l|K2(u)| → 0 as ||u|| → ∞, and is of
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order m. Specifically, we assume

∫
ui1

1 u
i2
2 . . . u

il
l K2(u)du =


1, i1 = . . . = il = 0,

0, 0 <
∑l

j=1 ij < m, or
∑l

j=1 ij = m

and ij < m for all j = 1, 2, . . . , l,

(−1)mm!km,
∑l

j=1 ij = m and ij = m for some j,

and
∫
|ui1

1 . . . uil

l K2(u)|du <∞ for
∑l

j=1 ij = m, where i1, . . . , il are non-
negative integers, || · || is the Euclidean norm, and km does not depend on
j.

(G) The smoothing parameter satisfies γ → 0, and nγl+1 → ∞, and
nγ(l+1)/2+2m → 0.

(P) There exists β∗ ∈ B such that β̂ → β∗ almost surely, and

β̂ − β∗ =
1
n
A(β∗)−1

n∑
i=1

D log f(ti|xi, β∗) + op(n−1/2),

where D log f(ti|xi, β∗) is the p× 1 vector of first order partial derivatives
of log f(ti|xi, β) with respect to β evaluated at β = β∗, and A(β∗) =
E[D2 log f(ti|xi, β∗)].

Assumption (f) imposes smoothness conditions on the conditional sur-
vivor functions of the duration variable and the censoring variable, as well
as the density function of the covariate. Assumptions (K1) and (K2) spec-
ify conditions on the kernel functions associated with the duration variable
and the covariate. Since the duration variable is non-negative, assumption
(K1) requires that the kernel function K1+ be a boundary kernel of order
m. Note that K1+(1, z) is a standard kernel function of order m on [−1, 1].
For more details on boundary kernels, see Müller (1991). Assumption (G)
requires that the smoothing parameter γ undersmooth the kernel estimate
ĥ1(t, x) of h1(t, x). Fan (1994) considers three cases corresponding to un-
dersmoothing, oversmoothing, and optimal smoothing, and develops three
different tests for the parametric specification of a density function accord-
ingly. Hong (2000) develops a test for the parametric specification of a
regression function using optimal smoothing. It is worth pointing out here
that the classification of smoothing here is with respect to kernel estima-
tion instead of testing, i.e., optimal smoothing for estimation may not be
optimal for testing. Assumption (P) is introduced to examine the effect
of estimating β0 by β̂ on the asymptotic null distribution of S(β̂). For
primitive conditions under which this assumption holds, see White (1982).

3.2. The Asymptotic Null Distribution of S(β̂)

We are now ready to establish the asymptotic null distribution of S(β̂).
Some details of the technical proofs are postponed to the Appendix. We
provide an outline here.
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As explained at the beginning of this section, the asymptotic null distri-
bution of S(β̂) is determined by that of S̄(β0) apart from the center term.
Hence we first establish the asymptotic null distribution of S̄(β0).

Let h1(t, x, β0) = f0(t|x, β0)G(t|x)f(x) and h2(t, x, β0) = F0(t|x, β0)G(t|x)f(x).
Noting that under H0, λ(t|x) = λ0(t|x, β0) = h1(t, x, β0)/h2(t, x, β0), one
can decompose S̄(β0) into the sum of three terms as in (8) below. Specifi-
cally, let Ei denote the conditional expectation given (ti, xi). Then we have
from (7)

S̄(β0) =
1
n

∑
i

[ĥ1(ti, xi)− Eiĥ1(ti, xi)]2widi

+
2
n

∑
i

[ĥ1(ti, xi)− Eiĥ1(ti, xi)][Eiĥ1(ti, xi)− h1(ti, xi, β0)]

+
1
n

∑
i

[Eiĥ1(ti, xi)− h1(ti, xi, β0)]2widi

≡ S1 + 2S2 + S3. (8)

Each of the three terms S1, S2, and S3 in (8) is an example of the numer-
ous terms that we will need to handle in the derivation of the asymptotic
null distribution of S(β̂). Hence we will analyze S1, S2, and S3 in detail,
and only provide the final results for the rest of the terms in the paper.
For clarity, we will classify these terms into three categories:

Category 1. Random variation only: S1 results from the random varia-
tion of ĥ1(ti, xi);

Category 2. Random and deterministic variations: S2 consists of the in-
teraction between the random variation and the bias of ĥ1(ti, xi);

Category 3. Deterministic variation only: S3 is due to the bias of ĥ1(ti, xi)
only.

Depending on the smoothing parameter γ, both S1 and S2 may con-
tribute to the asymptotic variance of S̄(β0) as in Fan (1994). Under as-
sumption (G), i.e., undersmoothing, we will show that S1 dominates S2

asymptotically. Hence the asymptotic variance of S̄(β0) is given by that of
S1. The last term S3 contributes to the center of the asymptotic distribu-
tion of S̄(β0). In summary, we have

Proposition 3.1. Under assumptions (f), (K1), (K2), and (G), if H0

holds, then

nγ(l+1)/2[S̄(β0)− c1(n)] → N(0, 2σ2) in distribution ,
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where

c1(n) =
1

nγ(l+1)
[
∫ ∞

−∞
K2

2 (x)dx]
∫ ∞

0

{[
∫ t/γ

−1

K2
1t(s)ds][

∫
w(t, x)h2

1(t, x)dx]}dt,

σ2 = {
∫ ∫

w2(t, x)h4
1(t, x)dtdx}{

∫ ∞

0

[K1+∗K1+(1, s)]2ds}{
∫

[K2∗K2(y)]2dy},

with K1+ ∗K1+(1, s) =
∫ 1

−1
K1+(1, t2)K1+(1, s+ t2)dt2 and K2 ∗K2(y) =∫

K2(x)K2(y + x)dx.

Proof. The structure of the proof is similar to, but more complicated
than, that of Corollary 2.4 (c2) in Fan (1994). It consists of three steps:
(i) the derivation of the asymptotic distribution of S1; (ii) the derivation
of the order of S2; (iii) the derivation of the order of S3.

(i) Let K1i,ij = K1ti
( ti−tj

γ ), K2ij = K2(
xi−xj

γ ), and Ki,ij = K1i,ijK2ij .
Then it follows from (8) that

S1 =
1

n(n− 1)2γ2(l+1)

∑ ∑ ∑
i 6=j 6=k

[djKi,ij − Ei(djKi,ij)][dkKi,ik

− Ei(dkKi,ik)]widi +
1

n(n− 1)2γ2(l+1)

∑ ∑
i 6=j

[djKi,ij − Ei(djKi,ij)]2widi

≡ S11 + S12. (9)

The first term S11 can be rewritten in terms of a U -statistic:

S11 =
1

3γ2(l+1)
Un1, (10)

where

Un1 =
(
n
3

)−1 ∑ ∑ ∑
i<j<k

Hn1(zi, zj , zk), (11)

with zi = (ti, xi, di) and

Hn1(zi, zj , zk) = [djKi,ij − Ei(djKi,ij)][dkKi,ik − Ei(dkKi,ik)]widi

+[diKj,ji − Ej(diKj,ji)][dkKj,jk − Ej(dkKj,jk)]wjdj

+[djKk,kj − Ek(djKk,kj)][diKk,ki − Ek(diKk,ki)]wkdk. (12)
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It is easy to show that E[Hn1(z1, z2, z3)|z1] = 0, implying that Un1 is a
degenerate U -statistic. By the proof of Lemma B.4 in Fan and Li (1996),
it follows that under easily verifiable conditions (see Fan and Li (1996) for
details), one gets from (10) and (11):

S11 =
1

3γ2(l+1)
[

6

n(n− 1)

∑ ∑
i<j

E{Hn1(zi, zj , zk)|zi, zj}] + op(
1

n(γl+1)1/2
)

=
2

n(n− 1)γ2(l+1)

∑ ∑
i<j

E{[djKk,kj − Ek(djKk,kj)][diKk,ki

− Ek(diKk,ki)]wkdk|zi, zj}+ op(
1

n(γl+1)1/2
)

=
2

n(n− 1)γ2(l+1)

∑ ∑
i<j

∫ ∞
0

∫ ∞
−∞

[djK1t(
t− tj
γ

)K2(
x− xj

γ
)− e1(t, x)]

× [diK1t(
t− ti
γ

)K2(
x− xi

γ
)− e1(t, x)]w(t, x)h1(t, x)dxdt+ op(

1

n(γl+1)1/2
)

=
2

n(n− 1)γ2(l+1)

∑ ∑
i<j

H̄n1(zi, zj) + op(
1

n(γl+1)1/2
), (13)

where e1(t, x) = E[d1K2,21|t2 = t, x2 = x] = E[d1K1t( t−t1
γ )K2(x−x1

γ )]
and the definition of H̄n1(zi, zj) should be obvious from (13).

Since E[H̄n1(zi, zj)|zi] = 0, it follows from Theorem 1 in Hall (1984)
that

∑∑
i<j H̄n1(zi, zj) is asymptotically normally distributed with zero

mean and variance given by 2−1n2E[H̄2
n1(z1, z2)], provided the following

condition holds (The proof of this is similar to that in Hall (1984) and is
thus omitted):

E[Ḡ2
n1(z1, z2)] + n−1E[H̄4

n1(z1, z2)]
{E[H̄2

n1(z1, z2)]}2
→ 0,

where Ḡn1(x, y) = E[H̄n1(x, z1)H̄n1(y, z1)]. In Lemma A.1 in the Ap-
pendix, we show that E[H̄2

n1(z1, z2)] = γ3(l+1)σ2+o((γ3(l+1))). Hence S11 is
asymptotically normal with zero mean and variance given by (n2γl+1)−1[2σ2+
o(1)].

Similar to Fan (1994), it is straightforward to show that S12 = c1(n) +
op((nγ(l+1)/2)−1). Hence

nγ(l+1)/2(S1 − c1(n)) → N(0, 2σ2) in distribution.
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(ii) To analyze S2, we need to know the bias structure of ĥ1. This is
given in Lemma A.2 (i) in the Appendix. Let

b1(t, x) = [kmq
∂mh1(t, x)

∂tm
+ km

l∑
i=1

∂mh1(t, x)
∂xm

i

].

Using Lemma A.2 (i), we get

S2 =
γm

n

n∑
i=1

b1(ti, xi)[ĥ1(ti, xi)− Ei(ĥ1(ti, xi))]

=
γm

n(n− 1)γl+1

∑
i

∑
j 6=i

[djKi,ij − Ei(djKi,ij)]

= γmUn2, (14)

where

Un2 =
(
n
2

)−1 ∑
i

∑
j<i

{[djKi,ij−Ei(djKi,ij)]+[diKj,ji−Ej(diKj,ji)]}/γl+1.

Note that unlike Un1, Un2 is a non-degenerate U -statistic which is similar
to the U -statistic resulting from the weighted average derivative estimation
in Powell, Stock, and Stoker (1989). Using Lemma 2.1 in Powell, Stock,
and Stoker (1989), one can easily show that Un2 = Op(n−1/2) and hence
S2 = Op(γmn−1/2) = op((nγ(l+1)/2)−1) under Assumption (G).

(iii) Based on Lemma A.2(i), one can easily show that S3 = Op(γ2m) =
op((nγ(l+1)/2)−1) under Assumption (G).

The conclusion of Proposition 3.1 follows immediately from (8) and the
results in (i)-(iii) above.

We now show that apart from the center terms, S(β0) and S̄(β0) are of
the same asymptotic null distribution.

Proposition 3.2. Under H0, assumptions (f), (K1), (K2), and (G),
we have

nγ(l+1)/2(S(β0)− c(n)) → N(0, 2σ2) in distribution ,

where c(n) = c1(n)+c2(n)−2c3(n) with c1(n) and σ2 defined in Proposition
3.1, c2(n) defined in (16), and c3(n) defined in (17).

Proof. It is easy to see that the following decomposition holds:

S(β0)− S̄(β0) =
1
n

∑
i

[ĥ2(ti, xi)− Eiĥ2(ti, xi)]2λ2(ti|xi, β0)widi
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− 2
n

∑
i

[ĥ1(ti, xi)− Eiĥ1(ti, xi)][ĥ2(ti, xi)− Eiĥ2(ti, xi)]λ(ti|xi, β0)widi

− 2
n

∑
i

[ĥ1(ti, xi)− Eiĥ1(ti, xi)][Eiĥ2(ti, xi)− h2(ti, xi, β0)]λ(ti|xi, β0)widi

− 2
n

∑
i

[ĥ2(ti, xi)− Eiĥ2(ti, xi)]{[Eiĥ1(ti, xi)− h1(ti, xi, β0)]

−[Eiĥ2(ti, xi)− h2(ti, xi, β0)]λ(ti|xi, β0)}λ(ti|xi, β0)widi

+
1
n

∑
i

[Eiĥ2(ti, xi)− h2(ti, xi, β0)]2λ2(ti|xi, β0)widi

− 2
n

∑
i

[Eiĥ1(ti, xi)− h1(ti, xi, β0)][Eiĥ2(ti, xi)− h2(ti, xi, β0)]λ(ti|xi, β0)widi

≡ [S4 − 2S5]− 2[S6 + S7] + [S8 − 2S9], (15)

where the definitions of S4 − S9 should be clear from (15).
Although the above decomposition looks complicated, the terms on the

right hand side of (15) are similar to S1, S2, and S3 in (8) which are
analyzed in the proof of Proposition 3.1. Specifically, S4 and S5 are similar
to S1; S6 and S7 are similar to S2; and S8, S9 are similar to S3. By
following the same arguments as in the proof of Proposition 3.1, one can
show that the results below are correct.

Category 1. (i) S4 − c2(n) = Op(γ2(nγ(l+1)/2)−1) = op((nγ(l+1)/2)−1),
where

c2(n) =
1
nγl

[
∫
K2

2 (x)dx]E[{f(x1)− h2(t1, x1)}λ2(t1|x1, β0)w1d1].(16)

Heuristically, S4 is due to the random variation of ĥ2 only and is thus
similar to S1. However because of the integration involved in the definition
of ĥ2, one obtains an extra γ2 in the order of [S4 − c2(n)] which makes it
of smaller order than [S1 − c1(n)]. A proof of this result is provided in the
Appendix, see Lemma A.3.

(ii) S5 − c3(n) = Op(γ(nγ(l+1)/2)−1) = op((nγ(l+1)/2)−1), where

c3(n) =
1

2nγl
[
∫
K2

2 (x)dx]E[h1(t1, x1)λ(t1|x1, β0)w1d1]. (17)

The term S5 arises from the interaction between the random variation of
ĥ1 and that of ĥ2. Like S4, the extra γ in the order of [S5 − c3(n)] is due
to the integration involved in the expression for ĥ2.
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As a result of (i) and (ii) above, S4 and S5 only contribute to the center of
the asymptotic null distribution of S(β0) by the term [c2(n)− 2c3(n)].

Category 2. (i) S6 = Op(γmn−1/2) = op((nγ(l+1)/2)−1).

It is easy to see that S6 is due to the interaction between the random
variation of ĥ1 and the bias of ĥ2. Similar to the analysis of S2, one can
establish the stated order of S6 by using Lemma A.2 (ii) and Lemma 2.1
in Powell, Stock, and Stoker (1989).

(ii) S7 = Op(γmn−1/2) = op((nγ(l+1)/2)−1).

Similar to S6, S7 is due to the interaction between the random variation of
ĥ2 and the bias of ĥ1.

Category 3. (i) S8 = Op(γ2m) = op((nγ(l+1)/2)−1).

(ii) S9 = Op(γ2m) = op((nγ(l+1)/2)−1).

Both S8 and S9 involve only the bias of ĥ1 and ĥ2. Similar to S3, one can
establish the stated order of S8 and S9 by using Lemma A.2.

The conclusion in Proposition 3.2 follows immediately from (15), the
above results, and Proposition 3.1.

Finally, under the additional assumption (P), one can show by following
Fan (1994) that S(β̂) and S(β0) have the same asymptotic null distribution.
Namely, we have

Theorem 3.1. Under (H0), the assumptions (f), (K1), (K2), (G), and
(P), the asymptotic distribution of nγ(l+1)/2[S(β̂) − c(n)] is N(0, 2σ2),
where c(n) and σ2 are defined in Propositions 3.1 and 3.2. In addition,
ĉ(n)−c(n) = op(1) and σ̂2−σ2 = op(1), where ĉ(n) = ĉ1(n)+ĉ2(n)−2ĉ3(n)
with

ĉ1(n) =
1

n2γ(l+1)

[∫
K2

2 (x)dx]
n∑

i=1

[
∫ ti/γ

−1

K2
1ti

(s)ds

]
w(ti, xi)ĥ1(ti, xi)di,

ĉ2(n) =
1

n2γl

[∫
K2

2 (x)dx
] n∑

i=1

[{f̂(xi)− ĥ2(ti, xi)}λ̂2(ti|xi)widi],

ĉ3(n) =
1

2n2γl

[∫
K2

2 (x)dx
] n∑

i=1

[ĥ1(ti, xi)λ̂(ti|xi)widi],

σ̂2 =

{
1
n

n∑
i=1

w2(ti, xi)ĥ3
1(ti, xi)di

}{∫ ∞

0

[K1+ ∗K1+(1, s)]2ds
}

×
{∫

[K2 ∗K2(y)]2dy
}
,
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in which f̂(xi) is the kernel estimator of the density function f(xi) of the
covariate.

3.3. The Test Statistic
Based on Theorem 3.1, one can construct the following test statistic:

T̂ =
nγ(l+1)/2[S(β̂)− ĉ(n)]√

2σ̂
. (18)

Theorem 3.1 implies that under H0, T̂ → N(0, 1) in distribution. This
forms the basis for the following one-sided asymptotic test for H0: reject
H0 at significance level α if T̂ > zα, where zα is the upper α-percentile of
the standard normal distribution.

The last result of this section states the consistency of the above test.

Theorem 3.2. Suppose assumptions (f), (K1), (K2), (G), and (P) hold.
Then the above test is consistent.

Theorem 3.2 follows from the fact that underHA, it holds that σ̂ = Op(1)
and

S(β̂) →
∫ ∫

[λ0(t|x, β∗)−λ(t|x)]2h2
2(t, x)w(t, x)h1(t, x)dtdx in probability

which is positive. The proof of this is straightforward and thus omitted.

4. CONCLUSIONS

In this paper, we have proposed a consistent model specification test for
the hazard function in the context of random right hand censoring of the
dependent variable. It is based on the comparison of a kernel estimate and
a parametric estimate of the hazard rate and hence belongs to the class
of smoothing tests. Like most existing smoothing tests for the parametric
specification of density and regression functions, the proposed test depends
on the choice of the smoothing parameter. Versions of the test that are
adaptive and optimal for the hazard rate might be constructed along the
lines of adaptive and optimal tests for regression function in Horowitz and
Spokoiny (2000). This is left for future research.

APPENDIX: ASSUMPTIONS

In this Appendix, we provide several lemmas that are used in the proof of
the main result in the paper. Throughout, we assume that the assumptions
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in Section 3 hold. To simplify various expressions, we use A ≈ B to denote
two quantities A and B satisfying A/B = 1 + op(1).

Lemma A.1. E[H̄2
n1(z1, z2)] = γ3(l+1)σ2 + o((γ3(l+1))), where σ2 is de-

fined in Proposition 3.1 and H̄n1(z1, z2) is defined via (13).

Proof. From the definition of H̄n1(z1, z2), it follows that

E[H̄2
n1(z1, z2)] =

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

E{[d2K1t(
t− t2
γ

)K2(
x− x2

γ
)− e1(t, x)][d1K1t(

t− t1
γ

)K2(
x− x1

γ
)− e1(t, x)]

× [d2K1s(
s− t2
γ

)K2(
y − x2

γ
)− e1(s, y)][d1K1s(

s− t1
γ

)K2(
y − x1

γ
)− e1(s, y)]}

× w(t, x)h1(t, x)w(s, y)h1(s, y)dxdtdyds

=

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

{E[d1K1t(
t− t1
γ

)K2(
x− x1

γ
)− e1(t, x)][d1K1s(

s− t1
γ

)K2(
y − x1

γ
)− e1(s, y)]}2

× w(t, x)h1(t, x)w(s, y)h1(s, y)dxdtdyds.

Noting that e1(t, x) = E[d1K2,21|t2 = t, x2 = x] = O(γl+1), one can show
based on the above expression that

E[H̄n1(z1, z2)] ≈
∫ ∞

0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

{
∫ ∞

0

∫ ∞
−∞

[K1t(
t− t1
γ

)K2(
x− x1

γ
)][K1s(

s− t1
γ

)K2(
y − x1

γ
)]

× h1(t1, x1)dx1dt1}2w(t, x)h1(t, x)w(s, y)h1(s, y)dxdtdyds

= γ2(l+1)

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

{
∫ t/γ

−1

∫ ∞
−∞

K1t(t1)K2(x1)K1s(
s− t

γ
+ t1)K2(

y − x

γ
+ x1)

× h1(t− γt1, x− γx1)dx1dt1}2w(t, x)h1(t, x)w(s, y)h1(s, y)dxdtdyds

= γ3(l+1)

∫ ∞
0

∫ ∞
−∞

∫ s/γ

−1

∫ ∞
−∞

{
∫ t/γ

−1

∫ ∞
−∞

K1,s−γt(t1)K2(x1)K1s(t+ t1)K2(x+ x1)

× h1(s− γt− γt1, y − γx− γx1)dx1dt1}2

× w(s− γt, y − γx)h1(s− γt, y − γx)w(s, y)h1(s, y)dxdtdyds

≈ γ3(l+1)

∫ ∞
0

∫ ∞
−∞

∫ s/γ

−1

∫ ∞
−∞

{
∫ ∞
−∞

K2(x1)K2(x+ x1)dx1}2
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× {
∫ t/γ

−1

K1,s−γt(t1)K1s(t+ t1)dt1}2w2(s, y)h4
1(s, y)dxdtdyds

= γ3(l+1)[

∫ ∞
−∞

{
∫ ∞
−∞

K2(x1)K2(x+ x1)dx1}2dx]

× [

∫ ∞
0

{
∫ ∞
−∞

w2(s, y)h4
1(s, y)dy}

∫ s/γ

−1

{
∫ t/γ

−1

K1,s−γt(t1)K1s(t+ t1)dt1}2dtds]

= γ3(l+1)[

∫ ∞
−∞

{
∫ ∞
−∞

K2(x1)K2(x+ x1)dx1}2dx]

× [

∫ ∞
0

∫ ∞
tγ

{
∫ ∞
−∞

w2(s, y)h4
1(s, y)dy}{

∫ t/γ

−1

K1,s−γt(t1)K1s(t+ t1)dt1}2dsdt]

= γ3(l+1)[

∫ ∞
−∞

{
∫ ∞
−∞

K2(x1)K2(x+ x1)dx1}2dx]

× [

∫ ∞
0

[

∫ t(γ+1)

tγ

{
∫ ∞
−∞

w2(s, y)h4
1(s, y)dy}{

∫ t/γ

−1

K1,s−γt(t1)K1s(t+ t1)dt1}2ds

+

∫ ∞
t(γ+1)

{
∫ ∞
−∞

w2(s, y)h4
1(s, y)dy}{

∫ t/γ

−1

K1+(1, t1)K1+(1, t+ t1)dt1}2dsdt

≈ γ3(l+1)[

∫ ∞
−∞

{
∫ ∞
−∞

K2(x1)K2(x+ x1)dx1}2dx]

× [

∫ ∞
0

{
∫ 1

−1

K1+(1, t1)K1+(1, t+ t1)dt1}2dt[

∫ ∞
0

∫ ∞
−∞

w2(s, y)h4
1(s, y)dyds}

To derive the order of S2, S6, and S7, we need to know the bias structures
of ĥ1 and ĥ2. These are given in the following lemma.

Lemma A.2. Let q = t/γ for 0 ≤ t < γ and q = 1 for γ ≤ t < ∞.
Under (K1) and (K2), we get

(i)E[ĥ1(t, x)]−h1(t, x) = γm[kmq
∂mh1(t,x)

∂tm +km

∑l
i=1

∂mh1(t,x)
∂xm

i
]+o(γm);

(ii)E[ĥ2(t, x)]−h2(t, x) = γm[kmq
∂mh2(t,x)

∂tm +km

∑l
i=1

∂mh2(t,x)
∂xm

i
]+o(γm).

Proof. The proof of (i) is straightforward. We will only prove (ii).

Let K̄1t(
t−tj

γ ) =
∫ t−tj

γ

−∞ K1t(u)du. Then K̄1t(−∞) = 0 and

ĥ2(t, x) =
1

(n− 1)γl

∑
j 6=i

[1− K̄1t(
t− tj
γ

)]K2(
x− xj

γ
). (A.1)

Hence

Eĥ2(t, x) =
1

γl
E{[1− K̄1t(

t− t1
γ

)]K2(
x− x1

γ
)}
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=
1

γl
E[K2(

x− x1

γ
)]− 1

γl
E[K̄1t(

t− t1
γ

)K2(
x− x1

γ
)]

= f(x) + γmkm

l∑
i=1

∂mf(x)

∂xm
i

+ o(γm)

−
∫ ∫ ∞

0

K̄1t(
t− t1
γ

)K2(x1)[d{1− F (t1|x− γx1)G(t1|x− γx1)}]f(x− γx1)dx1

= f(x) + γmkm

l∑
i=1

∂mf(x)

∂xm
i

+ o(γm)

− 1

γ

∫ ∫ ∞
0

[1− F (t1|x− γx1)G(t1|x− γx1)]K1t(
t− t1
γ

)K2(x1)f(x− γx1)dt1dx1

= f(x) + γmkm

l∑
i=1

∂mf(x)

∂xm
i

+ o(γm) (A.2)

− [1− F (t|x)G(t|x)]f(x) + γm[kmq
∂mh2(t, x)

∂tm
− km

l∑
i=1

∂m{f(x)− h2(t, x)}
∂xm

i

].

The result follows from (A.2).

Lemma A.3. S4− c2(n) = Op(γ2(nγ(l+1)/2)−1), where S4 is defined via
(15) and c2(n) is defined in (16).

Proof. From (A.1), we get

ĥ2(ti, xi) =
1

(n− 1)γl

∑
j 6=i

[1− K̄1ti(
ti − tj
γ

)]K2(
xi − xj

γ
).

Let ψ(t, x) = γlE[ĥ2(t, x)]. Then

S4 =
1
n

∑
i

[ĥ2(ti, xi)− Eiĥ2(ti, xi)]2λ2(ti|xi, β0)widi

=
1

n(n− 1)2γ2l

∑ ∑ ∑
j 6=k 6=i

[{1− K̄1ti
(
ti − tj
γ

)}K2(
xi − xj

γ
)− ψ(ti, xi)]

× [{1− K̄1ti
(
ti − tk
γ

)}K2(
xi − xk

γ
)− ψ(ti, xi)]λ2(ti|xi, β0)widi

+
1

n(n− 1)2γ2l

∑ ∑
j 6=i

[{1− K̄1ti(
ti − tj
γ

)}K2(
xi − xj

γ
)

− ψ(ti, xi)]2λ2(ti|xi, β0)widi

= S41 + S42, (A.3)

where the definitions of S41 and S42 should be apparent from (A.3). Like
S21, one can rewrite S41 in terms of a U -statistic: S41 = (3γ2l)−1Un4,
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where

Un4 =
(
n
3

)−1 ∑ ∑ ∑
i<j<k

Hn4(zi, zj , zk),

in which

Hn4(zi, zj , zk)

= [{1− K̄1ti
(
ti − tj
γ

)}K2(
xi − xj

γ
)− ψ(ti, xi)]

× [{1− K̄1ti
(
ti − tk
γ

)}K2(
xi − xk

γ
)− ψ(ti, xi)]λ2(ti|xi, β0)widi

+ [{1− K̄1tj
(
tj − ti
γ

)}K2(
xj − xi

γ
)− ψ(tj , xj)]

× [{1− K̄1tj (
tj − tk
γ

)}K2(
xj − xk

γ
)− ψ(tj , xj)]λ2(tj |xj , β0)wjdj

+ [{1− K̄1tk
(
tk − ti
γ

)}K2(
xk − xi

γ
)− ψ(tk, xk)]

× [{1− K̄1tk
(
tk − tj
γ

)}K2(
xk − xj

γ
)− ψ(tk, xk)]λ2(tk|xk, β0)wkdk.

It is easy to show that E[Hn4(zi, zj , zk)|zi] = 0. Hence Un4 is a degenerate
U -statistic. Similar to the analysis of Un1, one has

S41 =
1

3γ2l
[

6

n(n− 1)

∑ ∑
i<j

E{Hn4(zi, zj , zk)|zi, zj}]

=
2

n(n− 1)γ2l

∑ ∑
i<j

E([{1− K̄1tk (
tk − ti
γ

)}K2(
xk − xi

γ
)− ψ(tk, xk)]

× [{1− K̄1tk (
tk − tj
γ

)}K2(
xk − xj

γ
)− ψ(tk, xk)]λ2(tk|xk, β0)wkdk|zi, zj)

=
2

n(n− 1)γ2l

∑ ∑
i<j

∫ ∞
0

∫ ∞
−∞

[{1− K̄1t(
t− ti
γ

)}K2(
x− xi

γ
)− ψ(t, x)]

× [{1− K̄1t(
t− tj
γ

)}K2(
x− xj

γ
)− ψ(t, x)]

× λ2(t|x, β0)w(t, x)h1(t, x)dxdt

=
2

n(n− 1)γ2l

∑ ∑
i<j

H̄n4(zi, zj). (A.4)

Similar to the proof of Lemma A.1, one gets

E[H̄2
n4(zi, zj)] =

∫ ∞

0

∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
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[
E[{1− K̄1t(

t− ti
γ

)}K2(
x− xi

γ
)− ψ(t, x)]

× [{1− K̄1s(
s− ti
γ

)}K2(
y − xi

γ
)− ψ(s, y)]]

]2

× λ2(t|x, β0)w(t, x)h1(t, x)λ2(s|y, β0)w(s, y)h1(s, y)dxdtdyds

=
∫ ∞

0

∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
[
∫ ∞

0

∫ ∞

−∞

[{1− K̄1t(
t− ti
γ

)}K2(
x− xi

γ
)− ψ(t, x)]

× [{1− K̄1s(
s− ti
γ

)}K2(
y − xi

γ
)− ψ(s, y)]]f(x1)dx1

× d{1− F (t1|x1)G(t1|x1)}]2λ2(t|x, β0)w(t, x)h1(t, x)
× λ2(s|y, β0)w(s, y)h1(s, y)dxdtdyds

= γ2(l+1)

∫ ∞

0

∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
[
∫ t/γ

−1

∫ ∞

−∞

[{1− K̄1t(t1)}K2(x1)− ψ(t, x)]

× [{1− K̄1s(
s− t

γ
+ t1)}K2(

y − x

γ
+ x1)− ψ(s, y)]]

× f(x− γx1)dx1d{1− F (t− γt1|x− γx1)G(t− γt1|x− γx1)}]2

× λ2(t|x, β0)w(t, x)h1(t, x)λ2(s|y, β0)w(s, y)h1(s, y)dxdtdyds
= O(γ3(l+1)). (A.5)

Hence V ar(S41) = O((n4γ4l)−1n2γ3(l+1)) = O(γ4(n2γl+1)−1).
The center of S4 is given by the dominating term of E(S42). We now

show that E(S42) ≈ c2(n). Noting that ψ(t, x) = O(γl), we have

E(S42) ≈
1

(n− 1)γ2l
E{[1− K̄1t1(

t1 − t2
γ

)]2K2
2 (
x1 − x2

γ
)λ2(t1|x1, β0)w1d1}.

(A.6)

Now,

E1{[1− K̄1t1(
t1 − t2
γ

)]2K2
2 (
x1 − x2

γ
)] =

=

∫ ∞
−∞

∫ ∞
0

[1− K̄1t1(
t1 − t

γ
)]2d{1− F (t|x)G(t|x)}K2

2 (
x1 − x

γ
)f(x)dx

≈ 2

∫ ∞
−∞

{
∫ t/γ

−∞
[1− K̄1t1(t)]K1t1(t)dt}{1− F (t1|x)G(t1|x)}K2

2 (
x1 − x

γ
)f(x)dx

≈ γl

∫ ∞
−∞

{1− F (t1|x1 − γx)G(t1|x1 − γx)}K2
2 (x)f(x1 − γx)dx
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≈ γl[1− F (t1|x1)G(t1|x1)]f(x1)

∫
K2

2 (x)dx. (A.7)

The conclusion follows immediately from (A.6) and (A.7).
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