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1. MOTIVATION

The law of one price or purchasing power parity (PPP ) posits that the
price level of traded goods converted to a common currency should be equal
as a result of arbitrage. It would then seem natural to conjecture that
national price levels converted to a common currency, the real exchange
rate, should also tend towards parity. Let p = (1 − ψ)pT + ψpN be the
logarithm of the national price level of a home country. It is a geometric
weighted average of the log price of traded, pT , and non-traded goods, pN ,
where ψ is the share of non-traded goods. If we denote variables for the
foreign country with an asterik (*), and let st be the log of the nominal
exchange rate, then the log real exchange rate is

qt = st + p∗t − pt

= xt + yt, (1)

where

xt = st + pT∗
t − pT

t ,

yt = ψ∗[pN∗
t − pT∗

t ]− ψ[pN
t − pT

t ].

The real exchange rate thus has two components: a traded-goods compo-
nent xt, and a component yt which captures the bilateral difference between
the relative price of traded to non-traded goods. The real exchange rate
is stationary if xt and yt are both stationary, or xt and yt are both non-
stationary but that the two series are cointegrated in a particular way.
Given our prior that PPP should hold for traded goods, at least in the
long run, non-stationarity of xt is difficult to admit. The stationarity of
the real exchange rate would then seem to rest on the stationarity of yt. Is
this necessary? And does it matter if yt is non-stationary?

Real exchange rates are generally found to be highly persistent. There
is little dispute about this. More difficult to ascertain is whether this
persistence is strong enough to be deemed non-stationary. Establishing
this as a fact turns out to be a non-trivial task. As surveyed in Froot, K.
and K. Rogoff (1995) while early research suggests the presence of a unit
root, the recent evidence supports stationarity. Many put the blame for
this ambiguity on the low power of unit root tests and the lack of data with
a long enough span. The concerns expressed in Froot, K. and K. Rogoff
(1995) are representative of the latter view. The size of unit root tests was
rarely brought up as an issue.

In a recent paper, Engel, C. (1999) argued that unit root tests would
fail to identify a non-stationary component in the real exchange rate even
if there was one. He used a macroeconomic model with eight parameters
to calibrate the U.S.-U.K. real exchange rate. The data support xt as a
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stationary AR(1) process but suggest that yt is integrated, implying that
qt = xt + yt should also be integrated. But in monte carlo experiments
in which qt was tested for a unit root using standard methods, unit root
tests would overwhelmingly reject the null hypothesis even though qt has
a unit root component by construction, and that the long horizon forecast
error variance of yt accounts for almost half of the combined forecast error
variance of xt and yt. Rejection rates were close to 100 percent when
asymptotic critical values at the 5% level were used. So why do unit root
tests reject non-stationarity?

The goal of this article is to help understand some of these results. We
also use the PPP example to explain in a non-technical manner why testing
for a unit root in some data is quite difficult and to stress that in spite of
this difficulty, one can improve upon standard methods, both in terms of
minimizing Type I error (rejecting the null hypothesis of non-stationarity
when true) and maximizing the power of the tests. We analyze data on real
exchange rates and present evidence for the half life of shocks to real ex-
change rates using estimates of autoregressive parameters that have better
properties than those obtained from conventional methods.

The rest of this paper is structured as follows. Section 2 discusses theo-
retical issues concerning the presence of a negative moving-average compo-
nent in real exchange rate series. Section 3 outlines potential problems that
standard tests for unit root face in such cases and considers an improved
methodology based on Ng, S. and P. Perron (2001). Section 4 illustrates
the relevant issues with exchange rate data and Section 5 offers some con-
cluding comments.

2. THE NEGATIVE MOVING AVERAGE COMPONENT
AND THE REAL EXCHANGE RATE

Consider a series z̃t = zt − µt, (t = 1, . . . T ) where µt is a deterministic
trend function which we assume is known for the moment. Suppose the (de-
meaned or detrended) series z̃t is generated by an unobserved component
model, with ηt ∼ i.i.d.(0, σ2

η) and vt ∼ i.i.d.(0, σ2
v):

z̃t = τt + ηt,

τt = ατt−1 + vt.

Then

∆z̃t = (α− 1)z̃t−1 + ut, (2)

where

ut = et + θet−1,
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with et ∼ i.i.d.(0, σ2
e) and θ satisfying

θ

1 + θ2
=

−ασ2
η

σ2
v + (1 + α2)σ2

η

.

Suppose α = 1 and σ2
v (the variance of the innovation to τt) is infinite; then

θ = 0 and z̃t is completely dominated by the random walk component. At
the other extreme when σ2

v = 0, θ = −1 and z̃t = ut is i.i.d. in view of the
common factor between the moving average and autoregressive polynomials
(the unit root). In between the two extremes, z̃t is fundamentally non-
stationary but has a tendency to revert to mean. This force for mean
reversion is larger the closer is θ to -1. It is this tension between non-
stationarity and mean reversion that poses problems for unit root tests.
The size problem arises because z̃t behaves much like a stationary process.
Cases when the innovation variances are of comparable magnitudes but α
is near but not exactly unity are also a problem for unit root tests. But
the problem there is low power and the issue should be kept distinct from
the size problem arising from a near common factor in the moving-average
and autoregressive polynomials that is being discussed here.

The size problem in testing for a unit root when there is a large negative
moving average component was documented in Phillips, P. C. B. and P.
Perron (1988) and highlighted by Schwert, G. W. (1989), among many
others. To see the nature of the problem, rewrite (2) in the form of a kth−
order augmented autoregression in ∆z̃t:

∆z̃t = (α− 1)
k∑

i=0

(−θ)iz̃t−i−1 −
k∑

i=1

(−θ)i∆z̃t−i + et − (−θ)k+1et−k−1.

= β0z̃t−1 +
k∑

i=1

βi∆z̃t−i + etk, (3)

where β0 = (α − 1), βi = −(−θ)i. Notice that the truncation lag k
plays a crucial role in the dynamic properties of ∆z̃t. When θ is large
and negative, lags of ∆z̃t will have non-negligible weights at large k. If
θ = −.8, for example, we need k to be at least 20 for (−θ)k to be less
than .01. Because ∆z̃t is serially correlated, etk can be strongly serially
correlated if k is small and θ < 0. The severity of this problem is specific
to negative values of θ because when θ is positive, (−θ)i alternates in sign
and successive lags of ∆z̃t−i offset each other.

The size problem in (perhaps all) unit root tests when θ is negative can be
traced to the fact that β0 cannot be precisely estimated from (3). Nabeya,
S. and P. Perron (1994) and Perron, P. (1996) analyzed the problem for
the case with k = 0. The more general case which allows k to increase with
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the sample size was analyzed in Ng, S. and P. Perron (1995, 1997, 2001)
and Perron, P. and S. Ng (1996, 1998). In this case, β0 + 1 ≡ α is the sum
of the coefficients of an AR(k + 1) model in the levels of z̃t; it is this sum
that is not precisely estimated.

Let us return to the real exchange rate problem. Suppose

yt = yt−1 + wt,

xt = φxt−1 +mt

where wt and mt are i.i.d. with variance σ2
w and σ2

m, respectively, and
covariance σ2

wm 6= 0. Engel, C. (1999) considered a three equations model
for exchange rate determination (reproduced in the Appendix) for which
xt and yt have the above time series properties and estimated the model
using quarterly U.S./U.K. data over the sample 1970-1995. The estimates
are then used to simulate 400 data points to mimic a 100 years sample,
and a battery of unit root tests was constructed. When estimation of an
autoregression such as (3) was required, k was set to a maximum (hereafter
denoted kmax) of 12 and a chi-square test was then used to test for the
significance of the last lag.1 Huge size distortions in unit root tests for
both the baseline parameters and for small perturbations around them
were found. The MZα test2 developed in Perron, P. and S. Ng (1996) to be
more robust to size distortions when θ is negative did not work as it should.
In line with these results, tests for the null hypothesis of stationarity also
support stationarity. Engel also evaluated, as a measure of the importance
of the random walk component at horizon h, the function

R0(h) =
mse(yT+h − E[yT+h|xt, yt, t ≤ T ])
mse(qT+h − E[qT+h|xt, yt, t ≤ T ])

(4)

=
h · σ2

w

h · σ2
w + (1−φ2h)

(1−φ2) σ
2
m + 2 (1−φh)

(1−φ) σ
2
wm

where mse(·) denotes the mean-squared forecast error function and h is
the forecast horizon.3 Assuming σ2

wm is negligible, this measure can be
approximated by

R0(h) =
mse(yT+h − E[yT+h|yt, t ≤ T ])

mse(xT+h − E[xT+h|xt, t ≤ T ]) +mse(yT+h − E[yT+h|yt, t ≤ T ])
.

In this case, R0(h) is interpreted as the relative variance of the random walk
component. For the stochastic processes assumed for xt and yt, and with

1This is a small variation to the t test considered in Ng, S. and P. Perron (1995).
2C. Engel referred to this as the PN test.
3Under optimal prediction, this is simply the forecast error variance and these termi-

nologies will be used interchangeably.



48 SERENA NG, PIERRE PERRON

h = 400 (a hundred years horizon), R0 was reported to be around .4 for the
base case. At face value, this implies that variations in the non-stationary
component are important at long horizons. Yet, unit root tests reject non-
stationarity and tests for stationarity cannot reject that null hypothesis. It
appears that unit root tests have indeed missed a non-negligible permanent
component badly.

Recall from the unobserved components model that the problem of a
small innovation variance in the random walk component maps into a large
negative moving-average component in the observed series.4 If yt is a ran-
dom walk and xt is a stationary AR(1), then for qt = xt + yt,

∆qt = φ∆qt−1 + et (5)
et = ut + θut−1

There are two autoregressive roots in the model for qt, 1, and φ, and it is
a special case of (2) when φ = 0. The key parameter is once again θ and it
is related to the parameters of the processes for xt and yt as follows:

θ

1 + θ2
=

−φσ2
w − σ2

m − (1 + φ)σ2
wm

(1 + φ2)σ2
w + 2σ2

m + 2(1 + φ)σ2
wm

. (6)

For the base case analyzed by Engel, C. (1999), σ2
w = .328 × 10−4 and

σ2
m = .2667 × 10−2 with σ2

wm very small. Since σ2
w is 100 times smaller

than σ2
m, θ should be large and negative. For the base case, Engel reported

a value of θ = −.8 and argued that unit root tests fail to detect a unit root
because this negative moving average component induces size distortions.
Our concerns are two fold. One is about using R0 as a measure of the
non-stationary component, and the other is relating R0 to the size of unit
root tests.

To understand the relevant issues, we first take three configuration of
the parameters and repeat Engel’s monte-carlo exercise.5 The first three
rows of Table 1 report results from 2500 replications and the rejection
rates of unit root tests are indeed large. Table 1 also confirms that R0 is
about .4 in the base case. But consider the values of φ and θ implied by
configurations of the exchange rate model (given in the Appendix). Observe
that θ in Case 1 (the base case) is −.9911, not −.8 that Engel reported.
For cases 2 and 3, θ is −.9995 and −.9827, respectively. The common
factor problem is thus more severe than Engel thought. This extreme
form of parameter redundancy in the simulated data will be important in
understanding subsequent results.

4Ng, S. and P. Perron (1997) used a similar framework to analyze the inflation series.
5Case 1 is the base case of Engel. Other configurations in his Table 3 give very similar

parameter values and therefore have similar size properties.
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TABLE 1.

Statistics with k selected by the t test, kmax = 12.

Case φ θ MZα DF Zα α̂ R0(400)

1 0.919 -0.991 0.960 0.912 0.966 0.918 0.431

2 0.976 -0.999 0.443 0.304 0.459 0.965 0.009

3 0.952 -0.982 0.474 0.362 0.485 0.962 0.840

4 0.919 -0.925 0.083 0.077 0.088 0.984 0.995

5 0.850 -0.892 0.154 0.130 0.164 0.976 0.990

6 0.850 -0.971 0.847 0.800 0.870 0.894 0.806

7 0.999 -0.999 0.072 0.057 0.076 0.985 0.017

8 0.839 -0.982 0.966 0.948 0.977 0.859 0.594

Notes: φ and θ are the coefficients corresponding to the model ∆qt =
φ∆qt−1+et and et = ut+θut−1 as implied by the parameters in Table A.1
in the Appendix. The entries under MZα, DF , and Zα show the size of
the tests (the rejection rates are based on the 5% asymptotic critical values
of -14.1, -2.86, and -14.1). The tests are based on OLS demeaned data.
The entries under α̂ are the average of the statistics over the replications.
R0(400) is defined in (4).

More fundamentally, R0 is not a satisfactory measure of the relative size
of the non-stationary component for two reasons. First, as a measure of the
relative importance of the non-stationary component in a series, one would
expect the statistic to be bounded between zero and one. It is easy to see
that R0 fails this criterion for some choices (though not those considered
by C. Engel) of the variances and covariances. As well, the statistic is
discontinuous at φ = 1 and unstable when φ is near the unit circle. Third,
by definition, the random walk component should eventually explain 100%
of the forecast error variance. Thus, when using R0 to infer the size of
the random walk component, account must also be taken of the duration
required to explain x% of the forecast error variance. For the base case,
R0 is is still below unity after 2,000 periods, or 500 years. The impression
being portrayed that R0 is .4 after 100 years and thus has a non-trivial
random walk component is in some sense misleading.

The more serious problem stems from extending the intuition that unit
root tests fail to detect the random walk component because it is small,
to presuming a systematic inverse relation between rejection rates in unit
root tests and R0. To see that this relation does not hold up, we consider
other parameterizations of the model. These are labelled Cases 4 through
8 in Table 1. Case 4 has a large R0 and yet rejection rates of unit root tests
are small. Case 4 and Case 5 have similar values for R0, and yet unit root
tests have rather different rejection rates. Case 4 has R0 similar to Case
3 but the rejection rates are much higher. Case 7 has a smaller R0 than
the case 1, and yet there is no size distortion. R0 is larger in Case 8 than
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the base case, and yet unit root tests reject at least as often as in the base
case.

The reason why R0 bears no systematic relation to the rejection rates
is that unit root tests are based on the properties of qt, but R0 is based
on the components of qt. Although qt is linearly related to xt and yt, the
dynamic properties of qt are related to the parameters of xt and yt in a
non-linear way. Forecasting qt from linear combinations of the history of
xt and yt will generally be different from forecasting qt directly from its
own history. That is to say, MSE(qT+h|qT ) can be quite different from
MSE(qT+h|xT , yT ). Consider the simplest example with φ = 0, σ2

m/σ
2
w →

∞, so that qt is really white noise with constant forecast variance at all
horizons. Forecasts based on xT and yT will have mean-squared errors that
resemble those of yt and increase with h. Although it is generally not the
case that forecasting the components can have mean-squared errors larger
than forecasting the aggregate directly, when there are common factors the
aggregate model which eliminates redundant information can potentially
deliver more efficient forecasts. For the present exercise, the crucial point
is that R0 is most unreliable when there are common factors, but the size
problem in unit root tests arises precisely because of those common factors.

For the model considered, (1−φL)∆qt = (1+ θL)ut, three outcomes are
possible: qt can have one autoregressive root near unity, one root at exactly
unity, and two autoregressive roots, one at unity and one near unity. The
first scenario obtains if θ is -1 and cancels the unit root, so that qt is an
AR(1) with parameter φ. Rejection rates in unit root tests then reflect the
power of unit root tests. The second scenario obtains if θ cancels the second
autoregressive root in which case qt has a unit root. The third obtains if
no cancellation occurs, so qt has one root of unity and one root close to
unity. Rejection rates in the latter two cases then reflect the size of the
tests. What complicates the interpretation of the rejection rates here is a
coefficient φ that is calibrated to be not too far from the unit circle and a
moving average root that is close to both autoregressive roots.

The values of φ and θ provide a reasonable guide to the rejection rates
reported in Table 1. Cases 4 and 7 both involve a mean common factor
between φ and θ, but the unit root in the data is left intact. The rejections
rates in Table 1 pertain to the size of the tests, which, as we can see, are
close to the nominal size of 5%. Cases 2 also has a near moving average
unit root that nearly cancels the unit root. Since the second autoregressive
root is .976 < 1, the rejection rates resemble power. Rejection rates are
low because φ lies in the parameter range for which unit root tests have
low power. Cases 3, 5, 6, and 8 have values of θ somewhat further away
from the unit circle, and for which we would expect unit root tests not to
reject the null hypothesis. But size distortions remain noticeable. Thus,
the size problem in unit root tests is genuine.
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In cases of severe parameter redundancy, it could be argued that a pre-
cise I(1)/I(0) classification is quite meaningless or undesirable. A measure
of persistence that is independent of such a clear-cut classification might
be more appropriate. In this avenue, a useful concept relates to how fast
the effects of shocks to qt dissipate. It is thus of some interest to assess au-
toregression based measures of persistence in this setting. Let α̂ = β̂0 + 1,
obtained by applying OLS to (3), be the sum of the estimated autoregres-
sive coefficients. Consider two statistics which aim to capture the time
required for a fraction τ of the full effect of a unit shock to complete:

Jτ
0 = sup

j
|∂zt+j/∂ut| ≤ 1− τ,

Jτ
1 = log(1− τ)/ log(α̂).

When τ = .5, Jτ
0 is the period beyond which the (absolute) response

to a unit shock in ut no longer exceed .5. On the other hand, Jτ
1 is the

half life of a shock as implied by the estimated sum of the autoregressive
coefficients. The difference between the two is that Jτ

0 is based on the
moving-average representation of the estimated model and, hence, depends
on all parameters of the autoregressive representation. In contrast, Jτ

1

depends only on the sum of the estimated autoregressive parameters.
Although both statistics will agree that complete adjustment to a shock

will take infinitely long when there is a unit root, Jτ
1 will overstate the du-

ration of adjustment for intermediate values of τ (such as .5) when a series
has a large negative moving average component. The reason is that when
there is a negative moving average component, the coefficient associated
with the moving-average representation at lag k can be much smaller than
the sum of the k autoregressive coefficients.

More generally, conventional statistics of persistence should be inter-
preted with some care when the data are strongly mean reverting. Take
the autocorrelation function, say, Γ(j), which is also a widely used mea-
sure of persistence in macroeconomic analysis.6 The potential problem
with Γ(j) is that it is typically evaluated at only small values of j. But for
processes that are both persistent and have a tendency for mean reversion,
the values of j needed when τ is high could be very large. Without con-
sidering a large j, Γ(j) could understate how slow is the reversion to the
mean. This issue is relevant when studying the persistence of series such
as inflation.7 For such data, the statistic J0 has the advantage that we do

6For example, Mcgrattan, E., A. Chari, and P. Kehoe (1998) used the degree of
serial correlation in the real exchange rate to judge whether a sticky price model can
replicate the observed persistence in the real exchange rate. Bergin, P. and R. Feenstra
(1999) used the first and fourth order autocorrelation coefficients to assess the degree of
stickiness in the real exchange rate.

7Work is in progress to document this issue in more detail.
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not need an a priori choice on j; it is endogenously determined once we
pick the cut-off point, τ .

3. TESTING FOR A UNIT ROOT ONCE AGAIN

Some, including ourselves, have argued8 that there is always a non-
stationary representation for a time series that is arbitrarily close to a
stationary representation. Because of this potential for observational equiv-
alence, any test that has high power rejecting the null hypothesis of a unit
root when the signal of the non-stationary component is strong must also
have size distortions when this signal is weak. Consider once again the
mapping from the relative magnitude of the innovation variance to θ. The
near-observational equivalence problem can be stated as follows: when us-
ing unit root tests with asymptotic critical values, there will exist values
of θ in the range (−1, x) for some −1 < x < 0, say, such that liberal size
distortions will surface. The value of x will depend on the sample size and
the test used, but it will always approach -1 as the sample size increases.
That is to say, the range over which size distortions occur should diminish.

The standard story about observational equivalence assumes the absence
of a second autoregressive root that is large, and is not immediately appli-
cable to the real exchange rate example in which φ is large. Nonetheless, in
the simulated examples Engel considered, unit root tests really ought not
to have rejected the null hypothesis of a unit root, though the defense that
θ = −.99 is not an interesting case could perhaps be invoked. The more
serious problem is that for sample sizes commonly encountered, the value of
x where size distortions start to appear is not −.99, but much further away
from −1. Depending on the test, x could be anywhere from −.4 to −.8 for
T = 100. This is worrisome because there will exist empirically important
time series which are genuinely non-stationary, and would yet be classified
as stationary. Cases 3, 5, 6 and 8 documented earlier are representative of
the problem. Even with a sample size of 400, the statistics can reject with
80% probability instead of 5% for Case 6.

How prevalent are such time series? In our experience and as we will
see in the next section, variables such as inflation tend to have this prop-
erty, and we are in the process of a more complete documentation of such
data. While a formal test of parameter redundancy is difficult because
the maximum likelihood estimates of the autoregressive and moving aver-
age parameters are not precise when there is a near common factor,9 the
symptoms are there for us to detect. From our previous work, the kernel

8See Campbell, J. Y. and P. Perron (1991), Perron, P. and S. Ng (1996), Cochrane,
J. H. (1991), Faust, J. (1996) and Blough, S. (1992).

9See Clark, P. K. (1988).
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estimate of the spectral density at frequency zero based upon êt0 (i.e. the
least squares residuals with no lagged first-differences included) should be
very different from those based on êtk.10 There should also be sharp differ-
ences between the Phillips-Perron Z tests and the MZ tests even though
the two differ only by a term that should vanish at rate T . The premise
of our latest work is precisely to exploit such information to robustify the
size of the DF test and the class of MZ tests. This is achieved by pa-
rameterizing the model and/or finding estimators such that the sum of the
autoregressive coefficients and the nuisance parameters can be estimated
as precisely as possible. We now provide a non-technical summary of this
work. All statistics considered are defined in the Appendix.11

To begin, recall that in the above discussion z̃t is the detrended series.
That is, z̃t = zt − µt, where µt is the deterministic component. For persis-
tent data, least squares detrending is inefficient. Elliott, G., T. J. Rothen-
berg, and J. H. Stock (1996) showed that using GLS detrended data to
construct the DF statistic can yield substantial power gains and Ng, S.
and P. Perron (2001) showed that these power gains extend to the Z and
MZ tests. As a first step, therefore, one should first quasi-transform the
data at ᾱ = 1 + c̄/T , where, as suggested by Elliott, G., T. J. Rothenberg,
and J. H. Stock (1996), c̄ = −7.0 in the constant only case and −13.5 in
the linear trend case. The estimates of the coefficients on the deterministic
components are then obtained by OLS using the quasi differenced data.
The discussion that follows assumes that all regressions are based on such
GLS detrended data. We now discuss problems and suggest solutions for
the DFGLS and ZGLS class of tests.

• The DFGLS test. This test is the t− statistic on β0 in the kth order
augmented autoregression (3). The problem in the presence of a strong
negative MA component is that β̂0 is severely biased if k is small because
etk is serially correlated. The solution is then to select a large k when
it is necessary. To implement this, and to avoid selecting a large k when
not needed, we suggest using a modified information criterion, the MAIC
defined by, using (3) estimated from t = kmax+ 1, . . . , T for all k,

MAIC = Argmink=0,...,kmax ln(σ̂2
k) +

2(τT (k) + k)
T − kmax

,

with

τT (k) = (σ̂2
k)−1β̂2

0

T∑
t=kmax+1

ỹ2
t−1,

10These issues are discussed in Perron, P. and S. Ng (1998).
11This has been the basis of work reported in Ng, S. and P. Perron (1995, 1997, 2001),

and Perron, P. and S. Ng (1996, 1998).



54 SERENA NG, PIERRE PERRON

where σ̂2
k = T−1

∑T
t=kmax+1 ê

2
tk.

The key to the solution is an adequate selection of k, the order of the
autoregression. The MAIC is motivated by the observation that the bias
in β̂0 decreases non-linearly as k increases. Model selection rules such as
the AIC and BIC do not take this non-linearity into account; they under-
penalize models with a small k and select autoregressive approximations
that are too parsimonious for models with a negative MA component. The
MAIC explicitly accounts for the strong dependence of the bias in β̂0 on
k via the term τT (k). The MAIC reduces to the standard AIC when this
dependence is absent (such as ARMA noise functions with autoregressive
and moving average roots far from the unit circle).

• The ZGLS test. This test requires (a), a least squares estimate of α
from the regression z̃t = αz̃t−1 + et0, and (b) estimates of the variance
and the so-called long run variance (the non-normalized spectral density
at frequency zero) of et0. The problem is that α̂ is severely biased because
et0 is strongly serially correlated and, because of this, estimates of both
the variance and the long-run variance are also severely biased when con-
structed using the estimated residuals êt0. The solution is then to remove
any dependence of ZGLS on α̂. To implement this the following steps are
taken. (a) Use the first differences of the data to construct an estimate of
the variance. This leads to the so-called MZGLS test defined as

MZGLS
α =

T−1z̃2
T − s2

2T−2
∑T

t=1 z̃
2
t−1

.

where s2 is the estimate of the long-run variance. (b) Estimate the long
run variance using an autoregressive spectral density estimator based upon
(3) with GLS detrended data. (c) When constructing the autoregressive
spectral density estimate, use the MAIC to select k.

Of the two tests, the MZGLS tests hold a size advantage while the DFGLS

has better power, especially for sample sizes less than 150.
It should be emphasized that proper implementation of the new tests is

extremely important. Use of GLS detrending alone or the MAIC alone will
not reduce size distortions by as much. We still need to apply modifications
to ZGLS

α . Table 2 reports results for tests based on GLS detrended data,
and for different values of kmax. Clearly, the size of ZGLS

α is still inferior
to MZGLS

α . Table 3 shows that, using the BIC to select k will still lead
to size distortions, in spite of the use of GLS detrended data and the
modified tests. The BIC selects k = 1 on average irrespective of kmax.
With the MAIC, the average k is 12 when kmax = 20 and increases
with kmax. Letting k be the default used in software packages is highly
undesirable because the appropriate k is data dependent, and the model
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TABLE 2.

Size of the Test Statistics with k selected by the MAIC.

φ θ ZGLS
α MZGLS

α DF GLS

Case/kmax 12 20 40 12 20 40 12 20 40

1 0.919 -0.991 0.706 0.586 0.369 0.692 0.556 0.342 0.682 0.546 0.308

2 0.976 -0.999 0.422 0.385 0.343 0.413 0.378 0.334 0.396 0.350 0.262

3 0.952 -0.982 0.337 0.280 0.206 0.329 0.268 0.197 0.309 0.244 0.145

4 0.919 -0.925 0.055 0.063 0.082 0.052 0.062 0.080 0.049 0.046 0.043

5 0.850 -0.892 0.087 0.074 0.092 0.084 0.071 0.088 0.078 0.061 0.052

6 0.850 -0.971 0.536 0.393 0.196 0.503 0.337 0.144 0.503 0.351 0.140

7 0.999 -0.999 0.063 0.067 0.078 0.059 0.066 0.078 0.054 0.054 0.036

8 0.839 -0.982 0.728 0.559 0.292 0.678 0.479 0.188 0.691 0.506 0.212

The 5% asymptotic critical value for Zα is −14.1, for MZGLS
α is −8.1, and for DF GLS

is −1.91.

TABLE 3.

Size of the Test Statistics with k selected by the BIC.

φ θ ZGLS
α MZGLS

α DF GLS

Case/kmax 12 20 40 12 20 40 12 20 40

1 0.919 -0.991 0.889 0.882 0.888 0.887 0.880 0.884 0.888 0.882 0.886

2 0.976 -0.999 0.494 0.495 0.492 0.488 0.490 0.483 0.508 0.504 0.502

3 0.952 -0.982 0.445 0.427 0.422 0.441 0.424 0.418 0.451 0.433 0.422

4 0.919 -0.925 0.068 0.073 0.070 0.067 0.072 0.069 0.069 0.073 0.072

5 0.850 -0.892 0.162 0.168 0.180 0.160 0.164 0.176 0.162 0.170 0.176

6 0.850 -0.971 0.868 0.869 0.860 0.865 0.866 0.854 0.862 0.863 0.854

7 0.999 -0.999 0.070 0.067 0.060 0.067 0.066 0.057 0.068 0.066 0.061

8 0.839 -0.982 0.952 0.960 0.962 0.950 0.959 0.960 0.950 0.958 0.962
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FIG. 1. Properties of MZα using the MAIC and the BIC: Case 6
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selection rule must be flexible enough to handle the strongly mean reverting
nature of data with negative moving average errors. Figure 1 uses case
6 to show how it is GLS detrending along with the selection of k that
resolves the size problem. If we use OLS detrended data in the estimations
and the BIC to select the lag length, the probability of rejecting the unit
root hypothesis when it is true is close to unity. Replacing OLS by GLS
detrending improves the size somewhat, as does replacing the BIC by the
MAIC. However, it is the use of GLS detrending and the MAIC that yields
large size improvement.

The only remaining issue is that, as with the AIC and the BIC, we
need to specify a kmax for the MAIC. Our theoretical results only provide
guidance about the rate of increase of k relative to the sample size and does
not pin down a kmax for empirical work. Our recommendation is to use a
kmax that varies with the sample size, such as kmax = Ont[12(T/100)1/4].
In our experience with simulations and applications, setting this kmax is
usually sufficient to obtain substantial size improvements. But because the
k that is required to make etk approximately serially uncorrelated depends
on the data generating process, there could be cases when such a kmax
might not be large enough. In that case, reset kmax to some larger number
and re-optimize the MAIC function.
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TABLE 4.

Output and Inflation in the U.S.

Series α̂ML θ̂ML DF GLS DF MZGLS
α Zα α̂GLS α̂OLS kmic kbic J .5

0 J .5
1 J .8

0 J .8
1

log(gdp) 0.954 0.221 -1.576 -2.094 -5.319 -8.020 0.980 0.966 2 1 37 34 63 78

Inflation (gdp) 0.950 -0.298 -1.242 -2.834 -3.096 -15.388 0.967 0.895 2 0 14 20 56 48

Inflation (cpi) 0.947 -0.283 -1.199 -2.871 -3.089 -16.014 0.962 0.890 9 0 9 18 46 41

Regressions for log(GDP ) include a constant and a trend. Only a constant is included in regressions
for inflation.

3.1. Empirical Examples.
To illustrate, consider quarterly data for log(GDP ) and the GDP and

CPI based inflation series over 1962:1-1998:4 (T = 160)12. Both the
DFGLS and MZGLS use GLS detrending and the MAIC with kmax set
to 14. We also report the DF and the Zα tests, both based on least squares
detrending and k selected using the BIC. The latter ones are perhaps the
most commonly used methods in practice.

We first estimate an ARMA(1, 1) model to obtain a rough idea of the
size of the moving average component. The results are reported in Table 4.
For log(GDP ), θ̂ is positive suggesting that, for all tests, size distortions
are not an issue. Indeed, no test rejects a unit root in log(GDP ) around
a linear deterministic trend, and MAIC and BIC chooses k at 2 and 1,
respectively. Consider now the two inflation series. Both estimates of θ are
negative, and even though the point estimates are far from −1, they are
negative enough to cause problems. The Zα test rejects a unit root in both
cases, while the DFGLS and MZGLS do not. The DF test is known to be
somewhat more robust than Zα when θ is negative, but it too rejects a unit
root at the 5% level for one series and at the 10% level for the other. For
both inflation series, the BIC selects a lag length of 0. The MAIC selects
2 for the GDP -based series and 9 for the CPI-based series. This shows,
first, that the BIC will not pick a large enough k, and second that the
MAIC does not necessarily pick the largest k possible. A comparison of
α̂GLS and α̂OLS shows that in general, the OLS/BIC combination yields
lower estimates of α.

Since a non-rejection of the unit root does not necessarily imply that this
hypothesis is true, as discussed earlier it is useful to consider measures of
the effects of shocks at various horizons such as the statistics Jτ

0 and Jτ
1

defined above. Evaluating them at τ = 1/2, we see that the half-life of
a shock to GDP is around 35 quarters, with little difference between the
two. However, when there is a negative moving average component, J .5

1

indicates a much longer half life than J .5
0 . On the other hand, the largest

12The data are taken from FRED. The web site address is
http://www.stls.frb.org/fred.
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autoregressive root is appropriate for evaluating these statistics for τ closer
to 1. Hence when τ = .8, both Jτ

0 and Jτ
1 suggest that it will take about

50 quarters for 80% of the effect of the shock to dissipate.

4. EMPIRICAL ANALYSIS OF REAL EXCHANGE RATES

One issue that arises frequently in the analysis of the exchange rate (real
or nominal) is whether combining the low volatility data before the Bretton
Woods agreement with data which are more volatile after the agreement
will affect the size of unit root tests.13 This issue of a break in variance
was studied by Hamori, S. and A. Tokihisa (1997) for the normalized least
squares estimator. The authors find that the break fraction and the relative
variance in the two regimes will enter the limiting distribution of the test
statistic, and in monte carlo experiments, combining the data of the two
regimes will lead to over-rejections of the unit root tests. Although no
formal analysis is available for other test statistics, there is little doubt
that the qualitative conclusion will generalize. The focus of most exchange
rate analysis on one regime is justified.

Table 5 presents estimates of ARMA(1,1) models for the nominal and the
real exchange rate series as measured by the consumption deflator. The
data are quarterly for the period 1973:1-1997:2, taken from the OECD
sectoral database. Results using the GDP deflator are similar and not
reported. For real exchange rates, the moving average component is, in
most cases, estimated to be positive with t statistics larger than 1.6 in
absolute value. Recall that Engel’s basic premise was that ∆qt could have
a large negative moving-average component. Evidence for this is found in
only two countries, Australia and Korea. The U.K. data, which was the
basis of Engel’s analysis, clearly does not exhibit a negative θ. Since there
is hardly any evidence of a negative θ in either qt or ∆qt, size distortions of
unit root tests should not be an issue. Applying the new (and old) tests,
we can only reject a unit root in the real exchange rate for Canada, and
only marginally. These results are reported in Table 6.

With 25 years of data, unit root tests may indeed have low power in pro-
viding a precise I(1)/I(0) classification (see, e.g., Shiller, R.J. and P. Perron
(1985), and Perron, P. (1991)). For this reason, we consider the measure of
persistence Jτ

0 along with bootstrapped standard errors.14 With the excep-
tion of Korea, Greece, and Portugal, the half life of real exchange shocks
is between nine and fifteen quarters, in line with the consensus estimate
of 4.5 years from panel studies. Evaluating τ at .8 gives a clearer picture

13See, for example, the discussion in Froot, K. and K. Rogoff (1995), Section 2.3.5.
14Because of the lack of a negative moving-average component, estimates for Jτ

1 are
similar.
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TABLE 5.

ARMA(1,1) Estimates of α and θ for Nominal and Real Exchange Rate:
1973:1-1997:2.

Country st qt ∆qt

α θ α θ α θ

Australia 0.939 0.193 0.867 0.216 0.601* -0.581*

Austria 0.892 0.380 0.901 0.354 0.605* -0.444

Canada 0.949 0.426 0.951 0.425 -0.590* 0.919*

Denmark 0.943 0.363 0.913 0.375 -0.081 0.421

France 0.945 0.455 0.902 0.443 -0.086 0.490*

Germany 0.894 0.383 0.909 0.361 0.601* -0.436

Greece 0.954 0.192 0.952 0.182 0.802 -0.735

Ireland 0.947 0.310 0.851 0.290 -0.248 0.466

Italy 0.939 0.412 0.890 0.423 -0.365* 0.702*

Japan 0.877 0.399 0.879 0.403 -0.009 0.368

Korea 0.968 0.364 0.935 0.263 0.719* -0.466*

Luxembourg 0.939 0.409 0.929 0.384 -0.580 0.862

Netherlands 0.910 0.364 0.909 0.339 0.534 -0.314

Norway 0.897 0.364 0.870 0.365 -0.400 0.675*

Portugal 1.002 0.358 0.940 0.368 -0.318 0.619*

Sweden 0.920 0.378 0.924 0.295 0.514 -0.316

Switzerland 0.861 0.367 0.870 0.358 -0.680 0.915

U.K. 0.900 0.245 0.882 0.231 -0.184* 0.359*

For st and qt, θ̂ is always significant at the two-tailed 10% level. For ∆qt,
significant estimates are marked with an aseterik.

of the relative persistence across countries. Japan has the fastest speed
of adjustment, with 80% completed in 15 quarters. This is followed by
Canada, Ireland, Sweden, France and Italy. Adjustments in the remaining
countries take over 20 quarters to complete, with Greece and Korea being
the outliers.

5. CONCLUSION

From an econometric perspective, C. Engel’s conclusion that long-run
PPP may not hold is valid because we fail to reject a unit root in the real
exchange rate. While the size issue being raised is a valid methodological
problem, it appears not relevant to the exchange rate data we investigated.
His result may be an artifact of the imprecise estimates of the parameters
used to calibrate the model, leading to implied values of θ in the simulated
data that are much closer to -1 than the observed data.



60 SERENA NG, PIERRE PERRON

TABLE 6.

Statistics for the Exchange Rates.

Country log(st) log(qt)

DF GLS MZGLS
α α̂ J .5

0 J .8
0 DF GLS MZGLS

α α̂ J .5
0 J .8

0

Australia -1.334 -4.082 0.956 17 37 -1.981 -6.947 0.923 10 (3.0) 21 (7.0)

Austria -2.147 -9.244 0.927 12 20 -2.035 -8.411 0.933 12 (3.4) 21 (6.9)

Canada -2.068 -11.466 0.955 18 24 -2.305 -17.598 0.945 16 (3.2) 19 (4.6)

Denmark -1.802 -6.581 0.955 18 31 -2.046 -8.232 0.940 14 (4.2) 23 (7.9)

France -1.931 -6.919 0.955 18 29 -2.352 -10.342 0.928 12 (3.1) 18 (6.0)

Germany -2.191 -10.298 0.928 12 20 -2.094 -8.532 0.935 13 (3.8) 22 (7.3)

Grece -1.077 -2.589 0.972 26 58 -1.201 -3.234 0.965 21 (6.1) 46 (13.0)

Ireland -1.593 -5.682 0.961 20 35 -2.199 -8.885 0.903 8 (2.2) 17 (5.1)

Italy -1.609 -5.925 0.964 22 37 -2.383 -12.653 0.918 10 (2.7) 17 (5.3)

Japan -2.511 -13.076 0.914 10 16 -2.578 -15.633 0.906 9 (2.2) 14 (4.3)

Korea -1.490 -5.735 0.974 29 45 -1.119 -5.723 0.988 56 (15.2) 79 (20.7 )

Luxembourg -1.830 -7.018 0.953 17 29 -1.850 -7.039 0.948 16 (4.5) 27 (8.8)

Netherlands -2.158 -10.083 0.931 12 20 -2.033 -8.843 0.938 13 (3.8) 23 (7.4)

Norway -2.021 -7.995 0.936 13 23 -2.223 -9.384 0.922 11 (3.9) 19 (8.6)

Portugal -0.872 -2.665 0.984 47 83 -1.843 -8.240 0.949 17 (5.0) 25 (10.0)

Sweden -2.019 -8.485 0.940 14 24 -1.959 -8.082 0.939 14 (3.8) 24 (7.7)

Switzerland -2.217 -10.585 0.924 11 19 -2.312 -10.605 0.919 10 (2.8) 18 (5.7)

U.K. -1.679 -5.829 0.940 13 28 -1.991 -7.619 0.922 10 (2.8) 21 (6.5)
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When a process has a unit root but has a negative moving average com-
ponent, there are steps one can take to minimize size distortions while
retaining power in unit root tests. The main ingredient is the use of a new
information criterion, the MAIC, to select the autoregressive lag length.
When a precise I(1)/I(0) classification is not warranted, the use of the
MAIC still allows better estimates of measures of persistence related to
the half-life of a shock. Our estimates put this half life of shocks to real
exchange rate between nine and fifteen quarters, though there are more
variations in the time required to complete 80% of the adjustments.

There remains the question of whether we should care if a non-stationary
component in qt exists? This issue is of independent interest because it is
relevant whenever testing a variable which has subcomponents (such as the
CPI and industrial production) is at stake. The answer depends on the
objective of the exercise. Take industrial production. If an economist was
asked “Are all sectors stationary?”, then he should document as clearly as
possible unit root tests results on all sectors. But if this economist was
asked “is industrial production non-stationary”, then there is no value-
added in knowing if there is a permanent component in, say, the output
for shoelaces. One might think otherwise if it was the production of au-
tomobiles rather than shoelaces that has a permanent component. But if
the variations in automobiles are important enough, they will be reflected
in industrial production anyway. In the end, unit root tests on the com-
ponents are neither necessary nor sufficient for establishing a unit root in
the aggregate variable. On the other hand, if we were interested in the
source of the unit root in the aggregate, analysis of the components will be
necessary. But establishing the existence and the source are two different
questions.15 In the case of the real exchange rate, little is lost from not
knowing that a permanent component in yt exists if all we want to know
is whether the real exchange rate has a unit root.

APPENDIX A
Test Statistics

The DFGLS test due to Dickey, D.A. and W.A. Fuller (1979), Said, S.E.
and D.A. Dickey (1984) and Elliott, G., T.J. Rothenberg, and J.H. Stock
(1996) is the t statistic on β̂0 from the augmented autoregression:

∆z̃t = β0z̃t−1 +
k∑

j=1

βj∆z̃t−j + etk, (A.1)

15Such an analysis was provided by Engel, C. (1999).
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where z̃t = zt − β̂′dt, β̂ is the GLS estimate of the coefficients on the
deterministic terms dt. That is, let z⊥t = zt − ᾱzt−1 for t = 2, ..., T and
z⊥1 = z1, and let d⊥t be similarly defined. Then β̂ is obtained as the OLS
estimate from a regression of z⊥t on d⊥t . The non-centrality parameter is
specified as ᾱ = 1+ c̄/T with c̄ = −7.0 when dt = {1} and c̄ = −13.5 when
dt = {1, t}.

The Phillips-Perron test is

Zα = T (α̂− 1)− (s2 − s2v)(2T−2
T∑

t=1

z̈2
t−1)

−1,

where z̈t−1 are the residuals from an OLS regression of zt−1 on dt, t =
1, . . . , T , and α̂ is the least squares estimate from the regression

zt = βdt + αzt−1 + vt. (A.2)

Also s2v = T−1
∑T

t=1 v̂
2
t and s2 is a consistent (under the null hypothesis)

estimate of the spectral density at frequency zero the first-differences of the
stochastic component.

The Modified Phillips-Perron test MZα is

MZα =
T−1ẑ2

T − s2AR

2T−2
∑T

t=1 ẑ
2
t−1

≈ Zα +
T

2
(α̂− 1)2,

where ẑt are the OLS residuals from a regression of zt on dt, t = 0, . . . , T .
The autoregressive estimate of the spectral density at frequency zero of vt,
is defined as:

s2AR = s2ek/(1− β̂(1))2, (A.3)

where β̂(1) =
∑k

i=1 β̂i, s2ek = T−1
∑T

t=k+1 ê
2
tk, with β̂i and {êtk} obtained

from the following autoregression estimated by OLS

∆zt = γ′dt + β0zt−1 +
k∑

j=1

βj∆zt−j + etk.

The GLS version, MZGLS
α is obtained using GLS detrended data, that is

using z̃t instead of ẑt and constructing s2AR using the regression (A.1).

Engel’s Model and Parameterizations
The model is:

∆yt = aut,

∆st = −δ(st + p∗T
t − pT

t ) + but + cvt,

∆(pT
t − p∗T

t ) = γ(st + p∗T
t − pT

t ) + dεt + fvt + gut,
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where ut, vt, εt are i.i.d. N(0, 1) and are mutually uncorrelated. This
implies for xt = st + pT∗

t − pT
t ,

xt = φxt−1 − det + (c− f)vt + (b− g)ut,

with φ = 1− δ − γ. Thus,

σ2
w = a2,

σ2
m = (c− f)2 + (b− g)2 + d2,

σ2
wm = a(b− g)

and θ determined according to (6).

Table A.1 Structural Parameters (×100) and Implied Values of φ, θ, and σ2
w/σ2

m.

Case φ θ σ2
w/σ2

m a d c δ b g

1 0.919 -0.991 0.012 0.573 1.129 5.077 8.038 0.109 0.611

2 0.976 -0.999 0.000 0.100 1.890 4.150 2.400 0.109 0.611

3 0.952 -0.982 0.141 1.800 1.550 4.560 4.761 0.109 0.611

4 0.919 -0.925 3.750 10.00 1.129 5.077 8.038 0.109 0.611

5 0.850 -0.892 0.937 5.000 1.129 5.077 15.00 0.109 0.611

6 0.850 -0.971 0.037 1.000 1.129 5.077 15.00 0.109 0.611

7 0.999 -0.999 0.012 0.573 1.129 5.077 0.100 0.109 0.109

8 0.839 -0.982 0.012 0.573 1.129 5.077 8.038 0.109 0.109

In the above, γ = 0 except in case 8 when γ = .08. The parameter f is fixed at 0.000632.
Cases 1,2 and 3 are from Tables 2 and 4 of Engel, C. (1999).
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