
ANNALS OF ECONOMICS AND FINANCE 2, 237–248 (2001)

Estimation of Linear Regression Models from Bid-Ask Data by a
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We investigate a class of estimators for linear regression models where the
dependent variable is subject to bid-ask censoring. Our estimation method is
based on a definition of error that is zero when the predictor lies between the
actual bid price and ask price, and linear outside this range. Our estimator
minimizes a sum of such squared errors; it is nonlinear, and indeed the criterion
function itself is non-smooth. We establish its asymptotic properties using the
approach of Pakes and Pollard (1989). We compare the estimator with mid-
point OLS. c© 2001 Peking University Press
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1. INTRODUCTION

Suppose that

yi = β′xi + ui,

where E(ui|xi) = 0 with probability one. We observe xi but never observe
yi; instead, we observe an upper and lower bound yL

i , yU
i with yL

i ≤ yi ≤
yU

i , i.e., we observe a sample {xi, y
L
i , yU

i }n
i=1 and wish to estimate β from

this data. This sort of sampling scheme arises sometimes with financial
data where only bid and ask price quotes are available, see for example
Linton, Mammen, Nielsen, and Tanggaard (2000) and Campbell, Lo and
MacKinlay (1997). It is easy to see that β cannot be identified without
additional structure. We introduce an additional structure that ensures
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identifiability and yet is somewhat plausible. Specifically, we suppose that

yL
i = yi − η1i

yU
i = yi + η2i,

where η1i, η2i are mutually independent realizations from the same distri-
bution on [0,∞). The realizations of η1i, η2i can be quite different so that
the spread yU

i − yL
i = η2i + η1i can take a big range of values. We discuss

estimation of β in this model.
One plausible estimation strategy here is to define

y∗i =
yL

i + yU
i

2

and to regress y∗i on xi. Because η1i, η2i come from the same distribution
this provides consistent estimates of β, since

y∗i = β′xi + εi,

where εi = ui + (η2i − η1i)/2 is mean zero given xi. This is true even if
the distribution of η1i, η2i depends on xi since they cancel each other out.
Therefore, the OLS estimator is consistent and asymptotically normal.

A number of authors have proposed to calculate residuals in our model
to be zero when the predicted value lies inside the observed spread, and to
be the deviation from the closest of yL

i , yU
i otherwise, see for example Bliss

(1997). That is, define the residual to be

ε̂i =

 yL
i − ŷi if yL

i ≥ ŷi

yU
i − ŷi if yU

i ≤ ŷi

0 else.
(1)

This way of calculating residuals differs from the ‘mid-point’ based ap-
proach referred to above in which ε̂i = y∗i − ŷi. The definition (1) seems
well justified because the actual value of yi can lie anywhere in the interval
[yL

i , yU
i ] and so predicted values that lie inside this range should be taken

as plausible values. With this definition of error, we can take as measure
of fit the sum of squared errors

∑
i ε̂2i . Bliss (1997) uses this criterion to

measure the performance of various methods of fitting the term structure
from bid and ask quotes of coupon bond prices. We use this notion of error
to generate an estimator of β. We establish the consistency and asymptotic
normality of our estimator and make a comparison between it and the OLS
estimator. We draw heavily on results of Pakes and Pollard (1989).

We use the notation ‖A‖ =
√

tr(A′A) for any real matrix A, and let
λmin(A)), λmax(A) denote the smallest and largest eigenvalues of a real
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symmetric matrix A.We also let 1(B) be the indicator function of the
event B.

2. THE ESTIMATOR

Following on from (1), define the criterion function

Qn(β) =
1
n

n∑
i=1

ε̂2i (β) =
1
n

n∑
i=1

(yL
i − ŷi(β))21(yL

i ≥ ŷi(β))

+
1
n

n∑
i=1

(yU
i − ŷi(β))21(yU

i ≤ ŷi(β)),

where ŷi(β) = β′xi. Define also the almost sure derivative of Qn(β),

Gn(β) =
−1
n

n∑
i=1

xi(yL
i − ŷi(β))1(yL

i ≥ ŷi(β))

+
−1
n

n∑
i=1

xi(yU
i − ŷi(β))1(yU

i ≤ ŷi(β)).

We define our estimator β̂ to be any sequence that satisfies

Gn(β̂) = inf
β∈B

‖Gn(β)‖+ op(n−1/2) (2)

where B is some given compact set. We shall assume throughout that
such a sequence exists even though Gn is not continuous everywhere. This
is generally reasonable - just like the standard LAD estimator one finds
multiple solutions to (2) and some simple rule like take the mean of the
set of solutions ensures uniqueness. The discontinuities disappear rapidly
as sample size increases. In high dimensions, it is necessary to use some
iterative method like Nelder-Mead to find the solution to (2); in this case,
good starting values maybe provided by the OLS estimator of y∗i on xi. In
the next section we discuss the asymptotic properties of β̂.

3. ASYMPTOTIC PROPERTIES

We make the following assumptions.

A1. (xi, ui, η1i, η2i) are i.i.d., mutually independent, and have a distri-
bution that is absolutely continuous with respect to Lebesgue measure.
Denote by fX , fu, fη the corresponding marginal densities, and FX , Fu, Fη

the c.d.f.’s.
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A2. We suppose that ui is symmetric about zero with support contained
in R, while ηji has support contained in [0,∞). The supports of ui and ηji

have an intersection that has positive Lebesgue measure.
A3. The density function fu is continuously differentiable on

(blackboardbold) > R.
A4. σ2

u = E(u2
i ) < ∞, E(η2

1i) < ∞, and 0 < λmin(E(xix
′
i)) ≤

λmax(E(xix
′
i)) < ∞. Let µη = E(ηji) and σ2

η = var(ηji).
A5. The true parameter β0 lies in the interior of the compact parameter

set B.

Remark 3.1.
1. In assumption A2 we are ruling out the possibility that yL

i ≤ β′0xi ≤
yU

i with probability one. This might occur if for example the support of η1i

was [1, 2] while the support of ui was [−1, 1] because then ui−η1i < 0 with
probability one and so yL

i < β′0xi always. There will also therefore exist
some other β close to β0 for which this is true, and which is consequentially
indistinguishable from the true one. In practice, this is not likely to be an
onerous restriction since it seems plausible that the spread not be always
much greater than the pricing error.

2. The assumptions can be weakened in various directions. Specifically,
we can allow the error distributions to depend on xi, provided ui|xi is sym-
metric about zero, but at the cost of a more complicated limiting variance.
It is possible to allow some, but not all, variables in xi to be discrete. In
some applications it may be too strong to require the data to be indepen-
dent over time. This assumption can also be weakened.

3. The assumption that ui is symmetric about zero is quite strong and
is not required by the OLS estimator.

The following result is proven in the appendix.

Theorem 3.1. Suppose that assumptions A1-A5 hold. Then,
√

n(β̂ − β0) =⇒ N(0,Ω),

where

Ω = [E(xix
′
i)]

−1

∫∞
0

∫∞
0

v2fu(v + η)fη(η)dηdv

2
(∫∞

0

∫∞
0

fu(v + η)fη(η)dηdv
)2 .

Remark 3.2.
1. We can write

Ω = [E(xix
′
i)]

−1 E[v2
i 1(vi ≥ 0)]

2 (Pr(vi ≥ 0))2
,
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where vi = ui−η1i. By our assumption A2, there exists some set of positive
values that both ui and η1i can take and so Pr[ui ≥ η1i] > 0, which
guarantees that Ω is finite.

2. We can construct consistent standard errors from Ω̂ = Â−1B̂Â−1,
where

B̂ =
2
n

n∑
i=1

xix
′
iε̂

2
i (β̂)

Â =
2
n

n∑
i=1

xix
′
i[1(yL

i ≥ ŷi(β̂)) + 1(yU
i ≤ ŷi(β̂)],

where ε̂i(β̂) was defined in (1).
3. We can use the sum of squared residuals to measure the fit of the

model and also to test hypotheses about β.
4. It is straightforward to extend our analysis to nonlinear regression

functions, instrumental variables, and to LAD criterion functions.

4. COMPARISON WITH OLS

Here, we compare Ω with the variance of the OLS estimator of y∗i on xi,
i.e.,

Σ = [E(xix
′
i)]

−1 (σ2
u +

1
2
σ2

η).

So the question is whether

E[v2
i 1(vi ≥ 0)]

(Pr(vi ≥ 0))2
<>= 2σ2

u + σ2
η.

Here, vi is a random variable with mean−µη < 0 and variance σ2
v = σ2

u+σ2
η.

We compare the two estimators in a special case where ui is standard
normal and ηji are uniform on [0, a] for some parameter a. When a = 0 the
two estimators are actually the same and of course have the same variance.
The relative efficiency of the two procedures as a function of a is shown in
figure 1. It is non-monotonic in a: first, as a increases the OLS estimator
is more efficient, but this increase peaks at approximately a = 6 [at which
point OLS has slightly less than half the variance of β̂], and then decreases
to the extent that when a > 20 the OLS estimator has larger variance.
Thereafter, the inefficiency of OLS gets worser and worser. Of course, this
is reflecting the fact that the composite error term in the y∗ regression
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FIG. 1.
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is becoming less and less normal, so the inefficiency of OLS should be no
surprise.

5. CONCLUDING REMARKS

We close with some comments and suggestions for future work. This esti-
mator seems to be eminently plausible, and so it is a bit of a surprise that it
requires stronger conditions than mid-point OLS to ensure consistency. It
would be of interest to find sampling schemes in which the mid-point OLS
estimator is inconsistent, while our estimator is consistent. This might in-
volve looking at LAD versions of our procedure [which is well-justified in
any case]. Heteroskedasticity and asymmetry of the error terms are to be
expected as well as dependence of the spread on the covariates is to be
expected, and any reputable estimator should be able to deal with such
things.

APPENDIX: PROOF OF THEOREM

The proof is based on verifying the conditions of Theorems 3.1-3.3 of
Pakes and Pollard (1989).

Proof of Consistency. For each β define the i.i.d. random variables

vi(β) = ui − η1i + x′i(β0 − β) and wi(β) = ui + η2i + x′i(β0 − β).

Then, by the law of iterated expectation

G(β) = E[Gn(β)] = −E [xivi(β)1(vi(β) ≥ 0)]− E [xiwi(β)1(wi(β) ≤ 0)]
= −E [xiE[vi(β)1(vi(β) ≥ 0)|xi]]− E [xiE[wi(β)1(wi(β) ≤ 0)|xi]] .

In the special case that β = β0, vi = vi(β0) = ui − η1i and wi = wi(β0) =
ui + η2i, and

G(β0) = −E(xi)E [vi1(vi ≥ 0)]− E(xi)E [wi1(wi ≤ 0)] .

In this special case we also have that the densities of vi, wi are

fv(v) =
∫ ∞

0

fu(v + η)fη(η)dη

fw(w) =
∫ ∞

0

fu(w − η)fη(η)dη.

By assumption A2, fv(v) > 0 for some non trivial subset of [0,∞) and
fw(w) > 0 for some non trivial subset of (−∞, 0]. Therefore, since fu is
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symmetric about zero

E [vi1(vi ≥ 0)] + E [wi1(wi ≤ 0)]

=
∫ ∞

0

vfv(v)dv +
∫ 0

−∞
wfw(w)dw

=
∫ ∞

0

∫ ∞

0

vfu(v + η)fη(η)dηdv +
∫ 0

−∞

∫ ∞

0

wfu(w − η)fη(η)dηdw

=
∫ ∞

0

∫ ∞

0

vfu(v + η)fη(η)dηdv +
∫ ∞

0

∫ ∞

0

−wfu(−w − η)fη(η)dwdη

=
∫ ∞

0

∫ ∞

0

vfu(v + η)fη(η)dηdv −
∫ ∞

0

∫ ∞

0

wfu(w + η)fη(η)dηdw

= 0

by Fubini’s theorem and a change of variables w 7→ −w. Thus, we have
shown that G(β0) = 0. We now turn to the more general β case. By our
assumption A1 the conditional densities of vi(β) and wi(β) given xi = x
are

fv|x(v) =
∫ ∞

0

fu(v + η − x′(β0 − β))fη(η)dη

fw|x(w) =
∫ ∞

0

fu(w − η − x′(β0 − β))fη(η)dη,

so that

G(β) = −
∫

Rd

∫ ∞

0

∫ ∞

0

xvfu(v + η − x′(β0 − β))fη(η)fX(x)dηdvdx

−
∫

Rd

∫ 0

−∞

∫ ∞

0

xwfu(w − η − x′(β0 − β))fη(η)fX(x)dηdwdx

=
∫

Rd

∫ ∞

0

∫ ∞

0

xv[fu(v + η + x′(β0 − β))

−fu(v + η − x′(β0 − β))]fη(η)fX(x)dηdvdx

by the same change of variables and symmetry argument. We must show
that for all ε > 0 there exists δ > 0 such that inf‖β−β0‖>ε ‖G(β)‖ > δ.
This is guaranteed by our assumption A2 because this implies that there
exists a set of positive probability such that the term in square brackets is
bounded away from zero. Specifically, we have using integration by parts
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that ∫ ∞

0

∫ ∞

0

v[fu(v + η + x′(β0 − β))− fu(v + η − x′(β0 − β))]fη(η)dηdv

=
∫ ∞

0

v[fv(v + x′(β0 − β))− fv(v − x′(β0 − β))]dv

= −
∫ ∞

0

[Fv(v + x′(β0 − β))

− Fv(v − x′(β0 − β))]dv

where Fv is the c.d.f. of fv, because

[v[Fv(v + x′(β0 − β))− Fv(v − x′(β0 − β))]]∞0 = 0

for all x because vfv(v) → 0 as v →∞ by A4. By the mean value theorem

G(β) = −
∫

Rd

∫ ∞

0

[Fv(v + x′(β0 − β))− Fv(v − x′(β0 − β))]xfX(x)dvdx

= −
∫

Rd

∫ ∞

0

xx′(β0 − β)fX(x)fv(v + δ(x′(β0 − β)))dvdx

for some δ(x′(β0 − β)) lying between +x′(β0 − β) and −x′(β0 − β). By
bounding fv(v + δ(x′(β0 − β))) away from zero on a non-trivial set using
assumption A2 we can now write ||G(β)|| ≥ C||β0 − β|| for some positive
constant C by the well known matrix inequality ‖Bx‖ ≥ C‖x‖ for full rank
B.

The first order condition is a sum of piecewise linear functions of β that
are i.i.d., i.e.,

Gn(β) =
1
n

n∑
i=1

xiρ(zi, β),

where ρ(zi, β) = −{vi(β)1(vi(β) ≥ 0) + wi(β)1(wi(β) ≤ 0)} and zi =
(xi, y

L
i , yU

i ). By A1 and A4, Gn(β) satisfies a weak law of large numbers.
By standard results on indicator functions with linear indexes inside [see
Pakes and Pollard (1989) and Sherman (1993)], this convergence can be
made uniform over compacts, thus

sup
β∈B

‖Gn(β)−G(β)‖ p−→ 0. (A.1)

Combining this with the identification result given above gives consis-
tency.
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Proof of Asymptotic Normality. We must show that: (i)
√

nGn(β0)
is asymptotically normal; (ii) ∂G(β)/∂β is non-singular at β = β0; (iii) a
stochastic equicontinuity condition given below holds.

First of all,

√
nGn(β0) =

1√
n

n∑
i=1

xiρ(zi, β0).

where ρ(zi, β0) = −{vi1(vi ≥ 0) + wi1(wi ≤ 0)} is asymptotically normal
with mean zero and variance E[xix

′
i]E[ρ(zi, β0)2], since ρ(zi, β0) is inde-

pendent of xi and mean zero. We have

E[ρ(zi, β0)2] = E[v2
i 1(vi ≥ 0)] + E[w2

i 1(wi ≤ 0)]
+ 2E[viwi1(vi ≥ 0)1(wi ≤ 0)]

= 2
∫ ∞

0

∫ ∞

0

fu(v + η)fη(η)dηdv

because the two square terms are the same and the cross-product is zero,
as we now show. First, note that vi and −wi have the same marginal
distribution

−(ui − η1i) = −ui + η1i
d= ui + η2i

by virtue of the symmetry of ui and the common distribution of η1i, η2i.
Second, since vi is independent of wi given ui we have by the law of iterated
expectation

E[viwi1(vi ≥ 0)1(wi ≤ 0)] = E [E[vi1(vi ≥ 0)|ui]E[wi1(wi ≤ 0)|ui]] .

Then, note that

E[vi1(vi ≥ 0)|ui = u] = uFη(u)−
∫ u

0

ηfη(η)dη,

which is non-zero if and only if u > 0. Likewise,

E[wi1(wi ≤ 0)|ui = u] = uFη(−u) +
∫ −u

0

ηfη(η)dη

is non-zero if and only if u < 0. Therefore either one of these terms are
zero so that E[viwi1(vi ≥ 0)1(wi ≤ 0)] = 0 as required. This concludes the
proof of (i).



ESTIMATION OF LINEAR REGRESSION MODELS 247

Regarding (ii), by A2 and A3,

∂G

∂β
(β0) = −

∫
Rd

∫ ∞

0

∫ ∞

0

xx′vf ′u(v + η)fη(η)fX(x)dηdvdx

+
∫

Rd

∫ 0

−∞

∫ ∞

0

xx′wf ′u(w − η)fη(η)fX(x)dηdwdx

= 2E(xix
′
i)

∫ ∞

0

∫ ∞

0

fu(v + η)fη(η)dv,

because by integration by parts∫ ∞

0

vf ′u(v + η)dv = [vfu(v + η)]∞0 −
∫ ∞

0

fu(v + η)dv

= −
∫ ∞

0

fu(v + η)dv.

It follows that ∂G(β0)/∂β is non-singular because we assumed that E(xix
′
i)

was, and clearly ∫ ∞

0

∫ ∞

0

fu(v + η)fη(η)dv > 0.

A sufficient stochastic equicontinuity condition for (iii) above is that: for
all sequences δn → 0 we have

sup
‖β−β0‖≤δn

∥∥√n[Gn(β)−G(β)]−
√

n[Gn(β0)−G(β0)]
∥∥ = op(1). (A.2)

This condition is satisfied under our conditions because of the structure of
Gn. See Pakes and Pollard (1989) and Sherman (1993) for further discus-
sion.

Finally, we have by the arguments of Pakes and Pollard [which make use
of A5] that

√
n(β̂ − β) = −

[
∂G

∂β
(β0) + op(1)

]−1√
nGn(β0) + op(1),

so that
√

n(β̂ − β) is asymptotically normal with the stated variance.
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