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1. INTRODUCTION

In any regression analysis of data, when the observations are significantly
influenced by the measurement errors, the least square estimators of regres-
sion coefficients face the problem of inconsistency and unbiasedness. The
traditional measurement error models do not provide any way out for con-
sistent estimation of regression coefficient unless and until some additional
information besides the sample observations is available. This additional
information may comprise of different forms such as measurement error
variances are known or their ratio is known, instrumental variable tech-
nique etc.; see, e.g., Cheng and Van Ness (1999), Fuller (1987) and Judge,
Griffiths, Hill, Lee and Lütkepohl (1985) for comprehensive exposition.
Even in the availability of replicated observations, the estimators of slope
parameter arising from the application of least square procedure employing
the error-ridden observations and aggregated (cover replications) observa-
tions are found to be inconsistent; see Richardson and Wu (1970).

In order to obtain a consistent estimator of slope parameter by consid-
ering a linear combination of two inconsistent estimators, the literature is
quite rich; see, e.g. Bjørn (1992), Cragg (1999), for application in panel
data. Our aim is not to go into the details of work done in this direction.
The point to be highlighted here is that all such evolved estimators in-
volve unknown quantities such as measurement error variances. To employ
these estimators in practice becomes difficult rather impossible in the ab-
sence of knowledge about the correct values of unknown quantities. Such
a problem can be overcome by considering a non-linear combination of two
inconsistent estimators. An attempt in this direction is made in this article
by considering the weighted harmonic mean of two inconsistent estimators.
An elegant aspect of such an approach is that the weights to be employed
do not depend on any unknown quantities. The ultimate form of the
estimator is also very simple to use in practice.

The plan of presentation is as follows. In Section 2, we describe the
model and present the estimators for the slope parameter. Their asymp-
totic properties are analyzed in Section 3 without assuming normality of
distributions. Proofs of Theorems are provided in Section 4. Finally, in
Section 5 we provide an empirical example.

2. THE MODEL AND ESTIMATORS

Let us consider the linear regression relationship between the true values
of study variable (Y ) and explanatory variable (X) as

Yi = α + βXi (i = 1, 2, ...n) (1)
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where α and β are the intercept term and slope parameter respectively.
Due to the presence of measurement errors in the observations, instead

of Yi and Xi we have r replicated error-ridden observations yij and xij

respectively on them which can be expressed as

yij = Yi + uij (j = 1, 2, ..., r) (2)
xij = Xi + vij (3)

Here uij and vij denotes the measurement errors in yij and xij respectively.
Further, X1, X2, · · · , Xn may have different means, say, m1,m2, · · · ,mn

so that we may write

Xi = mi + wi (4)

where w1 , w2 , ..., wn are i.i.d. random variables with mean 0 and variance
σ2

w.
This completes the specification of replicated ultrastructural version of

measurement error model on the lines of Dolby (1976). When m1 = m2 =
... = mn, we have specification of a structural model whereas when σ2

w = 0,
we have the functional model.

It is assumed that uij ’s are i.i.d. with mean 0 and finite variance σ2
u.

Similarly, all vij ’s are also i.i.d. with mean 0 and finite variance σ2
v . Fur-

ther, all wi’s, uij ’s and vij ’s are assumed to be not necessarily normally
distributed but mutally independent of each other. Employing xij ’s and
yij ’s for the estimation of β by least squares yields following estimator of
β:

b1 =

∑
i

∑
j(xij − x)(yij − y)∑
i

∑
j(xij − x)2

(5)

where x = 1
nr

∑∑
xij and y = 1

nr

∑∑
yij .

Alternatively, utilizing xi and yi, the averages taken over replications,
the least square estimator of β is given by

b2 =
∑

i(xi − x)(yi − y)∑
i(xi − x)2

(6)

In order to study the asymptotic properties, it is assumed that the limit-
ing values of variances of m1 ,m2 , ...,mn as n tends to infinity is σ2

m which
is finite. Further, n is assumed to grow large whereas r is asumed to stay
fixed.

It can be easily seen that

p lim
n→∞

b1 =
σ2

m + σ2
w

σ2
m + σ2

w + σ2
v

β (7)
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p lim
n→∞

b2 =

(
σ2

m + σ2
w

)
r

(σ2
m + σ2

w) r + σ2
v

β (8)

implying that both b1 and b2 are inconsistent.
Following the popular approach to construct a consistent estimator of

β by considering a linear combination of two inconsistent estimators of β,
consider the linear combination [cb1 +(1−c)b2]. Now, choosing c such that
it becomes a consistent estimator of β, we find the choice of 0 ≤ c ≤ 1 to
be

c = − σ2
m + σ2

w + σ2
v

(r − 1)(σ2
m + σ2

w)
; r ≥ 2. (9)

Clearly, interestingly enough, such a choice of c involves the unknown vari-
ances. So it is difficult to operationalize it in order to employ in practical
applications. However, if we consider a non-linear combination of b1 and
b2 such as their weighted harmonic mean, we have

1
bH

=
1− c∗

b1
+

c∗

b2
(10)

where 0 ≤ c∗ ≤ 1 is the weight assigned to b2.
This non-linear combination serves as a consistent estimator of β when

we choose

c∗ =
r

r − 1
; r ≥ 2. (11)

This yields the following weighted harmonic mean estimator of β:

bH =
(r − 1)b1b2

rb1 − b2
. (12)

It can be readily verified that bH is a consistent estimator of β. Interestingly
enough, this non-linearly combined estimator does not involve any unknown
quantity and has a simple form.

3. COMPARISON OF ESTIMATORS

In order to analyze the asymptotic performance properties of the esti-
mators of β, we assume that the distributions of uij ’s, vij ’s and wi’s have
finite moments at least up to order four. Further, γ2v and γ2w denote
the Pearson’s measure of the kurtosis of the distributions of vij ’s and wi’s
respectively. These are zero when the distributions are normal.

Let us write

q =
σ2

u

β2σ2
v

; 0 < q < ∞ (13)
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s2
m =

1
n

∑
i

(mi −m)2; 0 ≤ s2
m ≤ ∞ (14)

θ =
σ2

v

σ2
v + σ2

w + s2
m

; 0 ≤ θ ≤ 1. (15)

d =
σ2

w

σ2
w + s2

m

; 0 ≤ d ≤ 1. (16)

When d=0, the ultrastructural model reduces to the functional form of
the measurement error model. Similarly, when d=1, it reduces to the
structural form of the measurement error model.

Now let us compare the two inconsistent estimators b1 and b2 of β. The
following results are proved in the next section.

Theorem 3.1. The relative biases of b1 and b2 to order 0(n−1/2) are
given by

RB(b1) = E
b1 − β

β
= −θ (17)

RB(b2) = E
b2 − β

β
= − θ

k
(18)

while their relative variances to order O(n−1) are

RV (b1) = E
b1 − E(b1)

β

2

(19)

=
θ2

nr
[
q

θ
+

(1− θ)
θ

(1− 2θ + 2θ2) + 2rd(2− d)(1− θ)2

+(1− θ)2(γ2v + rd2γ2w)]

RV (b2) = E
b2 − E(b2)

β

2

(20)

=
θ2

nk4
[
k3q

θ
+ rθ(1− θ) +

r3(1− θ)3

θ
+ 2r2d(2− d)(1− θ)2

+r2(1− θ)2(γ2v + d2γ2w)]

where

k = θ + r(1− θ). (21)
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From (17) and (18), we observe that the biases in both the estimators b1

and b2 are of O(1) since their O(n−1/2) terms are zero, see (31) and (32).
Further biases in both b1 and b2 are in negative direction. However, b2

has invariably smaller numerical magnitude of bias in comparison to the
estimator b1.

Looking at the expressions (19) and (20), it is interesting to note that the
performance of estimators is not influenced by the skewness of the three
distributions associated with wi’s and the measurement errors uij ’s and
vij ’s. Only the kurtosis coefficients of the two distrubtions associated with
wi’s and uij ’s play a role. Further, as long as both the distributions are
leptokurtic, the efficiency of both the estimators b1 and b2 declines. On
the other hand, when both the distributions are platykurtic, the efficiency
of both the estimators increases in comparison to their performance under
mesokurtic or more specifically normal distributions.

Comparing (19) and (20) it is seen that b2 is superior to b1 with respect
to the criterion of variance to the order of our approximation when

q <
(1− θ)T

θ(r − 1)k3
+

(1− θ)2

(r − 1)

[
(k − r3

k3
)γ2v + (k − r2

k
)θrd2γ2w

]
(22)

where

T = k4(1− 2θ + 2θ2)− r2θ2 − r4(1− θ)2 + 2θrd(2− d)(1− θ)(k4 − r2).
(23)

Now let us consider the consistent estimator bH . If we consider the bias
to order O(n−

1
2 ), it vanishes unlike the cases of b1 and b2.

Theorem 3.2. The relative mean squared error of bH to order O(n−1)
is given by

RM(bH) =
θ2

nr(1− θ)2

[
q

r

{
k

θ
+

1
(r − 1) (1− θ)2

}
+

(
1− θ

θ

)
+

2 + γ2v

r − 1

]
(24)

which is also the relative variance of bH to order O(n−1).

It is interesting to observe that the asymptotic variance remains the
same whether the underlying distributions are skewed or not. It is sim-
ply the kurtosis of the distribution of measurement errors associated with
explanatory variable in the model. When this distribution is leptokurtic,
the estimator has larger asymptotic variance in comparison to the case of
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mesokurtic or normal distribution. The opposite is true, i.e., the asymp-
totic variance is smaller in case the platykurtic distribution when compared
with the case of normal distribution.

As the estimators b1 and b2 are inconsistent and biased while bH is
consistent and biased, it is not appropriate to compare their variances for
analyzing their efficiency properties. The right choice is the mean squared
error. If we do so according to the criterion of mean squared error to order
O(n−1), the leading terms of order O(1) in the mean squared errors of b1

and b2 are θ2 and ( θ
k )2 respectively while it is 0 in case of bH because it

is consistent. Consequently, both inconsistent b1 and b2 are discarded in
preference to the proposed consistent estimator bH .

4. DERIVATION OF RESULTS

Let us first introduce the following notation:

u = Col(u11, u12, · · · , unr)
v = Col(v11, v12, · · · , vnr)

enr = Col(1, 1, · · · , 1)
w = Col(w1, w2, · · · , wn)
m = Col(m1,m2, · · · ,mn)
en = Col(1, 1, · · · , 1)

A = Inr −
1
nr

enre
′
nr

B =
1
r

[
(In ⊗ e′r)−

1
n

ene′nr

]
C = In −

1
n

ene′n

D =
1
r

[
(In ⊗ ere

′
r)−

1
n

enre
′
nr

]
where, e.g., u represents an nr × 1 column vector and ⊗ denotes the

Kronecker product operator.
Now, if we write

gκκ =
1√
nσ2

v

[
2(m + w)′Bv + 2m′cw + (w′cw − nσ2

w)
]

gκy =
1√
nσ2

v

[
1
β

(m + w)′Bu + 2m′cw + (m + w)′Bv + (w′cw − nσ2
w)

]
tκκ =

1√
nrσ2

v

(v′Av − nrσ2
v)
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tκy =
u′Av√
nβrσ2

v

t∗κκ =
1√

nrσ2
v

(v′Dv − nσ2
v)

t∗κy =
u′Dv√
nβrσ2

v

we can express

1
nr

∑
i

∑
j

(xij − x)(yij − y) = βσ2
v

[
(1− θ)

θ
+

1√
n

(gκy + tκy)
]

(25)

1
n

∑
i

(xi − x)(yi − y) = βσ2
v

[
(1− θ)

θ
+

1√
n

(gκy + t∗κy)
]

(26)

1
nr

∑
i

∑
j

(xij − x)2 = σ2
v

[
1
θ

+
1√
n

(gκκ + tκκ)
]

(27)

1
n

∑
i

(xi − x)2 = σ2
v

[
(1− θ)

θ
+

1
r

+
1√
n

(gκκ + t∗κκ)
]

(28)

Using these, we obtain from (5) and (6) the following expressions for the
relative estimation errors of b1 and b2:

(
b1 − β

β
) =

[
−θ +

θ√
n

(gκy + tκy − gκκ − tκκ)
]

(29)

×
[
1 +

θ√
n

(gκκ + tκκ)
]−1

= −θ +
θ√
n

[gκy + tκy − (1− θ)(gκκ + tκκ)] + Op(n−1)

(
b2 − β

β
) =

θ

θ + r(1− θ)

[
−1 +

r√
n

(gκy + t∗κy − gκκ − t∗κκ)
]

(30)

×
[
1 +

rθ√
n {θ + r(1− θ)}

(gκκ + t∗κκ)
]−1

= − θ

k
+

rθ√
nk

[
gκy + t∗κy −

r(1− θ)
k

(gκκ + t∗κκ)
]

+ Op(n−1)

where
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k = [θ + r(1− θ)].

It can be easily seen that the expectations of the O(n−1/2) terms in (29)
and (30) are zero, therefore

E(
b1 − β

β
) = −θ + O(n−1) (31)

E(
b2 − β

β
) = − θ

k
+ O(n−1) (32)

which are the results (17) and (18) of Theorem I.
Next, using the results in the Appendix, we observe that the relative

variance of b to order O(n−1) is

RV (b1) = E

[
b1 − E(b1)

β

]2

(33)

=
θ2

n
E[gκy + tκy − (1− θ)(gκκ + tκκ)]2

=
θ

nr
[q + (1− θ)(1− 2θ + 2θ2) + 2rd(2− d)(1− θ)2θ]

+
(1− θ)2θ2

nr
(γ2v + rd2γ2w)

which is the result (19) of Theorem I.
In a similar manner, employing the results in the Appendix, the result

(20) of Theorem I can be easily deduced.
From (12), (25), (26), (27) and (28), we obtain(

bH − β

β

)
=

rb1(b2 − β)− b2(b1 − β)
β(rb1 − b2)

(34)

=
[
r

(
1 +

b1 − β

β

) (
b2 − β

β

)
−

(
1 +

b2 − β

β

) (
b1 − β

β

)]
[
r

(
1 +

b1 − β

β

)
−

(
1 +

b2 − β

β

)]−1

=
θ√

n(r − 1)(1− θ)2
[(r − 1) (1− θ) (gκy − gκκ)− (tκy − kt∗κy)
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+(1− θ)(tκκ − rt∗κκ)]×
[
1 + Op(n−

1
2 )

]−1

=
θ√

n(r − 1)(1− θ)

[
(r − 1) (gκy − gκκ)−

(
1

1− θ

)
(tκy − kt∗κy)

+(tκκ − rt∗κκ)] + Op(n−1).

Squaring both sides of (34), then taking their expectations and retaining
terms of order O(n−1) only, we find the relative mean squared error as

RM(bH) =
θ2

n(r − 1)2(1− θ)2
E[(r − 1)2 (gκy − gκκ)2 (35)

+
(

1
1− θ

)2

(tκy − kt∗κy)2

+(tκκ − rt∗κκ)2]

=
θ2

n(r − 1)2(1− θ)2
[(r − 1)2

(1− θ)(q + 1)
θr

(36)

+
q

r2(1− θ)2
(r − 2k + k2) +

(
r − 1

r

)
(2 + γ2v)]

which, provides the result stated in Theorem 3.2.

5. EMPIRICAL APPLICATION

The effect of devaluation (increase in the exchange rate) on the trade
balance is an important question in the trade literature from the policy
perspective. Devaluation may decrease a country’s expenditure on imports
which works in the direction of reducing the country’s trade deficit. On
the other hand, it may also lead to the fall in the export revenue, which
raises the trade deficit. A positive (negative) sign of the coefficient of
the regression of trade balance on exchange rate implies that devaluation
improves (deteriorates) trade balance. Does devaluation improve trade
balance? This issue has been studied extensively in recent years in many
empirical studies, e.g., Moffett (1989), Rose (1991), Breda et al (1997),
Shirvani et al (1997) among others. Moffett has used time series data for
United States to find that trade balance in many sectors deteriorates as a
result of a depreciation. Rose did time series analysis for five major OECD
countries. His study supports a negative and insignificant relationship
between exchange rate and trade balance. Breda et al have considered the
case of Turkey to find that devaluation affects the trade balance positively.
Shirvani et al have also done time series analysis for U.S. and G-7 bilateral
trade to find that exchange rate affects the trade balance in the long run
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but not in the very short run. Thus some of the studies show that exchange
rate affects trade balance positively while some others show that it affects
trade balance negatively and insignificantly. We note, however, that all the
above studies are based mainly on time series data. The modest objective
of this paper is to look into this issue with the help of panel data for two
years. In this sense it is the first study to capture the cross-sectional
relationship between exchange rate and trade balance. Thus the model
considered is as in (1) where Yi is the trade balance and Xi is the exchange
rate of the ith country respectively. i = 1, · · · , 68 countries. But in order to
estimate this cross country relationship, we are going to use the replicated
observations on both Yi and Xi for two years (Panel data) which satisfies
(2) and (3), that is, yit = Yi + uit, xit = Xi + vit respectively. (t can
be considered as j), where the two periods are 1977, 1987. Using these
replicated observations to study the cross-sectional analysis may improve
precision and degrees of freedom. Also replication over time captures the
time varying effects (shocks) on the average cross-sectional relationship in
terms of means of Yit and Xit in this framework. Data sources are World
Bank data and Penn-World Table. The results obtained are as follows:

coefficient S.E. t
b1 6.5 6.39 1.01
b2 7.69 8 .96
bH 9.4 4.5 2.1

In doing calculations for b1, b2, and bH above, we have used xit−1 instead
of xit in order to take care of simultaneity problems. We note that both
the inconsistent estimates b1 and b2 are underestimates of the consistent
estimator bH . This is consistent with the theoretical results in (17) and
(18). Thus after taking care of measurement error and smoothing out
time-specific shocks we get a very different result that could not have been
captured otherwise. The results for bH show that devaluation improves
trade balance and it has a significant role to play. So raising the exchange
rate can be an effective instrument for reducing trade deficit.

APPENDIX A

Neglecting terms of order O(n−1) and higher orders, we have

E(g2
κκ) = 2

(
1− θ

θ

) [
2
r

+
d(2− d)(1− θ)

θ

]
(A.1)

+
(1− θ)2d2

θ2
γ2w
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E(g2
κy) =

(
1− θ

θ

) [
q + 1

r
+

2d(2− d)(1− θ)
θ

]
(A.2)

+
(1− θ)2d2

θ2
γ2w

E(gκygκκ) = 2
(

1− θ

θ

) [
1
r

+
d(2− d)(1− θ)

θ

]
(A.3)

+
(1− θ)2d2

θ2
γ2w

E(t2κy) =
q

r
(A.4)

E(t∗2κy) =
q

r2
(A.5)

E(t2κκ) =
1
r
(2 + γ2v) (A.6)

E(t∗2κκ) =
1
r2

(2 + γ2v) (A.7)

E(tκyt∗κy) =
q

r2
(A.8)

E(tκκt∗κκ) =
1
r2

(2 + γ2v) (A.9)

Further, the expected values of the products (gκytκy), (gκyt∗κy), (gκytκκ),
(gκyt∗κκ), (gκκtκy), (gκκt∗κy), (gκκtκκ), (gκκt∗κκ), (tκκtκy), (tκκt∗κy),
(tκyt∗κκ) and (t∗κyt∗κκ) are zero to the given order of approximation.

Proof. Suppose that z is a TX1 vector of random variables that are i.i.d.
with mean 0, variance 1, third moment γ1, and fourth moment (3+ γ2). If
H denotes a symmetric matrix with nonstochastic elements, we have

E(z′Hz) = (trH) (A.10)
E(z′Hz.z) = γ1(IT �H)eT (A.11)

E(z′Hz.zz′) = γ2(IT �H) + (trH)IT + 2H (A.12)

where � denotes the Hadamard product operator of matrices.
Next we observe that the matrices A, C, and D are idempotent and

B′B =
1
r
D

BB′ =
1
r
C

AD = D

CB = B

trA = (nr − 1)
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trC = trD = (n− 1)

These results are repeatedly used in the derivations that follows now.
From the definition of gκκ and the stochastic independence of w and v,

we observe that

E(g2
κκ) =

1
nσ4

v

E
[
2 (m + w)′Bv + 2m′cw +

(
w′cw − nσ2

w

)]2
(A.13)

=
1

nσ4
v

E[4(m + w)′Bvv′B′(m + w) + 4m′cww′c′m

+(w′cw − nσ2
w)2 + 8(m + w)′Bvw′cm

+4(m + w)′Bv(w′cw − nσ2
w) + 4m′cw(w′cw − nσ2

w)]

=
4σ2

v

nrσ4
v

[m′cm + σ2
w(trc)] +

4σ2
w

nσ4
v

m′cm

+
σ4

w

nσ4
v

[γ2wtr(In � c)c + (trc)(trc + 2)− 2n(trc) + n2]

=
4(1− θ)

θr
+

4(1− θ)2d(1− d)
θ2

+
(1− θ)2d2

θ2
(γ2w + 2) + O(n−1)

which leads to the result (A.1).
Dropping the terms with zero expected values, we see that

E(g2
κy)

=
1

nσ4
v

E

[
1
β

(m + w)′Bu + 2m′cw + (m + w)′Bv + (w′cw − nσ2
w)

]2

=
1

nσ4
v

E[
1
β2

(m + w)′Buu′B′(m + w) + 4m′cww′c′m

+ (m + w)′Bvv′B′(m + w) + (w′cw − nσ2
w)2]

=
σ2

u

nrσ4
vβ2

(m′cm + σ2
wtrc) +

4σ2
w

nσ4
v

m′cm +
σ2

v

nrσ4
v

(m′cm + σ2
wtrc)

+
σ4

w

nσ4
v

[γ2wtr(In � c)c + (trc)(trc + 2)− 2ntrc + n2]

=
(1− θ)q

θr
+

4(1− θ)2d(1− d)
θ2

+
(1− θ)

rθ

+
(1− θ)2d2

θ2
(γ2w + 2) + O(n−1) (A.14)

providing the result (A.2).
Similarly, we have

E(gκκgκy) =
1

nσ4
v

E[4m′cww′c′m + 2(m + w)′Bvv′B′(m + w) (A.15)
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+(w′cw − nσ2
w)2]

=
4σ2

w

nσ4
v

m′cm +
2σ2

v

nrσ4
v

(m′cm + σ2
wtrc)

+
σ4

w

nσ4
v

[γ2wtr(In � c)c + (trc)(trc + 2)− 2ntrc + n2]

=
4(1− θ)2d(1− d)

θ2
+

2(1− θ)
rθ

+
(1− θ)2d2

θ2
(γ2w + 2) + O(n−1)

which yields the result (A.15).
Next, consider

E(t2κy) =
1

nβ2r2σ4
v

E(u′Avv′u) (A.16)

=
σ2

utrA

nβ2r2σ2
v

=
q

r
+ O(n−1)

E(t∗
2

κy) =
1

nβ2r2σ4
v

E(u′Dvv′Du) (A.17)

=
σ2

utrD

nβ2r2σ4
v

=
q

r2
+ O(n−1)

E(t2κκ) =
1

nr2σ4
v

E(v′Av − nrσ2
v)2 (A.18)

=
1

nr2

[
γ2vtr(Inr �A)A + (trA)(trA + 2)− 2nr(trA) + n2r2

]
=

1
r
(2 + γ2v) + O(n−1)

E(t∗
2

κκ) =
1

nr2σ4
v

E(v′Dv − nσ2
v)2 (A.19)

=
1

nr2
[γ2vtr(In �D)D + (trD)(trD + 2)− 2n(trD) + n2]

=
1
r2

(2 + γ2v) + O(n−1)
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which are the results of (A.4)-(A.7).
Similarly, we have

E(tκyt∗κy) =
1

nβ2r2σ4
v

E(u′Avv′Du) (A.20)

=
σ2

utrD

nβ2r2σ2
v

=
q

r2
+ O(n−1)

E(tκκt∗κκ) =
1

nr2σ4
v

E(v′Av − nrσ2
v)(v′Dv − nσ2

v) (A.21)

=
1

nr2
[γ2v(Inr �A)D + (trA)(trD) + 2(trAD)

− nr(trD)− n(trA) + n2r]

=
1
r2

(2 + γ2v)

which lead to the results.
In a similar manner, the results related to zero expected values can be

easily deduced.
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