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1. INTRODUCTION

In examining consumer demand behavior, household or individual mi-
croeconomic data offer detailed information for empirical analysis. Impor-
tant indicators of behavior and heterogeneous preferences associated with
the age, sex, or level of education of consumers, can be treated explicitly
with micro data but cannot easily be incorporated into aggregate demand
analysis. However, household budget data, which contain information on
the consumption of disaggregate commodities, often demonstrate a signifi-
cant proportion of observations for which expenditures on some goods are
zero. Since large data sets of consumer surveys are usually on short run
purchases or consumption by consumers, zero expenditures are the result
of short run consumption behavior or consumers’ sensitivity to commodity
prices.1 Standard approaches to specifying and estimating demand systems
that ignore the non-negativity constraints are not appropriate to study the
short-run price response of consumer behavior. Hence, Deaton (1986, p.
1809) claimed that the problem of dealing with zero expenditures is one of
the most pressing in applied demand analysis.

Papers by Wales and Woodland (1983), Lee and Pitt (1986, 1987), and
Lee (1993) have proposed methods for estimating demand systems with
binding non-negativity constraints. Wales-Woodland’s approach is based
on the Kuhn-Tucker conditions associated with a stochastic direct utility
function. Lee and Pitt (1986), taking the dual approach, begin with the in-
direct utility function and show how virtual price relationships can take the
place of Kuhn-Tucker conditions. Such microeconometric models are for-
mulated within the classical utility maximization framework for consumer
demand and the profit-maximization or cost-minimization framework for
producers. The Kuhn-Tucker conditions of concave programming provide
the basic equations for formulating the likelihood function for estimation.
The models can easily be generalized to cases with quantity rationing and
convex budget constraints (Lee and Pitt 1987). However, the implied sta-
tistical models are complex nonlinear multivariate or simultaneous equa-
tion Tobit models, limiting the empirical estimation to a small number of
goods. This is so because without restrictive distributional assumptions,
likelihood functions become rather complicated and involve multiple inte-
grals in a complicated manner. Such difficulties may have hindered the
progress of empirical application in the past.

The development of methods of simulated moments in a discrete choice
model (McFadden, 1989; Pakes and Pollard, 1989) renews the possibility of
overcoming some of the complexity for estimation. The consumer demand

1Consumer purchasing data for marketing research often have such a feature. Short
run demand analysis is of particular interest in marketing science because the interest
on producers’ price promotions and issues of coupons (Chiang 1991, 1995).
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systems with non-negativity constraints in econometrics are multivariate,
nonlinear, simultaneous limited dependent variable systems. Contrary to
discrete choice models, simulated method of moments for consumer de-
mands with non-negativity constraints require more than a simple gener-
ation of random numbers and the direct simulation of model outcomes.
In a discrete choice model, the direct simulation of choices can provide a
simple frequency simulator of choice probabilities (Hajivassiliou and Mc-
Fadden 1998, Laroque and Salanie 1993). For the consumer demand model,
simulating the probabilities of demand goods binding in constraints by fre-
quency requires solving nonlinear programming problems or equations of
Kuhn-Tucker conditions. Since repeatedly solving such equations is rather
impractical, direct simulation of demand quantities and their correspond-
ing frequency counts for binding inequality constraints are not attractive.
Therefore, it may be more practical to consider simulation estimation meth-
ods rather than the method of simulated moments. Alternative methods,
such as importance sampling, may use the likelihood function. In this
paper, we extend the SML methods in Börsch-Supan and Hajivassiliou
(1993) and Lee (1992, 1995). This simulation estimation method can be
implemented with Monte Carlo simulation techniques and conventional op-
timization methods. It avoids the technical difficulty of deriving the virtual
prices in the previous approaches of Lee and Pitt (1986, 1987). Applica-
tions of simulation methods in various economic subjects can be found in
Mariano et al. (2000).

Section 2 discusses the consumer demand systems with non-negativity
constraints. Section 3 discusses a linear expenditure system (LES). Section
4 first introduces a specification of stochastic disturbances with relatively
restricted correlation across equations, which does not require high de-
mand integration. Then, it relaxes the restricted correlation structure and
introduces simulation method for its estimation. We proposes the SML
method with a smooth recursive conditioning (SRC) simulator, which is
also known as the GHK simulator (Geweke, 1991; Börsch-Supan and Ha-
jivassiliou, 1993; Keane, 1994) for estimating the LES. The applications of
these methods for estimating a seven-goods demand system are presented
in Section 5. The implications of the results are discussed. Section 6 con-
cludes the paper with a summary.

2. CONSUMER DEMAND WITH NON-NEGATIVITY
CONSTRAINTS

Before deriving our method for estimating demand systems, we must
first define consumer demand with non-negativity constraints. To begin,
zero expenditures as a result of rational consumer behavior can be derived
from the classical utility maximization framework. Let U(x; ε) be a utility
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function with m commodities x1, ..., xm, where x = (x1, . . . , xm), and ε is
a vector of stochastic terms which are known by the individual consumer
but unknown by the econometrician. The vector ε represents unobserved
preferences in consumers which affect their demand. In short-run demand
models which are relevant for (short-time) consumer survey data, ε may
capture unmeasured consumption in previous periods in a myopic dynamic
setting and may be functions of demographic characteristics of the con-
sumers. The utility maximization model of the consumer is

max
x

{U(x; ε) : v′x = 1, x ≥ 0} , (2.1)

where v = p/M is a m-dimensional vector of goods prices normalized by
income M. Note that U is strictly increasing and strictly quasi-concave so
as to guarantee a unique solution for the demand vector, x∗. Furthermore,
assuming that U is continuously differentiable, the demand, x∗, can be
characterized by the Kuhn-Tucker conditions.

Let x∗ = (0, ..., 0, x∗l+1, ..., x
∗
m)

′
be a demand vector where the first l

goods, with l ≥ 0, are not consumed and all remaining goods (indexed l+1
through m) are consumed. The Kuhn-Tucker conditions for x∗ are

∂U(x∗; ε)
∂xi

− λvi ≤ 0, i = 1, ..., l,

∂U(x∗; ε)
∂xi

− λvi = 0, i = l + 1, ...,m, (2.2)

and v′x∗ = 1 where λ is the Lagrange multiplier corresponding to the bud-
get constraints. The Kuhn-Tucker conditions can equivalently be expressed
in terms of virtual prices (Neary and Roberts, 1980). Virtual prices at x∗

are

ξi =
∂U(x∗; ε)

∂xi

/
λ, i = 1, ...,m. (2.3)

Using virtual prices, the Kuhn-Tucker conditions can be rewritten as

ξi ≤ vi, i = 1, ..., l; ξi = vi, i = l + 1, ...,m, (2.4)

and v′x∗ = 1. Econometric models can be derived with the specification of
either the direct utility function (Wales and Woodland, 1983) or the indi-
rect utility function (Lee and Pitt, 1986). With the direct utility function
specification, one specifies a direct utility function U . The Kuhn-Tucker
conditions imply a system of equations:

vm
∂U(x∗; ε)

∂xi
− ξi

∂U(x∗; ε)
∂xm

= 0, i = 1, ..., l,
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vm
∂U(x∗; ε)

∂xi
− vi

∂U(x∗; ε)
∂xm

= 0, i = l + 1, ...,m− 1, (2.5)

and v′x∗ = 1. With the indirect utility function specification, one specifies
either a system demand equations or an indirect utility function. With an
indirect utility function, a system of demand equations can be derived by
Roy’s identity:

0 = Di (ξ1, ..., ξl, vl+1, ..., vm; ε) , i = 1, ..., l

and

x∗i = Di (ξ1, ..., ξl, vl+1, ..., vm; ε) , i = l + 1, ...,m− 1. (2.6)

In both systems, the implied endogenous variables are x∗l+1, ..., x
∗
m and

ξ1, ..., ξl, where the ξ’s are latent variables with ξi ≤ vi, i = 1, ..., l.
For the parametric estimation, the function form for the direct or indi-

rect utility function and a distribution for ε need to be specified. In an
empirical application of this model, it is important to select a system that
satisfies globally the theoretical concavity property. This is so, because the
structural equations (2.5) or (2.6) imply that the statistical model is a si-
multaneous nonlinear equations model with multivariate limited dependent
variables. Amemiya (1974) and Gourieroux et al. (1980) have demonstrated
that, for similar models, certain coherency conditions are required to guar-
antee that the implied distribution functions for the observable endogenous
variables are proper distributions. In general, the coherency conditions ful-
fill the requirement that the mapping from the probability space of the
disturbances to the sample space must be a well-defined onto single value
function. For the consumer demand model, the coherency conditions are,
first, that for each possible value of ε in the probability space a unique vec-
tor of endogenous variables, x∗, is generated by the structural equations
and, second, that for every possible vector x∗ there exists an ε vector that
will generate it from the structural equations (see, e.g., Lee and Pitt 1987,
Ransom 1987, and Soest et al., 1990 and 1993). If the specified utility
U(x; ε) is monotonic and strictly quasi-concave in x or the indirect utility
function is derived from a utility with such properties, a unique demand
vector x∗ will exist for every ε. Satisfaction of the second coherency con-
dition crucially depends on the manner in which the stochastic elements
are introduced into the consumer’s problem. In microeconometric models,
random elements are unified components of a behavioral structure. If a
sample observation cannot be realized by a specified structural model, the
model is deemed to be too restrictive. If the observation is contaminated by
measurement errors, measurement errors should then be introduced explic-
itly. For consumer demands for all goods to be nonessential, a stochastic
utility specification must be able to generate demand quantities which can
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cover the entire simplex {x|v′x = 1, x ≥ 0} for each given price vector in a
sample.

Demand systems derived from some popular flexible functional forms,
e.g., the translog demand system (Christensen et al. 1975), may not satisfy
the monotonicity or the concavity property of the utility function at any
possible value of the parameter space. For such an approximated system,
one has to be careful about the coherency conditions. Ransom (1987)
showed that the quadratic utility model of Wales and Woodland (1983) does
satisfy the coherency conditions even though the monotonicity condition
does not satisfy globally. With proper restrictions on the parameter space
of the translog demand system function introduced by Lee and Pitt (1986),
Soest and Kooreman (1990) showed that the translog demand system will
satisfy coherency conditions. Soest et al. (1993) further showed that not
imposing coherency may yield inconsistent estimators. However, for any
coherent model, a likelihood function can be derived using the relations
(2.5) or (2.6), and the model can, in principle, be estimated after coherency
conditions are properly imposed.

In this paper, we will focus our attention on empirical estimation of the
linear expenditure demand system because of its simplicity and its global
concavity property.

3. LINEAR EXPENDITURE DEMAND SYSTEM

The LES is derived from the Stone-Geary direct utility function of the
form

U(x) =
m∑

i=1

αi ln (xi − βi) , αi > 0, (xi − βi) > 0, (3.1)

where xi is the quantity of good i and m is the number of goods. Maximiz-
ing the utility function (3.1) subject to the budget constraint,

∑m
i=1 vixi ≤

1, yields the ordinary (i.e., Marshallian) demand function,

xi = βi −
θi

vi

m∑
j=1

vjβj +
θi

vi
, (3.2)

where θi = αi∑m
j=1 αj

. This system is attractive because of its linear structures
in expenditures (i.e., the expenditure on each good is a linear function of all
prices), even though it is restrictive in that the implied Engel curve is linear
(Stone 1954, Pollak and Wales 1969). The implied notional expenditure
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share equation is

vixi = viβi + θi

1−
m∑

j=1

vjβj

 , i = 1, ...,m. (3.3)

Corner solution (zero demand) for good i can occur only if the parame-
ter βi is negative. Goods for which the corresponding βi is negative are
referred to as ‘inessential’ because of the common interpretation of the
β’s as representing subsistence or committed expenditure. The LES re-
quires that all goods that have zero demands have a corresponding βi ≤ 0;
the non-negativity of the α′i’s rules out inferiority; and concavity requires
that every good must be a substitute for every other good. Furthermore,
through Pigou’s law (e.g., Deaton, 1974), the additivity of preferences im-
plies that, for large numbers of goods, income and price elasticities are
approximately proportional.

Variation in tastes across consumers is introduced into the utility func-
tion (3.1) by treating the αi parameters as stochastic;

αi = eεi , (3.4)

where the disturbances (ε1, ..., εm) are normally distributed with mean
(γ1, ..., γm) and a constant variance-covariance matrix Σ.

Demographic variables, such as family size and age composition, have
traditionally played a major role in the analysis of household budget data
(Pollak and Wales 1981). Here, demographic variables are introduced into
the demand system by treating γi, the mean of εi in (3.4), as a linear
function of the demographic variables, z, i.e., γi = zδi. Since the ad-
ditive form of the utility function in (3.1) is invariant with respect to
scaling, the normalization εm = 0 is made. At the sample observation
x∗ =

(
0, ..., 0, x∗l+1, ..., x

∗
m

)′
with x∗i > 0, i = l + 1, ...,m, in the demand

regime with the first l goods not being consumed, the virtual prices are

ξi = vi
s∗m − vmβm

s∗i − viβi
eεi , i = 1, ...,m− 1, (3.5)

where s∗i = vix
∗
i is the expenditure share of the ith commodity. The opti-

mality conditions for x∗ are, after logarithmic transformation,

εi ≤ ln (−viβi)− ln (s∗m − vmβm) , i = 1, ..., l (3.6)

and

εi = ln (s∗i − viβi)− ln (s∗m − vmβm) , i = l + 1, ...,m− 1. (3.7)
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Let e1 = (ε1 − γ1, ..., εl − γl)
′
, e2 = (εl+1 − γl+1, ..., εm−1 − γm−1)

′
and

s2 =
(
s∗l+1, ..., s

∗
m−1

)′
. Then, (e1, e2) is N (0,Σ)-distributed, where

Σ =
(

Σ11 Σ12

Σ21 Σ22

)
(3.8)

and

e1 = Σ12Σ−1
22 e2 + η, (3.9)

with E(η) = 0 and var(η) = Ω ≡ Σ11 − Σ12Σ−1
22 Σ21. This implies that the

regime switching conditions can be written as

η ≤

 ln (−v1β1)− ln (s∗m − vmβm)− γ1

...
ln (−vlβl)− ln (s∗m − vmβm)− γl

− Σ12Σ−1
22 e2 ≡ r. (3.10)

The above equation provides a one-to-one mapping of (e1, e2) to (η, s2).
Given the specified joint density function of (e1, e2), the joint density of
(η, s2) can be determined.

Under the assumption that (e1, e2) is jointly normal, the density of η
is also normal and is independent of s2 because η is independent of e2 in
(3.9) and s2 is determined by e2 from (3.7). Let f1(η) be the conditional
density function of η and f2(e2) be the density function of e2, the likelihood
function for an observation x∗ is

Lc(x∗) =

(∫
{η:η≤r}

f1(η)dη

)
f2(e2)

∣∣∣∣∂e2

∂s2

∣∣∣∣ . (3.11)

Since s∗m = 1−
∑m−1

j=l+1 s∗j , the Jacobian of the transformation is

∣∣∣∣∂e2

∂s2

∣∣∣∣ =
∣∣∣∣∣∣∣∣


∂εl+1
∂s∗l+1

· · · ∂εl+1
∂s∗m−1

...
...

∂εm−1
∂s∗l+1

· · · ∂εm−1
∂s∗m−1


∣∣∣∣∣∣∣∣ .

The matrix ∂e2
∂s2

can be written as

∂e2

∂s2
= H + cab

′
, (3.12)

where H is a diagonal matrix with diagonal elements hii = 1
s∗i−viβi

, i =
l + 1, · · · ,m− 1;

c =
1

s∗m − vmβm
,
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and a = b = 1, where 1 is a vector of ones.
Since ∂e2

∂s2
has a certain matrix pattern in (3.12), it is possible to obtain

an analytical formula for the determinant. Using Graybill (1983, Theorem
8.4.3, p.203), we note that∣∣∣∣∂e2

∂s2

∣∣∣∣ =
[
1 + c

m−1∑
i=l+1

aibi

hii

]
m−1∏
i=l+1

hii

=

[
1 +

1
s∗m − vmβm

m−1∑
i=l+1

(s∗i − viβi)

]
m−1∏
i=l+1

1
(s∗i − viβi)

=

[
s∗m − vmβm +

∑m−1
i=l+1 (s∗i − viβi)

s∗m − vmβm

]
m−1∏
i=l+1

1
(s∗i − viβi)

=
m∑

i=l+1

(s∗i − viβi) /

m∏
i=l+1

(s∗i − viβi) .

The likelihood function with n observed is

L =
n∏

i=1

∏
c

[Lc(x∗i )]
Ii(c) , (3.13)

where Ii(c) is an indicator such that Ii(c) = 1 if the observed consump-
tion pattern x∗i for individual i is in the demand regime c and Ii(c) = 0
otherwise.

4. SIMULATED MAXIMUM LIKELIHOOD ESTIMATION

The empirical implementation of (3.13), however, is troubled by the com-
putational complexity of the likelihood function, i.e., the estimation would
require numerical integration involving multiple probability distributions
in (3.11). The problem is somewhat simpler for the case of production.
With a translog cost function, the linearity of the derived demand equa-
tions allows for additive and normal errors. Estimation of a translog cost
function with three inputs has been accomplished in Lee and Pitt (1987)
by the Gaussian quadrature; however, evaluation of multiple integrals by
numerical methods even in the normal case can effectively be accomplished
only for small numbers of goods.

Before methods of simulation estimation have been invented, a strategy
of empirical modeling is to specify relatively restrictive covariance struc-
tures across equations so as to reduce the presence of high dimensional
integrals. A possible specification is to assume that disturbances have an
error component structure (Hausman and Wise 1978; Butler and Moffitt
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1982). An error component specification for ε’s is

εi = u + wi, i = 1, · · · ,m− 1, (4.1)

where u, wi, i = 1, · · · ,m − 1 are mutually independent. With the error
component structure in (4.1), the optimality conditions for x∗ in (3.6) and
(3.7) become

wi ≤ ln(−viβi)− ln(s∗m − vmβm)− u, i = 1, · · · , l (4.2)

and

wj = ln(s∗j − vjβj)− ln(s∗m − vmβm)− u, j = l + 1, · · · ,m− 1. (4.3)

Under the assumption that wi, i = 1, · · · ,m − 1, and u are normally dis-
tributed with means γ1, . . . , γm−1, 0 and variances σj , j = 1, · · · ,m, re-
spectively, the likelihood function for an observation x∗ satisfying (4.2)
and (4.3) will be

Lc(x∗) =

∑m
j=l+1(s

∗
j − vjβj)∏m

j=l+1(s
∗
j − vjβj)

∫ ∞

−∞

l∏
i=1

Φ
(

εi(x∗, u)− γi

σi

)

·
m−1∏

j=l+1

1
σj

φ

(
εj(x∗, u)− γj

σj

)
· 1
σm

φ

(
u

σm

)
du, (4.4)

where εi(x∗, u) = ln(s∗i − viβi)− ln(s∗m − vmβm)− u, i = 1, · · · ,m− 1; Φ
is the standard normal distribution function and φ is the standard normal
density function. This likelihood function (4.4) involves only a single in-
tegration and can be numerically evaluated with the Gaussian quadrature
formula (Stroud and Secrest 1966). The error component structure for ε’s
is restrictive. If u were to capture unobserved individual characteristics,
these unobserved characteristics are assumed to have the same effect on all
the virtual prices (or inverse demand functions). An alternative view of the
error component specification for the LES corresponds to that αi = ewi for
i = 1, · · · ,m− 1 and αm = eu with α’s being mutually independent.

To relax the correlation structure on ε’s, the resulted likelihood will in-
volve multiple integral and an effective simulation method will be needed.
As the method of simulated moments is not attractive, an alternative is the
SML method. A computationally tractable simulator which does not have
a large simulation variance is, however, important for the SML method.
Statistical properties such as small biases and efficiency depend on the like-
lihood simulator (see, e.g., Lee 1992, 1995). For the simulation of choice
probabilities of a multinomial probit model, the SRC simulator is shown
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to be an effective simulator (Geweke 1991, Börsch-Supan and Hajivassil-
iou 1993, and Keane 1994). It is feasible to generalize the SRC simulator
for discrete choices to the consumer demand model with non-negativity
constraints. This simulator is smooth and is an importance sampling simu-
lator. Also, it has a useful restriction, namely, that the simulated probabil-
ities are bounded between zero and one. The simulated likelihood for the
model with a SRC simulator can be derived through a sequence of opera-
tors by changing variables. It is achieved by transforming η in (3.11) to a
vector of random variables which make simulation easier. Such transforma-
tion is possible for this model due to the normality of η and the rectangle
of the range {η : η ≤ r} for the LES in the integration (3.11). Since
var(η) = Ω = Σ11 − Σ12Σ−1

22 Σ21 for the LES from (3.9) is positive defi-
nite, there exists a lower diagonal Choleski matrix with positive diagonal
elements such that DD′ = Ω.

Define a transformation ζ = D−1η. The transformed random variable ζ
becomes a standard multivariate normal variable. The likelihood function
in (3.11) becomes

Lc(x∗) =

(∫
{ζ:Dζ≤r}

[
l∏

i=1

φ(ζi)

]
dζ

)
f2(e2)

∣∣∣∣∂e2

∂s2

∣∣∣∣ , (4.5)

where φ(ζi) is the standard normal density of ζi, ζ = (ζ1, ..., ζl) , and

D =


d11 0 · · · 0
d21 d22 · · · 0
...

...
. . .

...
dl1 dl2 · · · dll

 . (4.6)

The range {ζ : Dζ ≤ r} can be rewritten recursively as

1
d11

r1 ≥ ζ1,
1

d22
(r2 − d21ζ1) ≥ ζ2, ···,

1
dll

(rl − dl1ζ1 − · · · − dl,l−1ζl−1) ≥ ζl.

(4.7)
Then, the likelihood function in (4.5) is[∫ d−1

ll r1

−∞

∫ d−1
22 (r2−d21ζ1)

−∞
·
∫ d−1

ll (rl−dl1ζ1−···−dl,l−1ζl−1)

−∞

(
l∏

i=1

φ(ζi)

)
dζ1 · · · dζl

]

·f2(e2)
∣∣∣∣∂e2

∂s2

∣∣∣∣ . (4.8)

The next step is to change the incomplete integral in the likelihood function
in (4.5) to a complete integral by reforming some probability measures.
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Define the truncated standard normal density as

φAi(ζ) =
φ(ζ)

Φ
(

1
dii

(ri − di1ζ1 − · · · − di,i−1ζi−1)
) (4.9)

on the support Ai =
(
−∞, d−1

ii (ri − di1ζ1 − · · · − di,i−1ζi−1)
]
for i = 1, ..., l,

where as a convention, d10 = 0 and ζ0 = 0. Then, the likelihood function
for the LES in (4.8) can be written as a complete integral with respect to
the truncated normal densities:(∫

A1

· · ·
∫

Al

l∏
i=1

Φ

(
1

dii
(ri − di1ζ1 − · · · − di,i−1ζi−1)

)
·

l∏
i=1

φAi(ζi) · dζ1 · · · dζl

)

·f2 (e2)

∣∣∣∣∂e2

∂s2

∣∣∣∣ . (4.10)

As any random variable with a given distribution can be generated from a
uniform random number generator through its inverse distribution trans-
formation, the truncated normal random variables can be transformed into
uniform random variables. To do this, define the transformation as

ui =
Φ(ζi)

Φ
(

1
dii

(ri − di1ζ1 − · · · − di,i−1ζi−1)
) ,

where ζi ≤
1
dii

(ri − di1ζ1 − · · · − di,i−1ζi−1) (4.11)

for i = 1, ..., l. Conditional on ζ1, ..., ζi−1, ui is a uniform random variable
on [0, 1]. Such transformations define a sequence of conditional uniform
random variables. Conversely, uniform random variables can be drawn
from a uniform random generator and the ζ ′s can be solved recursively as
functions of the u′s:

ζi = Φ−1

[
uiΦ

(
1
dii

(ri − di1ζ1 − · · · − di,i−1ζi−1)
)]

, (4.12)

starting with

ζ1 = Φ−1

[
u1Φ

(
r1

d11

)]
.

With the transformations in (4.11), (4.10) can be rewritten as

Lc(x∗) =

[∫ 1

0

· · ·
∫ 1

0

l∏
i=1

Φ
(

1
dii

(ri − di1ζ1 − · · · − di,i−1ζi−1)
)

du1 · ·dul

]

·f2 (e2)
∣∣∣∣∂e2

∂s2

∣∣∣∣ . (4.13)
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With r random draws, the likelihood at a sample observation x∗ can be
simulated as

Lrc(x∗) =

[
1
r

r∑
t=1

l∏
i=1

Φ
(

1
dii

(ri − di1ζ1,t − · · · − di,i−1ζi−1,t)
)]

·f2 (e2)
∣∣∣∣∂e2

∂s2

∣∣∣∣ ,
(4.14)

where (ζ1,t, ..., ζl−1,t) is the corresponding vector of the ζ’s from the tth

random draw of (u1,t, ..., ul−1,t) in simulation. This simulator is smooth in
parameters and generalizes the SRC to our model.

5. APPLICATION TO FOOD CONSUMPTION

A sample of 1, 150 households was drawn from the 1978 Socioeconomic
Survey of Indonesia (SUSENAS), a national probability sample of house-
holds. Food consumption (purchased and home-produced) of close to 100
separate items in the seven days prior to the date of enumeration is ag-
gregated into seven categories: tubers, fruits, animal products (meat and
dairy), fish, vegetables, grains, and others. A village is assumed to repre-
sent a distinct market, and the average price of every disaggregate item is
calculated as the average price of the commodity consumed by the sam-
pled households in the village. Price indices are computed by geometrically
weighted component prices with the average budget shares of a larger ad-
ministrative area, the kabupaten (regency).2 There are 300 kabupatens in
the sample. The absence of data on most non-food prices means that we
must impose the assumption that foods and non-foods are separable in the
utility function. Three demographic variables are identified: the number of
household members 4 years of age and under (infants), the number aged 5
through 14 (children), and the number aged 15 and above (adults). Table
1 provides summary statistics on food consumption shares and normalized
(by total food expenditure) prices, as well as demographic variables. As
Table 1 indicates, six of the seven foods were not consumed by at least one
household during the reference period. Half of the sampled households did
not consume animal products, and one-third did not consume tubers or
fruit. Only grain was consumed by all households. Even though the non-
negativity of the α’s in a LES rules out inferiority, and concavity requires
that every good must be a substitute for every other good. For this data,
the goods are unlikely to be inferior and they can be substitutes for each
other. The restrictions of the LES may be appropriate given the nature of
these seven goods.

2If a commodity’s price was unavailable for a village, it was taken to be the average
kabupaten price.
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TABLE 1.

Summary Statistics

Mean Standard Deviation Frequency of

Zero Consumption

Tubers Share .0313 .0521 473

Fruit Share .0364 .0465 419

Animal Products Share .0559 .0872 576

Fish Share .1111 .0894 112

Vegetables Share .1285 .0702 14

Others Share .1806 .0792 1

Grain Share .4562 .1630 0

Tuber Price 1.2763 1.0563

Fruit Price 1.1868 1.0362

Animal Products Price 1.0964 .8472

Fish Price 1.1408 .8965

Vegetable Price 1.1478 .7797

Others Price 1.2136 1.0274

Grain Price 1.1213 .8005

Infants .7757 .8541

Children 1.6087 1.3969

Adults 3.0330 1.3063

Note:
(a) Sample size = 1150.
(b) Infants, children and adults are household members aged 0 to 4, 5 to 14, and 15
years of age and above, respectively.

The LES has been estimated with both the error component specifica-
tion and the specification with generally correlated normal disturbances.
We report both the maximum likelihood estimates (MLE) of the error com-
ponent model and the SMLE of the general covariance model. Tables 2-5
report the SMLE results for the general covariance model and Tables 6-9
report the MLE for the error component model. One can then compare the
two sets of results and their empirical implications for the Indonesia data.

In solving the β estimates of the LES, each estimated βi must satisfy the
condition xi − βi > 0. To satisfy these constraints, the parameterization
of βi = min(xi) − exp(β∗i ), where min is taken over the whole sample
and β∗s are free parameters, are used during the estimation process. A
second concern is that the estimated variance-covariance matrix Σ may
not be positive definite; therefore, non-negative definiteness is imposed by
replacing Σ with its Cholesky decomposition, i.e., Σ = AA′ where A is a
lower triangular matrix.

Table 2 provides SMLEs of the LES with demographic effects. The coef-
ficients βi are all negative and are significantly negative for tubers, animal,
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TABLE 2.

LES – SML Parameter Estimates

Tubers Fruit Animal Fish Vegetables Others Grain

β

−.018 −.043 −.245 −.070 −.027 −.024 −.184

(−8.331) (−.529) (−2.980) (−1.098) (−.362) (−.309) (−4.487)

σ2
ij

Tubers 4.640 2.244 1.101 .931 .835 .526

Fruit 2.152 .815 .640 .560 .381

Animal .715 .326 .295 .191

Fish .577 .182 .149

Vegetables .360 .112

Others .196

δij

Constant −1.987 −1.239 −.127 −.747 −1.033 −.879

(−8.811) (−8.958) (−6.744) (−8.856) (−17.811) (−20.578)

Infants .008 −.089 −.042 −.075 −.032 .002

(.090) (−1.702) (−.625) (−2.414) (−1.469) (.106)

Children −.010 −.055 −.059 −.043 −.045 −.026

(−.183) (−1.713) (−1.280) (−2.254) (−3.352) (−2.511)

Adults −.042 −.089 −.080 −.053 −.037 −.006

(−.726) (−2.528) (−1.796) (−2.611) (−2.559) (−.579)

θ̂ .040 .064 .206 .120 .098 .133 .339

Note:
(a) Log-likelihood = 5347.0301. Number of parameters = 52.
(b) Log-likelihood under the null that demographic variables have no effect = 5053.409. Num-
ber of parameters = 34.
(c) T-statistics are in parentheses.
(d) Number of random draws = 100.

(e) θ̂i = ez̄δi∑m
j=1 e

z̄δj
.

fish, and grain. That means that each of the seven goods including grain
needs not to be ‘essential’. The coefficients on the demographic variables
are mostly negative. The overall significance of the demographic variables
can be tested with a likelihood ratio test statistic. Under the null hypothe-
sis of no demographic variables, the log-likelihood function is 5053.409. The
likelihood ratio statistic is 587.80 (with 18 degrees of freedom), which is
very significant. We therefore reject the specification without demographic
effects. For the adult and children variables, they have more significant
coefficients on the various expenditure shares equations than those of the
infants variable. The overall impacts of the demographic variables on ex-
penditures of various goods can better be interpreted in terms of elasticities
as follows.
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TABLE 3.

LES (SMLE) – Demographic Effects

Incremental: Tubers Fruit Animal Fish Vegetables Others Grain

Infant 5.12 −11.67 −7.21 −7.97 −0.81 3.20 4.03

Child 2.86 −4.90 −13.04 −2.32 −1.98 0.32 4.57

Adult −1.19 −10.12 −19.68 −3.09 −0.36 3.27 5.42

TABLE 4.

LES (SMLE)– Price Elasticities

Quantities\Prices Tubers Fruit Animal Fish Vegetables Others Grain

Tubers −1.7055 .0653 .3437 .1022 .0397 .0373 .2640

Fruit .0404 −2.3130 .4726 .1405 .0545 .0512 .3629

Animal .0846 .1880 −4.8148 .2942 .1142 .1073 .7602

Fish .0248 .0551 .2901 −1.6324 .0335 .0315 .2228

Vegetables .0175 .0389 .2048 .0609 −1.2175 .0222 .1573

Others .0169 .0376 .1978 .0588 .0228 −1.1398 .1519

Grain .0171 .0379 .1996 .0593 .0230 .0216 −1.2989

Table 3 presents estimates of the effects of incremental household mem-
bers (by type) on consumption. The percentage changes in expenditures
are evaluated in response to an incremental of infant, child or adult at the
sample mean demographic variables. Let θ̂i = ez̄δi∑m

j=1 ez̄δj
where z̄ as the

sample averages for the demographic variables. The expenditure shares
corresponding to θ̂’s are vixi = viβi + θ̂i(1 −

∑m
j=1 vjβj). Let θ̂+

i be the
corresponding θi with an incremental of a household member. The percent-
age change of an expenditure share in response to an incremental member
will be (θ̂+

i − θ̂i)(1−
∑m

j=1 vjβj)/vixi in percentage. The results in Table 3
indicates that adding an infant to a household having mean demographic
characteristics reduces the consumption of fruit, animal products, fish, and
vegetables, at 11.67, 7.21, 7.97, and 0.81 percents, respectively, but in-
creases the consumption of tubers, grain and other. Adding a child rather
than an infant leads to an even greater reduction in animal product con-
sumption (13.04 percent). Fruit and fish are also reduced but not as much
as the reduction with an additional infant. With an additional adult, ani-
mal product will be reduced even further (19.68 percent) followed by fruit
consumption (10.12 percent). With an additional infant or child, the con-
sumption of tuber can increase. Grain and others have their consumption
increase in response to an additional household member of any type. Grain,
which has the largest average expenditure, is consumed in greater amount
with incremental household members in age order.
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TABLE 5.

LES (SMLE)– Total Expenditure (Income) Elasticities

Tubers Fruit Animal Fish Vegetables Others Grain

1.2796 1.7592 3.6845 1.0799 0.7625 0.7364 0.7431

Tables 4 and 5 provide, respectively, the matrix of price elasticities and
the vector of income elasticities. The own price elasticities for the LES
system are

∂ lnxi

∂ ln vi
= −1 +

(1− θ̂i)βi

xi
= −1 +

(1− θ̂i)viβi

vixi

for i = 1, · · · ,m. The cross price elasticities for the system are

∂ lnxi

∂ ln vj
= −θ̂i

vjβj

vixi
, i 6= j, j = 1, · · · ,m.

The income elasticities are

∂ lnxi

∂ lnM
=

θ̂i

vixi
, i = 1, . . . ,m.

The reported elasticities in Tables 4 and 5 are evaluated for a representa-
tive household having sample mean demographic characteristics and mean
shares. The price and expenditure elasticities are highest (in absolute
value) for animal products and lowest for grain, vegetables and others.
All these seven goods are price elastic. Animal products are commonly
found to be highly income elastic in developing countries. Among these
seven goods, grain, vegetables and others are ‘necessities’ as the expendi-
ture elasticities are less than one. Animal products, fish, fruit and tubers
are all ‘luxury’ goods. All the elasticities seem sensible.

To illustrate the difference on the specification with general correlated
disturbances and that with a restricted setting. Tables 6-9 report MLE of
the model with an error component structure for the disturbances. These
results can be compared with those of Tables 2-5. While the estimated
coefficients and the implied demographic effects and elasticities in Tables
6-9 are overall confirmable, there are important exceptions. As the error
component specification has fewer unknown parameters than those of the
general covariance specification, some parameter estimates in Table 6 tend
to be more significant than those of Table 2. The estimated β for grains
turns out to be slightly positive and indicates that grains can be an ‘essen-
tial’ good. The demographic variables have now all negative coefficients.
An increased household member of any type has a sharper reduction in
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TABLE 6.

LES – ML Parameter Estimates (Error Component Model)

Tubers Fruit Animal Fish Vegetables Others Grain

β −.0267 −.0474 −.2343 −.0536 −.0327 −.0299 .0122

(−8.8708) (−11.8979) (−11.9465) (−12.2722) (−11.0840) (−9.4441) (3.3862)

δij

Constant −1.9602 −1.3167 −.1338 −.6223 −.6226 −.4649

(−13.4296) (−12.3139) (−1.2209) (−7.1550) (−9.2591) (−7.3691)

Infants −.0407 −.0361 −.0623 −.0890 −.0395 −.0057

(−.9398) (−1.0944) (−2.2052) (−2.9782) (−1.7160) (−.2600)

Children −.0953 −.1167 −.1159 −.0904 −.0911 −.0694

(−3.6856) (−5.6813) (−6.5021) (−5.1844) (−6.4036) (−5.1035)

Adults −.1104 −.1252 −.1128 −.0731 −.0722 −.0448

(−3.7798) (−5.7829) (−6.3366) (−3.6181) (−4.6829) (−2.9864)

σ 1.0286 .7309 .5546 .6556 .4391 .3702 .6421

θ̂ .0287 .0506 .1683 .1189 .1237 .1673 .3425

Note:
(a) T-statistics are in parentheses.

(b) θ̂i = ez̄δi∑m
j=1 e

z̄δj
.

TABLE 7.

LES – Demographic Effects (Error Component Model)

Incremental: Tubers Fruit Animal Fish Vegetables Others Grain

Infant −1.33 −1.19 −12.57 −8.00 −1.25 2.87 2.89

Child −4.03 −9.79 −20.90 −4.05 −3.73 −1.04 6.06

Adult −6.66 −12.59 −22.73 −2.80 −2.41 .94 5.24

TABLE 8.

LES – Price Elasticities (Error Component Model)

Quantities\Prices Tubers Fruit Animal Fish Vegetables Others Grain

Tubers −1.1802 .0266 .1482 .0389 .0286 .0326 −.0125

Fruit .0080 −1.7570 .2246 .0590 .0434 .0494 −.0190

Animal .0174 .0873 −3.4022 .1277 .0940 .1069 −.0411

Fish .0062 .0310 .1727 −1.3365 .0334 .0380 −.0146

Vegetables .0055 .0279 .1553 .0408 −1.2130 .0341 −.0131

Others .0053 .0266 .1495 .0393 .0289 −1.1637 −.0127

Grain .0043 .0217 .1212 .0318 .0234 .0266 −.9603
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TABLE 9.

LES – Total Expenditure (Income) Elasticities (Error Component Model)

Tubers Fruit Animal Fish Vegetables Others Grain

.9177 1.3913 3.099 1.070 .9623 .9263 .7509

the consumption of animal products. The consumption of tubers will be
reduced by an additional infant or child instead of an increasing amount in
the general covariance model. Again, grain is consumed in greater amount
with incremental household members of any type. For price and expendi-
ture elasticities, they are still highest for animal products and lowest for
grain. Grain becomes price inelastic and its price increase has now lead
to demand reduction of all goods. Tubers may become a ‘necessity’ in
addition to grain, others and vegetables.

As the covariance matrix of the error component disturbances imposes
equal correlations, it is nested into the general covariance model. Therefore,
the error component structure can be tested by a likelihood ratio statistic.
The log-likelihood function for the error component model is found to be
3125.34 while the log-likelihood function for the general model is 5347.03.
The implied likelihood ratio statistic is 4444.87; and the data reject the
restricted error covariance specification.3

6. CONCLUSION

We apply a new simulation method that solves the multiple integrals
that arise in the ML estimation of consumer demand systems with binding
non-negativity constraints. Our study shows that the econometric imple-
mentation of the SML approach can effectively avoid high-dimensional in-
tegration. We demonstrate the feasibility of the SML approach for the LES
with non-negativity constraints, and we present the results of a seven-goods
demand system.4 Direct simulation methods as in the simulation methods
of moments and simulated pseudo-likelihood methods (e.g., Laroque and
Salanie, 1993 in a different context) that require the simulation of demand
quantities subject to non-negativity constraints for each consumer in the
sample would be computationally expensive. The SML approach avoids
solving for simulated demand quantities since the likelihood function is

3We experimented with the model by treating demands as continuous dependent
variables, thus neglecting their discrete nature. Using the MLE of Table 6 as initial
values, parameter estimates changed sharply after only a few iterations. This suggests
that explicitly treating the binding non-negativity constraints importantly affects the
estimates.

4The model and the estimation methods can be easily modified to handle consumer
demand for goods with quantity rationing.
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conditional on observed demand quantities. In the SML approach, only
the likelihood function needs to be simulated.

In principle, the SML approach can be applied to the estimation of more
general consumer demand systems. However, it remains a difficult problem
for the estimation of a flexible demand system such as the one derived from
the quadratic utility function or the translog demand system, which do not
satisfy model monotonicity coherency conditions on its whole parameter
space. Monotoncity coherency conditions for such systems impose very
complex inequality constraints on their parameters.5 Effective procedures
which impose such inequality constraints remain to be found. For the
latter, Bayesian methodologies may become attractive. These will be left
for future research.
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