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1. INTRODUCTION

Forecasting volatility is a major issue in �nance. For example, volatility
forecasts are used to price options and to forecast option prices; they can be
used to produce con�dence intervals for the prices of the underlying assets
and the forecasts can be used as a component of multi-period investment
strategies. Volatility forecasts are also an integral part of forecasting value
at risk. The recent growing concern about risk management and the rapid
growth in �nancial derivative markets has resulted in volatility forecasting
attracting a great deal of interest.
The major development in modelling and forecasting volatility has been

the introduction of ARCH models by Engle (1982). Since then, numerous
conditional volatility models have been suggested and tested. Empirical
evidence suggests that volatility, however measured, has strong autocorre-
lations over time, see Ding, Granger, and Engle (1994). Many studies on
volatility forecasting use symmetric loss functions to evaluate the eÆcacy
of volatility forecasts; e.g., mean squared error or mean absolute error. We
refer readers to Day and Lewis (1992), Engle, Hong, Kane, and Noh (1993),
Harvey and Whaley (1992), Lamoureux and Lastrapes (1993), Noh, En-
gle, and Kane (1994), Hwang and Satchell (1998), and Knight and Satchell
(1998b) for more details on volatility forecasting.
There have been a number of papers concerning the appropriateness of

using symmetric loss functions to evaluate the eÆcacy of forecasts. Most
studies on asymmetric loss functions have concentrated on the return pro-
cess. See Varian (1975), Zellner (1986), Christo�ersen and Diebold (1996,
1997), and Batchelor and Peel (1998) for example. These studies suggest
that a symmetric loss function is not, in general, appropriate, and that
other approaches need to be considered. This is because symmetric loss
functions weigh returns above the mean as heavily as those below, which
could be somewhat counter-intuitive to common notions of risk. Asymmet-
ric loss functions such as semi-variance or lower partial moments are more
appropriate for investors who want to consider downside risk.
In this study we advocate the use of an asymmetric loss function, in par-

ticular, the LINEX loss function for optimal forecasts of volatility processes
and when the variable of interest is some function of returns. The rationale
for the use of asymmetric loss function for the forecast of volatility may
not be the same as those for the return process in the above. Empirically,
we �nd that forecast errors from certain volatility models such as GARCH
models are heavily skewed to the right (positive skewed) and asymmet-
ric. The empirical results of the GARCH forecasts suggest that GARCH
forecasts may not be optimal for an investor with a speci�c utility function.
Recent results by Bollerslev, Diebold, and Labys (1999) indicate that

volatility can be observed by measuring daily volatility with summations of
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intra-day squared returns. They show that the volatility is model free and
has very small measurement error. Whilst these are exciting results, high
frequency data for returns where transaction costs are high and liquidity
is low could not allow us to "converge" to continuous time processes in
the required way. The conditions we describe above are likely to be met
in all but a few �nancial markets, the exceptions being foreign exchange
and some derivative (futures) markets. Therefore, we have to resort to
comparing our forecasts against squared returns or some other non-linear
transformation even though this is essentially using a volatility proxy with
a lot of noise.
This study uses the LINEX loss function to proxy a utility function

which enjoys certain optimal properties. Our results show that under the
assumption of a LINEX loss function, the optimal predictor for a volatility
process is the sum of conditional volatility and an adjustment factor. Under
the assumption of normality the adjustment factor becomes a constant
which is a function of an asymmetry parameter. If we do not assume
conditional normality, then we need higher conditional moments for the
volatility forecasts as an adjustment factor. These results are similar to
the results of Christo�ersen and Diebold (1997).
Our study is an extension of previous studies especially Christo�ersen

and Diebold (1996, 1997) so that volatility processes are discussed rather
than return processes. Christo�ersen and Diebold (1997) showed that the
optimal LINEX predictor of a return process is the sum of the conditional
expected return and a loss function that includes conditional higher mo-
ments including the second moment. They also showed that when returns
are conditionally normal, the optimal LINEX predictor is sum of the con-
ditional expected return and a loss function that includes the conditional
variance.
This study focuses on the optimal volatility forecasts under the assump-

tion of an asymmetric loss function. In the following sections, we �rst
show why we need asymmetric loss functions to obtain the optimal fore-
casts in volatility processes. Then, the optimal forecasts with a LINEX loss
function will be derived. It turns out that the LINEX optimal forecasts
can be explicitly computed for a range of currently used volatility models.
We extend the results of Christo�ersen and Diebold (1997) by present-
ing results for conditional and unconditional one-step-ahead forecasts for
GARCH, Exponential GARCH, stochastic volatility, and a moving average
conditional heteroskedasticity model. Finally, an empirical example using
LINEX forecasts will be shown and conclusions follow.
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2. PROPERTIES OF FORECASTING ERROR OF GARCH

(1,1) MODEL

In this section, we �rst calculate the properties of forecast errors to in-
vestigate if a symmetric loss function is an appropriate tool for volatility
forecasting. We use a GARCH(1,1) model for the FTSE100 index. Al-
though we could use other volatility models, we focus our attention on
GARCH(1,1) because of its great popularity.
The return volatility is calculated from the log-return less the mean log-

return. In what follows, we shall use y2t for the return volatility at time t.
More formally, y2t is obtained from log-return series, rt, as follows:

y
2
t = 250[rt � rt]

2

where the number 250 is used to annualise the squared daily return series
and rt is the in-sample mean of rt at time t. Note that rt is calculated
using only past observations to avoid any look-ahead bias. We use a total
number of 2044 daily log-returns from 21 January 1992 to 20 January 2000,
which is the full set of data available to us.
We use a rolling sample of the past volatilities. On day t, the conditional

volatilities of the next 60 periods ahead, t+1; t+2; :::; t+60, are constructed
by using the estimates which are obtained from only the past observations.
Therefore, allowing 60 forecasting horizons and 250 iterations from the to-
tal 2044 observations, we have 1734 observations to estimate the model. By
recursive substitution of the conditional volatility, a set of one to 60 steps
ahead forecasts is constructed. On the next day (t+ 1), using recent 1734
observations (i.e., we drop the �rst observtion and add the observation of
t + 1), we estimate the parameters again and get another set of one to
sixty steps ahead forecasts. The estimation and forecasting procedures are
performed 250 times using rolling windows of 1794 observations. Estima-
tions are carried out using the Berndt, Hall, Hall, and Hausman (BHHH)
algorithm for the maximisation of the log-likelihood of the GARCH (1,1)
model.
To investigate whether or not the out-of-sample forecasts above have

consistent properties over di�erent time periods and di�erent returns, we
use the following additional return series. We divide our entire sample into
two equal subperiods and apply the same procedure. Here, each subsample
consists of 1022 observations, of which we have 712 observations for the
estimation, 60 observations for forecasting horizon and 250 observations

for the iteration. We also use the S&P500 index daily log-returns; a total
of 2088 observations from 21 January 1992 to 20 January 2000. These
results are similar and only the FTSE100 case is reported here.1

1Other results can be obtained upon request.
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The GARCH(1,1) model we use in this example is

yt = zth
1=2
t (1)

ht = �+ �ht�1 + 
y
2
t�1

where zt~N(0; 1): Let f be the forecast horizon. The one step ahead
forecast, ht+1jt, and the f step ahead forecasts, ht+f jt, of the GARCH(1,1)
model are

ht+1jt = �+ �ht + 
y
2
t ;

ht+f jt = �

f�1X
j=0

(� + 
)j + (� + 
)f�1(�ht + 
y
2
t ); when f > 1;

where ht+f jt represents f step ahead volatility conditional on the infor-
mation available at time t. For large f , ht+f jt approaches �

1���

; the

unconditional varaince for the case 0 < � + 
 < 1.
Table 1 reports forecast errors of various forecast horizons. We choose

f=1,5,20,60, which roughly represent one day, one week, one month, and
one quarter for the forecast horizon. We use three most widely used non-
linear functions of return that are used for risk evaluation. These are y2t ,
jytj, lny2t , see Ding, Granger, and Engle (1994) for example.
The forecast errors for the three non-linear functions of return are de�ned

as follows. The forecast errors for the conditional variance (panel A), vv;t;f ,
and the conditional standard deviation (panel B), vs;t;f , are de�ned as

vv;t;f = y
2
t+f � ht+f jt; (2)

vs;t;f = jyt+f j � h
1=2

t+f jt
; (3)

and those for the conditional log-variance (panel C), vl;t;f ; are

vl;t;f = ln(y2t+f )� ln(ht+f jt): (4)

A few interesting points can be made. First, panel A of table 1 shows
that when GARCH(1,1) forecasts are measured by (2), they perform well;
the average value of the forecast errors is very close to zero and the standard
deviation of the forecast errors is small. This is because

ht+f jt = E(y2t+f ) (5)

for all f in the GARCH(1,1) model. However, other measures such as
(3) and (4) show that GARCH(1,1) forecasts are always larger than the
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TABLE 1.

Properties of Out-of-Sample Forecasting Error of Conditional Volatility
from GARCH(1,1) Model

A. Conditional Variance1

Forecasting Horizon 1 5 20 60

Mean �0:0011 �0:0004 �0:0008 �0:0005

Standard Deviation 0.0529 0.0526 0.0509 0.0467

Skewness 2:2853� 2:2419� 2:4569� 3:1360�

Excess Kurtosis 6:9073� 6:7349� 7:5059� 16:1381�

B. Conditional Standard Deviation2

Forecasting Horizon 1 5 20 60

Mean �0:0398 �0:0383 �0:0388 �0:0371

Standard Deviation 0.1196 0.1195 0.1157 0.1115

Skewness 0:8340� 0:7833� 0:9785� 0:9364�

Excess Kurtosis 0.5301 0.4444 0:6739� 1:1508�

C. Conditional Log-Variance3

Forecasting Horizon 1 5 20 60

Mean �1:2936 �1:2788 �1:2820 �1:3297

Standard Deviation 2.2989 2.2958 2.2491 2.3373

Skewness �1:4513� �1:4374� �1:4019� �1:4101�

Excess Kurtosis 2:8996� 2:8060� 2:8344� 2:6423�

Notes: FTSE100 index daily log-returns were used for the our-of-sample fore-
cast test of the GARCH(1,1) model. Total number of observations is 2044
from 21 January 1992 to 20 January 2000.
* represents signi�cance at 95% level. The forecast errors used in the above
panels are de�ned as follows.
1. Forecasting errors of conditional variance for forecast horizon f; vt+f , are
de�ned as

vt+f = y2t+f � ht+f

where y2
t+f

is realised variance at time t+ f and ht+f is GARCH(1,1) fore-

casted variance for forecast horizon f at time t.
2. Forecasting errors of conditional standard deviation for forecast horizon
f; vt+f , are de�ned as

vt+f = jyt+f j � h
1=2

t+f

where jyt+f j is realised standard deviation at time t + f and h
1=2

t+f
is

GARCH(1,1) forecasted standard deviation over forecast horizon f at time t.
3. Forecasting errors of conditional log-variance for forecast horizon f; vt+f ,
are de�ned as

vt+f = ln(y2t+f )� ln(ht+f )

where ln(y2
t+f

) is realised log-variance at time t+ f .
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FIG. 1a. Realised Volatility and One-step-ahead Forecasted Volatility from
GARCH(1,1) Model
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FIG. 1b. Realised Volatility and Sixty-step-ahead Forecasted Volatility from
GARCH(1,1) Model
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realised volatility over all horizons. See panels B and C. This is because by
Jensen's inequality,

lnht+1 = ln[E(y2t+1j
t)] > E[ln y2t+1j
t];

h
1=2
t+1 = [E(y2t+1j
t)]

1=2
> E[jyt+1jj
t];

and thus, the expected forecast errors for the conditional standard devia-
tion and log-variance are expected to be negative;

E(vs;t;f ) = E[jyt+f jj
t]� h
1=2

t+f < 0; (6)

E(vl;t;1) = E[ln(y2t+1j
t)]� ln(ht+1) < 0:

An interesting and important �nding is that the forecast errors, as de-
�ned by (2), (3) and (4), are not symmetric. See panels A, B and C of
table 1. They are signi�cantly positively skewed (or negatively skewed in
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the conditional log-variance). Figure 1 shows GARCH(1,1) forecasts and
realised volatility for one-step ahead forecasting and sixty-step ahead fore-
casting. The �gure shows that the frequency of large shocks is less than
that of small shocks, and volatility models are inadequate in explaining
and predicting the large unanticipated shocks.2 Figures 2 and 3 show the
empirical distributions of the forecast errors of (2) and (4). All of them
display forecast errors which are not symmetric. We expect that stochas-
tic volatility (SV) forecasts have similar properties since their asymptotic
properties of the two models are similar under certain conditions, see Nel-
son and Foster (1994), Nelson (1996).
The models such as GARCH models or SV models do not re
ect in-

vestors' attitude to di�erent levels of risk. It seems plausible that many
investors pay more attention to a few high volatilities rather than a large
number of lower-than-average volatilities. We need an appropriate loss
function to re
ect investors di�erent attitude to high and low volatilities.
One method to obtain the optimal forecasts for investors who have dif-

ferent utilities for di�erent levels of volatilities is to use an asymmetric
loss function. The optimal predictor for volatility processes can be derived
under the asymmetric loss function.

3. LINEX LOSS FUNCTION, OPTIMAL FORECASTS AND

UTILITY MOTIVATION

In this section we consider some alternative procedures for forecasting
that take into account the asymmetry of loss. We shall initially consider
LINEX loss functions, see Varian (1975), Zellner (1986), and Christo�ersen
and Diebold (1996, 1997) for the detailed explanation of this method. One
of the most signi�cant di�erences between the most frequently used loss
function, i.e., the mean square loss function, and LINEX loss functions
is that the mean square loss function is symmetrical, while LINEX loss
functions are asymmetic.
The asymmetric LINEX loss function L(x) is given by:

L(x) = exp(�ax) + ax� 1 (7)

where x is the loss associated with the predictive error and a is a given
parameter. With an appropriate LINEX parameter a, we can re
ect small
(large) losses for underestimation or overestimation. In particular, a nega-
tive a will re
ect small losses for overprediction and large losses for under-
prediction.

2See Hwang (1997) for an application of outlier detection models to volatility models.
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A forecast h is computed by carrying out the following optimization

min
h

Z
L(y � h)pdf(y)dy (8)

where y is the variable we wish to forecast. pdf(y) is the unconditional
or conditional probability function of y, depending on the context. If we
substitute (7) into (8) we see thatZ

L(y � h)pdf(y)dy = exp(ha)my(�a) + a�y � ah� 1

where my(t) is the moment generating function of y evaluated at t, �y =
E(y). Di�erentiating the above with respect to h, we �nd that the optimal
h is given by bh = �`n(my(�a))=a (9)

This is essentially the result given in equation (3.2) in Zellner (1986).
Consider some fairly general returns process, yt

yt = �t + �tet (10)

where �t is a deterministic mean and �
2
t is the conditional variance, et is

N(0; 1), the unconditional mgf of yt;my(�a); is given by

my(�a) = exp(�a�t)m�2t
(
a
2

2
)

where m�2t
(�) is the unconditional mgf of the stochastic volatility process.

It follows immediately that the optimal unconditional LINEX forecast
ht is given by

bht = �t � `n(m�2t
(
a
2

2
))�a: (11)

For a > 0, the extra term can be positive or negative depending on the
distribution of �2t : Furthermore, the expectation may only be de�ned for
some values of a.
To illustrate the above, consider �2t following a �

2(m) distribution, then

bht = �t +
m

2a
`n(1� a

2); 0 < a < 1

where �t is assumed deterministic.
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In general, from (10)

bh = �
`n(my(�a))

a
(12)

= �
1

a
`n(exp(��a)E�t+1

(me(�a�t+1))

= ��
1

a
`nE�t+1

(me(�a�t+1))

where me(�a) = E[exp(�aet)]:
Another justi�cation for LINEX can be derived from expected utility.

Bell (1995) presents the optimal properties of the utility function

u(w) = w � �1 exp(��2w)

where �1 and �2 are positive constants. But this is just the LINEX loss
function appropriately re-scaled; it is known that expected utility is invari-
ant to multiplication by a positive constant, so choosing the forecast that
minimises LINEX has an analogue in maximising expected utility. Bell
shows in Theorem 3 (p29, Bell, 1995) that in a certain sense, this is the
only utility function possessing certain desirable properties (see Bell (1995)
for further details). It is likely that LINEX will enjoy similar desirable
properties, although we do not explore this further.

4. LINEX VOLATILITY FORECASTS

Christo�ersen and Diebold (1997) (CD) have examined the properties
of LINEX forecasts for return process under the assumption that the sta-
tistical process is conditionally normal. We shall assume normality where
distributional assumptions are required. However, there is accummulated
evidence that innovations are non-normal even after GARCH type mod-
elling has been done. Many of our formulae in this section could be analysed
for non-normal distributions with known moment generating functions. We
do not pursue this further.
We would write this as yt+hj
t � N(�t+hjt; �

2
t+hjt

) where 
t is the infor-

mation set up to time t, typically 
t = fy1; :::; ytg; and where �t+hjt and
�
2
t+hjt

are the mean and variance of yt+h, conditional on 
t, we can write

yt+hj
t as yt+hjt.
As shown in the previous section, the conditional volatility process �2

t+hjt

may not be optimal. The motivation for this paper is to extend CD's results
to volatility forecasts. In this section we derive, in closed form where
possible, conditional and unconditional LINEX forecasts for SV models
and for the E-GARCH model of Nelson (1991) and a volatility process due
to Knight and Satchell (1998b).
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4.1. Conditioning on past information and volatility models.

We shall denote 
t as the information set appropriate to the condition-
ing. Whilst it is obvious that we would include y1; :::; yt in 
t, it is by no
means clear that conditional volatility, h1; :::; ht; should also be included
since these variables are not observed by the econometrician for any of the
models that shall be discussed in this section. However, the convenient
assumption that the investors know the true parameter values but not the
econometrician can be used to give a de�nition of available information.
For this reason we shall adopt the following de�nition

Definition 4.1. We say that conditional volatility of time t, ht; be-
longs to the conditioning set 
t if ht can be computed exactly given knowl-
edge of the true parameters, appropriate initial values for the stochastic
process governing ht, and the observed data, y1; :::; yt.

We shall apply De�nition 1 when considering the di�erent models under
consideration. Summarising these future results we note that for a GARCH
(1,1), where ht = �+�ht�1+
y

2
t�1, we could compute h1; :::; ht+1 given h0,

�; �; 
 and fy1; :::ytg so that h1; :::; ht+1 are clearly in 
t. Turning now to a
stochastic volatility model (SVM), yt = zte

(�+ht)=2 and ht = �+�ht�1+�t,
it is apparent that knowledge of h0, �; �, � and fy1; :::ytg is not enough to
compute h1; :::; ht so that these variables are not in 
t. It is interesting to
see that Nelson's Exponential GARCH model (Nelson, 1991) has the same
properties as GARCH as does the Knight and Satchell (1,1) model (Knight
and Satchell, 1998b). See the following subsections for the de�nitions of
models and further discussions.

4.2. Log-Volatility

We �rst need to calculate the loss associated with the prediction error.
The prediction errors such as (2) and (3) are not appropriate to re
ect
the investors attitude to the di�erent levels of volatilities in ARCH or SV
models.
The optimal volatility predictor with the LINEX loss function needs

some modi�cation on the de�nition of volatility. In this study, we use the
logarithmic transformation of volatility; i.e., `ny2t for the realised volatility
and derive the optimal log-volatility forecast for `ny2t : With this transfor-
mation, log-volatility in ARCH and SV models now becomes the sum of
a log-chi-square variable and a log-conditional volatility (an unobserved
volatility process in SV models), and thus we can calculate the loss as-
sociated with the predictive error; that is, the di�erence between realised
log-volatility and a forecasted log-volatility.
However, logarithmic transformation of the conditional volatility of ARCH

models, `nht; is not the optimal forecast for the log-volatility in the con-
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ventional mean square forecast error; the logarithmic value of ARCH con-
ditional volatility is always biased upward. For example, the log-volatilty
of ARCH models is

`ny
2
t = `nz

2
t + `nht: (13)

Therefore,

E[`ny2t j
t�1] = E[`nz2t j
t�1] +E[`nhtj
t�1]

= E[`nz2t ] + `nht

= �1:27 + `nht;

and

E[`ny2t j
t�1]� `nht = �1:27 < 0 (14)

since ht is conditional variance and for standard normal variable zt; E[`nz
2
t ] =

�1:27. Equation (14) is the detailed explanation of (6).
Therefore, we need to adjust the bias in (14) which can be removed with

the LINEX parameter.

4.3. ARCH Family Models

The ARCH family process is de�ned by

yt = zth
1=2
t (15)

where zt � iid N(0; 1) and the conditional volatility, ht, is a linear function
of lagged values of ht and/or y

2
t : For example, for the GARCH(p; q) process,

ht = �+ �(L)ht + 
(L)y2t ;

where �(L) = �1L+�2L
2+; :::;+�pL

p and 
(L) = 
1L+
2L
2+; :::;+
qL

q.
The conditional volatility for the fractionally integrated GARCH(p; d; q)
(FIGARCH) process introduced by Baillie, Bollerslev, and Mikkelsen (1996)
is

ht = �+ �(L)ht + [1� �(L)� �(L)(1� L)d]y2t

where �(L) is a polynomial of order maxfp; qg � 1.
We shall compute conditional forecasts for `ny2t . The information set,

according to De�nition 1, includes h1; :::; ht+1. Firstly,

`ny
2
t = `nz

2
t + `nht (16)

= `n�
2
(1) + `nht

Thus the moment generating function of `ny2t is

E[e�a`n(y
2

t )] = E[e�a`n�
2

(1) ]E[e�a`nht ] (17)
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Theorem 4.1. Optimal One-step-ahead Conditional Forecast of `ny2t
and yt in ARCH Family Models. The LINEX optimal conditional forecast

of `n(y2t ) is

E[`n(y2t )j
t�1] = `n(ht) + `n(2)�
1

a
`n[

�(�a+ 1
2
)

�( 1
2
)

]; (18)

where ht is de�ned by the conditional volatility model and the a < 1
2
.

Proof. The conditional moment generating function is

m`n(y2t )
(�a)j
t�1 = E[e�a`n(y

2

t )j
t�1] (19)

= E[e�a`n(y
2

t )j`nht]

= E[e�a`n�
2

(1) ]e�a`nht

= 2�a
�(�a+ 1

2
)

�( 1
2
)

h
�a
t

using Lemma A.1 in the Appendix. Thus

E[`n(y2t )j
t�1] = �
`n(m`n(y2t )

(�a))
a

j
t�1 (20)

= `n(ht) + `n(2)�
1

a
`n[

�(�a+ 1
2
)

�( 1
2
)

]:

The above theorem suggests that under the assumption of the normality
of zt and LINEX loss function, the optimal conditional forecasts for `n(y2t )

have an log correction factor (LCF), `n(2)� 1
a
`n[

�(�a+ 1

2
)

�( 1
2
)

], which is constant

and a function of LINEX parameter a.
We now investigate the e�ects of the LINEX paremater on the LCF.

As in the above theorem, we require a < 0:5. However, this is not a
restriction for the LINEX optimal volatility forecasts, since when a! 0:5,
LCF ! �1: This means that �1 < a < 0:5 is enough for the LCF to lie
between 1 > LCF > �1: In other words, the LCF can take any value
with a < 0:5:
For log-volatiltiy, when a < �1, the LCF has a positive value and re
ects

large losses for underprediction whilst when a > �1, the LCF has a negative
value and re
ects large losses for overprediction. Note that when a = �1,
the LCF is zero and the optimal log-volatility forecasts are the same as
GARCH (1,1) log-conditional volatility. However, we saw that a negative
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a re
ects a large loss for underprediction. Apparently, when a = �1, the
loss function is asymmetric and has large weights for underprediction. In
this case equation (14) shows that E[`n(y2t )j
t�1] < `n(ht).

Remark 4.1. For the long memory structure of volatility processes (see
Granger, Ding, and Spear, 1997, and Andersen, Bollerslev, Diebold, and
Labys, 1999, for example), the above analysis allows us to use LINEX
forecasts for long memory conditional volatility models such as FIGARCH
models.

If we are concerned with the return process which does not need loga-
rithmic transformation, then a < 0 re
ects a large loss for underpredictions
and a > 0 re
ects a large loss for overpredictions as explained in section 3.
This is shown in the following remark.

Remark 4.2. For the return process, yt, the conditional mgf is

myt(�a)
t�1 = E[e�ayt j
t�1] = E[e�azth
1=2

t jh1=2t ] (21)

= e
a2ht
2 :

Therefore, the one step ahead conditional forecast is

E[ytj
t�1] = �
`n(myt(�a))

a
j
t�1 (22)

= �
1

2

a
2
ht

a

= �
1

2
aht:

Note that the results in equation (22) agrees with the CD result; see
section 3, Christo�ersen and Diebold (1997).
On the other hand, we do not have a closed form solution for uncon-

ditional one-step-ahead forecasts, since the unconditional mgf of `nht is
typically unknown. In addition, we also do not suggest the unconditional
LINEX forecast of yt for the same reason.

4.4. Exponential GARCH

The Exponential GARCH model introduced by Nelson (1991) is given
by (23) below. It is interesting to note that in the following de�nition (23),
h1; :::; ht+1 belongs to the information set. We de�ne yt by,
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yt = �tzt (23)

�t = e
ht=2

ht = �t +

1X
j=1

�j(�zt�j + 
(j zt�j j �E j zt�j j))

Note that

`ny
2
t = `n�

2
t + `nz

2
t

= ht + `nz
2
t (24)

setting �t = 0 without loss of generality, we have

`ny
2
t = ht + `n�

2
(1) (25)

with

ht =

1X
j=1

�j(�zt�j + 
(j zt�j j �E j zt�j j))

Thus

E[exp(�a`ny2t )] = E[e�aht ]E[e�a`n�
2

(1) ] (26)

since ht depends only on lagged zt's.

Theorem 4.2. Optimal One-step-ahead Conditional Forecast of `ny2t in

E-GARCH Models. The LINEX optimal conditional forecast of `n(y2t ) is

E[`n(y2t )j
t�1] = ht + `n(2)�
1

a
`n[

�(�a+ 1
2
)

�( 1
2
)

] (27)

where ht =
1P
j=1

�j(�zt�j + 
(j zt�j j �E j zt�j j)) and a <
1
2
:

Proof. Using the same method as in the GARCH(p,q) model, the mo-
ment generating function of `ny2t conditioned on ht is

m`n(y2t )
(�a)j
t�1 = E[exp(�a`ny2t )] (28)

= E[e�a`n�
2

(1) ]e�aht

= 2�a
�(�a+ 1

2
)

�( 1
2
)

e
�aht
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using Lemma A in the Appendix. Thus the theorem can be obtained with

E[`n(y2t )j
t�1] = �
`n(m`ny2t

(�a))
a

j
t�1 (29)

= ht + `n(2)�
1

a
`n[

�(�a+ 1
2
)

�( 1
2
)

]:

Remark 4.3. For the fractionally integrated exponential GARCH (FIE-
GARCH) process introduced by Bollerslev and Mikkelsen (1996), we can
also easily show that the LINEX optimal conditional forecast of `n(y2t )
is the same as (27) with the de�nition of the conditional volatility of the
fractionally integrated exponential GARCH (FIEGARCH) process.

Theorem 4.3. Optimal One-step-ahead Unconditional Forecast of `ny2t
in E-GARCH Models. The optimal LINEX unconditional forecast for `ny2t+1
is given by

E[`ny2t ] = `n2�
1

a
`n[

�( 1
2
� a)

�( 1
2
)

]� 


r
2

�

1X
j=1

�j

�
1

a

1X
j=1

`n[ea
2�2j (�+
)2=2�(�a�j(� + 
))

+ea
2�2j (��
)

2=2�(�a�j(
 � �))];

where �(:) is the cumulative density function of the standard normal dis-

tribution,

Proof. See Appendix.

4.5. Stochastic Volatility Model

In this section, we investigate LINEX optimal forecasts of the stochas-
tic volatility model (SVM). This model is discussed in Taylor (1986) and
Harvey and Shephard (1993, 1996). The SVM is given by

yt = zte
ht=2 (30)

ht = �+ �ht�1 + �t; �t � iid N(0; �2)

where zt � iid N(0; 1) and it is assumed that zt and �t are independent.
Note that log-volatility can be represented as `ny2t = ht + `nz

2
t : Although
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not immediately obvious, according to De�nition 1, h1; :::; ht; ht+1 are not
in the information set, intuitively because there are two sources of noise.

Theorem 4.4. Optimal One-step-ahead Conditional Forecast of `ny2t in

SVM. The optimal LINEX forecast of `ny2t conditional on ht is

E[`ny2t j
t�1] = E(htj
t�1) + `n2�
1

2
`n[

�(�a+ 1
2
)

�( 1
2
)

] (31)

where ht is de�ned in (30) and a <
1
2
:

Proof. The moment generating function of `ny2t is

E[exp(�a`ny2t )] = E[exp(�aht) exp(�a`nz2t )] (32)

= E[e�aht ]2�a
�(�a+ 1

2
)

�( 1
2
)

.

The optimal LINEX forecast of `ny2t conditional on ht is

E[`ny2t j
t�1] = �
`n(m`ny2t

(�a))
a

j
t�1 (33)

= E(htj
t�1) + `n2�
1

2
`n[

�(�a+ 1
2
)

�( 1
2
)

]:

In general E(htj
t�1) will depend upon lagged yt values, but a simple
expression for this term does not appear to be available in the SVM. We
next look at the unconditional LINEX forecast of lny2t .

Theorem 4.5. Optimal One-step-ahead Unconditional Forecast of `ny2t
in SVM. The optimal LINEX prediction of `ny2t is given by

E[`ny2t ] =
�

1� �
�

�
2
a

2(1� �2)
+ `n2�

1

a
`n

�
�( 1

2
� a)

�( 1
2
)

�
: (34)

Proof. The unconditional moment generating function of ht is

E[e�aht ] = exp(
�a�
1� �

) exp(
a
2
�
2

2(1� �2)
): (35)
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Therefore, the optimal LINEX prediction of `ny2t is given by

E[`ny2t ] = �
`n(m`ny2(�a))

a
(36)

= �
1

a
`n

�
e
�a�
(1��) e

�2a2

2(1��2) 2�a
�( 1

2
� a)

�( 1
2
)

�
= �

1

a

�
�a�
1� �

+
�
2
a
2

2(1� �2)
� a`n2 + `n

�
�( 1

2
� a)

�( 1
2
)

��
=

�

1� �
�

�
2
a

2(1� �2)
+ `n2�

1

a
`n

�
�( 1

2
� a)

�( 1
2
)

�
:

4.6. Knight-Satchell Modi�ed GARCH(p,q)

This model is presented in Knight and Satchell (1998b). Essentially,
it writes ht as linear in lagged ht and lagged z

2
t , thereby eliminating the

non-linearities implicit in a standard GARCH model. The Knight-Satchell
(KS) Modi�ed GARCH(p,q) can be represented as

yt = zth
1=2
t (37)

ht = �+

pX
i=1

�
2
i ht�i +

qX
j=1


jz
2
t�j

where zt � iid N(0; 1). See Knight and Satchell (1998) for further dis-
cussion on this model. In this model the information set, 
t�1, contains
h1; h2; ; ; ; ht.

Theorem 4.6. Optimal One-step-ahead Conditional Forecast of ln y2t in

the KS Modi�ed GARCH(p,q). The LINEX optimal one-step-ahead forecast

is

E[ln(y2t )j
t�1] = lnht + ln(2)�
1

a
ln

�
�(�a+ 1

2
)

�( 1
2
)

�
; (38)

where ht is de�ned in (37) and a <
1
2
.
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Proof. Using Lemma A in the Appendix, the mgf of lny2t conditioning
on the information set 
t�1 is

mln(y2t )
(�a)j
t�1 = E[e�a(lny

2

t )j
t�1] (39)

= E[e�a ln�
2

(1) ]e�a lnht

= 2�a
�(�a+ 1

2
)

�( 1
2
)

e
�a lnht

where ht is de�ned in equation (37). Therefore, the LINEX optimal one-
step-ahead forecast is

E[ln(y2t )j
t�1] = �
ln(mln(y2t )

(�a))
a

j
t�1 (40)

= lnht + ln(2)�
1

a
ln

�
�(�a+ 1

2
)

�( 1
2
)

�
;

which is exactly the same as that for the ARCH family models in Theorem

1 except for the di�erent conditional volatility process ht.

For the KS modi�ed GARCH(p,q) model, the optimal one-step-ahead
conditional forecast of yt is also exactly the same as that of GARCH model
in (18) except the de�nition of ht. This is because, the process in (37) is
equivalent to GARCH(p,q) process in (18). However, for the KS model, we
can calculate the optimal LINEX one-step-ahead unconditional predictor

of yt: To see this, let us consider a simple case of p = 1 and q = 1. The
mgf of the conditional volatility of the modi�ed GARCH(1,1) model can
be shown to be

my(�a) = exp

�
a
2
�

2(1� �)

�
�
1Y
j=0

(1� a
2

�

j)�1=2 (41)

The optimal LINEX one-step-ahead unconditional predictor of yt is given
by

E[yt] = �
a�

2(1� �)
+

1

2a

1X
j=0

`n(1� a
2

�

j): (42)

See Knight and Satchell (1998) for proof. The optimal LINEX forecast for
the more complicated KS GARCH(p; q) models where p > 1 and q > 1 will
be obtained by an application of the above method.
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6. CONCLUSIONS

This study derives the one-step-ahead optimal LINEX forecasts for var-
ious nonlinear functions of returns associated with volatility. In addition,
the empirical example in section 5 compares the GARCH(1,1) volatility
forecasts with the LINEX forecasts of the GARCH(1,1). Our �ndings sug-
gest that under the assumption of normality, we can easily obtain the
LINEX forecasts of a range of volatility models with an additional adjust-
ment component.
Further research needs to look at multiperiod LINEX conditional and

unconditional forecasts. Other work of interest would be to extend our
empirical results to all models. As yet we have no general results as to
which models would be especially favoured by LINEX relative to mean
squared estimates for an appropriate family of loss functions.

APPENDIX A

We �rst prove the moment generating function of log of chi-square which
is key to the optimal volatility forecasts.

Lemma A.1. The moment generating function of `n�2(1) is

m`n�2
(1)

(�) = 2�
�(� + 1

2
)

�( 1
2
)

: (A1)

Proof. The moment generating function of `n�2
(1)

is

m`n�2
(1)

(�) = E[e�`n�
2

(1) ]

= E[(�2(1))
�]

=

Z
1

0

x
� 1

�( 1
2
)21=2

x
1=2�1

e
�x=2

dx

=
1

�( 1
2
)21=2

Z
1

0

x
�+1=2�1

e
�x=2

dx:
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Transforming from x to w = x=2 , which implies dx = 2dw, we see that

m`n�2
(1)

(�) =
2�

�( 1
2
)

Z
1

0

w
��1=2

e
�w

dw

=
2�

�( 1
2
)
�(� +

1

2
)

= 2�
�(� + 1

2
)

�( 1
2
)

where �(:) is the gamma function and the LINEX parameter � is restricted

to be larger than than � 1
2
since � + 1

2
> 0.

Proof (Proof of Theorem 3). Since zt � iid N(0; 1) we have

E[e�aht ] =

1Y
j=1

E[exp(�a��jzt�j � a�j
 jzt�j j)] exp(a�j
E jzt�j j):

Examining E[exp(a1zt + b1jztj)], with zt � iid N(0; 1), we have

E[exp(a1zt + b1jztj)] =

Z
1

�1

e
a1z+b1jzj

1
p
2�

e
�z2=2

dz

=

Z 0
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a1z�b1z

1
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2�
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dz +

Z
1

0
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a1z+b1z

1
p
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e
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dz
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1

0

e
a1z+b1z

1
p
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e
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dz

= exp((a1 + b1)
2
=2)

Z
1

0

1
p
2�

exp(�
1

2
(z � (a1 + b1))

2)dz

If we put q = z � (a1 + b1), then dz = dq, so that we haveZ
1

0

e
a1z+b1z

1
p
2�

e
�z2=2

dz = exp((a1 + b1)
2
=2)

Z
1

�(a1+b1)

1
p
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e
�
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2 dq

= exp((a1 + b1)
2
=2)�(a1 + b1):

where �(:) is the cumulative density function of the standard normal
distribution. NextZ 0
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by putting w = �z, then dz = �dw: Finally, for E jzj when z � N(0; 1),
we require

E(jzj) =
Z
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jzj
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dz
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Z 0
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Thus

E[e�aht ] = mh(�a)

=

1Y
j=1

[exp(a2�2j (� + 
)2=2)�(�a�j(� + 
))

+ exp(a2�2j (� � 
)2�2)�(�a�j(
 � �))] exp

 
a�j
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!
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Therefore, using equations (A1) and (26), we have

E[exp(�a`ny2t )] = 2�a
�(�a+ 1

2
)

�( 1
2
)

mh(�a)
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Therefore the optimal LINEX unconditional forecast for `ny2t+1 is given by

E[`ny2t ] = �
`n(m`ny2(�a))

a

= �`nf2�a
�( 1

2
� a)

�( 1
2
)
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