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This paper proposes a semiparametric approach to the estimation of ‘gener-
alized’ binary choice models. A ‘generalized’ binary choice model is one with
separate indices for each conditioning variable which constitutes a generaliza-
tion of the standard single-index approach typically employed in applied work.
The choice probability distribution is therefore a joint distribution across these
indices as opposed to the typical univariate distribution on a scalar index com-
monly found in applied work. Interest lies in estimating choice probabilities
and the gradient of choice probabilities with respect to the conditioning in-
formation, and these are estimated nonparametrically using the method of
kernels. A data-driven cross-validatory method for bandwidth selection and
index-parameter estimation is proposed for maximization of the nonparametric
likelihood function. The functional form of the indices enters this nonpara-
metric likelihood function thereby permitting data-driven determination of the
index functions in addition to the shape of the joint cumulative distribution
function itself. Applications are considered. c© 2002 Peking University Press
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1. INTRODUCTION

Binary choice models are characterized by a dependent variable which
can take on only two discrete values. Such models are widely used in a num-
ber of disciplines, and occur frequently in economics because the decision
of an economic unit frequently involves binary choice, for instance, whether
or not a person joins the labor force or makes an automobile purchase, or
whether or not a firm issues a bond. The goal of modeling such choices is
first to predict whether or not a choice will be made (choice probability)
and second to assess the response of the probability of the choice being
made to changes in variables believed to influence choice (choice gradient).
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Existing approaches to modeling binary choice fall into two camps, para-
metric and semiparametric. Both camps typically assume the existence of
a single threshold given by an index function beyond which it is more
likely than not that a choice will be made, hence they are often called
‘single-index’ models. Such models can be quite powerful and they enjoy
widespread use, however, the use of a single-index can impose some strong
restrictions on the underlying process. For example, one such restriction
is that choice gradients are forced to have identical shape for each variable
influencing choice and differing only by the value of a scalar parameter.

This paper considers a generalization of such approaches in which there
exist separate thresholds and indices for each variable believed to influence
choice. This is quite different from existing ‘multiple-index’ models which
are typically used to model multinomial discrete choice. In this paper
the choice remains binary in nature, but multiple thresholds are admitted.
The resulting method is more flexible than the standard approach and
constitutes an alternative to single-index models when modeling binary
choice.

Existing approaches are now briefly summarized in order to compare and
contrast them from the proposed approach.

1.1. Parametric Estimation of Single-Index Binary Choice Mod-
els

Logit and probit models remain the most widely used parametric meth-
ods for the estimation of binary choice models. Such approaches depend
on two assumptions; a known index which is assumed to influence choice,
and a known parametric form for a distribution function (CDF) which is
assumed to yield choice probabilities. The index is assumed to yield a pos-
itive choice when it exceeds a threshold (with error), and a negative choice
otherwise.

Parametric models are typically chosen due to their tractability and ease
of interpretation. For excellent overviews of estimation and inference based
upon parametric binary choice models see Amemiya (1981), Mcfadden
(1984), Blundell (1987), and Davidson & Mackinnon (1993). Typically,
parametric models of binary choice are based on the concept of an un-
observed or ‘latent’ variable Y ∗

i (see Davidson & Mackinnon (1993, page
514).

The traditional parametric approach to modeling binary choice is as
follows:

1. Assume that the true data generating processes (DGP) is given by

Y ∗
i = E[Y ∗|Xi] + Ui = X ′

iβ + Ui,
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where Xi ∈ Rk, but that we only observe Yi = 1 if Y ∗
i > 0 otherwise we

observe Yi = 0.
2. Yi = 1 therefore occurs when X ′

iβ +Ui > 0, that is, when Ui > −X ′
iβ.

3. Pr[Yi = 1] is therefore equal to Pr[Ui > −X ′
iβ] = 1−Pr[Ui < −X ′

iβ].
4. Assuming symmetry of the distribution of U , 1 − Pr[Ui < −X ′

iβ] =
Pr[Ui < X ′

iβ] = F (X ′
iβ).

5. Assuming that the distribution of U is of known parametric form, then
we can estimate β by the maximum likelihood method1.

6. Empirical choice probabilities are given by F (x′β̃), while the gradient
of choice probability with respect to the conditioning information is given
by ∂F (x′β̃)/∂x, where β̃ is the maximum likelihood estimator of β.

Clearly this approach has its origins in regression modeling and the use
of a scalar index function X ′

iβ plays a key role. The choice probability
function F (·) (the CDF of U) is independent of the distribution of those
variables believed to influence choice by assumption, and symmetry of F (·)
is typically assumed. This assumed symmetry therefore imposes symmetry
on the choice probability gradient, each element having identical shape and
differing only by β̃j , j = 2, . . . , k. In this framework there is no way for
us to estimate the shape of the error distribution, either parametrically
or nonparametrically since we do not observe U and cannot estimate U
since we do not observe Y ∗

i . This stands in stark contrast to a standard
regression model in which the vector of residuals Û = Y −Xβ̂ can be used
to nonparametrically estimate the density of U since we actually observe
the underlying dependent variable in this case. If we adopt a parametric
approach we must simply presume a parametric distribution for U whose
location and scale is determined by the observed choices Y ∈ {0, 1} and by
X ′

iβ.

1.2. Semiparametric Estimation of Single-Index Binary Choice
Models

There exists a rich and very impressive variety of approaches towards
semiparametric estimation of discrete choice models including that of
Coslett (1983), Ichimura (1986), Manski (1985), Rudd (1986), Ichimura
& Lee (1991), Coslett (1991), Klein & Spady (1993), Lee (1995), Chen &
Randall (1997), Picone & Butler (1998), and Ichimura & Thompson (1998)
to name but a few. For a recent survey of semiparametric approaches to
the estimation of discrete choice models see Pagan & Ullah (1999 Chapter
7).

In this framework note that Pr[Yi = 1] = E[Yi|X ′
iβ], hence one cannot

proceed by estimating E[Yi|Xi] using standard nonparametric regression

1For example, assuming a Gaussian distribution for U leads to the widely-used ‘Probit’
model, while assuming a Logistic distribution yields the widely-used ‘Logit’ model.
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techniques as this fails to capture the single-index nature of the model. A
number of leading approaches therefore use nonparametric techniques to
estimate E[Yi|X ′

iβ] (see, for example, Ichimura (1986) and Klein & Spady
(1993)), and the resulting estimators are essentially ratios of nonparametric
density estimates which may require trimming both to deal with behavior
of the numerator at boundary points and to obtain asymptotic results.
These approaches are very similar in spirit to univariate Nadaraya-Watson
regression (Nadaraya (1965), Watson (1964)) with the index function itself
serving as conditioning information.

Existing semiparametric approaches share a number of features; they
typically assume an underlying latent variable specification; they typically
employ a scalar-index which restricts the choice threshold to be a hyper-
plane; they typically model the (univariate) distribution of the scalar index
function in order to generate empirical choice probabilities; data-driven
methods for bandwidth selection or its counterpart when using flexible
functional forms are not employed, and they do not permit data-driven
index choice.

1.3. Semiparametric Estimation of Generalized Binary Choice
Models

In this paper, a semiparametric approach to the estimation of ‘general-
ized’ binary choice models is proposed. A ‘generalized’ binary choice model
is one with separate indices for each conditioning variable which constitutes
a generalization of the standard single-index approach typically employed
in applied work. The choice probability distribution is therefore a joint
distribution across these indices as opposed to the typical univariate dis-
tribution on a scalar index commonly found in applied work.

In this paper the approach taken is to focus on modeling Pr[Yi = 1]
via kernel estimation of a (joint) CDF rather than by modeling E[Yi|X ′

iβ]
via a ratio of density estimates. It was noted that existing semiparamet-
ric approaches are similar in spirit to Nadaraya-Watson kernel regression
(Nadaraya (1965), Watson (1964)), and the proposed approach is similar in
spirit to the Priestly-Chow regression estimator (Priestley & Chao (1972)).
One immediate benefit will be the absence of trimming in this approach.
In addition, the proposed approach adopts the use of multiple thresholds
the modeling of which will be straightforward and natural in this setting.

This paper builds upon existing work and develops a number of ideas
in the context of binary choice modeling. First, the joint distribution of
transformations of the conditioning variables is estimated nonparametri-
cally using the method of kernels. This extends existing approaches which
employ a univariate distribution defined over a scalar index, and the dis-
tribution of variables influencing choice influences both choice probabilities
and associated gradients. Second, the indices are assumed to be of known
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form but are generalized to allow for multiple thresholds. Third, both
bandwidth and parameter selection is data-driven using a new likelihood-
based cross-validatory method. The value added by the proposed approach
lies in its ability to model situations wherein a single index may be appro-
priate, but in addition is capable of handling a richer range of phenomena
than those which single-index models are capable of handling. Finally, the
functional form of the index can be data-driven since it enters the non-
parametric likelihood function thereby generalizing existing approaches in
which the index is assumed to be known.

The modeling of binary choice via multiple thresholds is now outlined,
and then a semiparametric implementation is proposed.

2. BACKGROUND AND ASSUMPTIONS

Consider a situation for which

Yi =
{

1 if a choice is made
0 otherwise i = 1, . . . , n (2)

Yi ∈ R1 is assumed to be a random variable that depends on a random
vector of characteristics, Xi ∈ Rk. Interest lies in predicting the probability
that Yi = 1 given a realization of the vector of characteristics, xi, and in
assessing how this probability changes with changes in these characteristics.

As noted, this paper considers the case in which choices are governed in
general by multiple thresholds defined over the choice variables or trans-
formations thereof, one for each variable influencing choice. In this setting,
Pr[Yi = 1] can be expressed as a joint distribution function given by

Pr[Yi = 1] = Pr[g1(xi1, θ
1) ≥ g1 and g2(xi2, θ

2) ≥ g2 . . . and gk(xik, θk) ≥ gk]

= F (g1 − g1(xi1, θ
1), . . . , gk − gk(xik, θk))

(3)

where the functions gj(xij , θ
j), j = 1, . . . , k, are (unknown) functions which

influence choices, θj a vector of parameters, gis thresholds above which
choices tend to be made, and F (·) a joint distribution function. It is noted
that

Pr[Yi = 0] = 1− Pr[Yi = 1] = Pr[g1(xi1, θ
1) < g1

and g2(xi2, θ
2) < g2 . . . and gk(xik, θk) < gk]

= 1− F (g1 − g1(xi1, θ
1), . . . , gk − gk(xik, θk))

(4)

As usual, the choice probability gradient is defined as

∇xPr[Yi = 1] =
∂Pr[Yi = 1]

∂x
∈ Rk (5)
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which tells us the response of the choice probability due to changes in the
factors influencing choice.

We can write the PDF of the choice Yi as

f(yi) =
[
F (g1 − g1(xi1, θ

1), . . . , gk − gk(xik, θk))
]yi

×
[
1− F (g1 − g1(xi1, θ

1), . . . , gk − gk(xik, θk))
](1−yi)

(6)

where yi ∈ {0, 1}, and for independent realizations of Yi the joint density
function is given by

f(y1, . . . , yn) =
n∏

i=1

f(yi)

=
n∏

i=1

[
F (g1 − g1(xi1, θ

1), . . . , gk − gk(xik, θk))
]yi

×
[
1− F (g1 − g1(xi1, θ

1), . . . , gk − gk(xik, θk))
](1−yi)

(7)

Estimation of binary choice models is typically based upon the method
of maximum likelihood where the log-likelihood function is given by

L =
n∑

i=1

yi ln
[
F (g1 − g1(xi1, θ

1), . . . , gk − gk(xik, θk))
]

+ (1− yi) ln
[
1− F (g1 − g1(xi1, θ

1), . . . , gk − gk(xik, θk))
] (8)

and the resulting estimators will be referred to collectively as θ̃.
Hypothesis testing can often be based on the asymptotic variance-covariance

matrix. For example, the variance-covariance matrices for linear indices is
given by

V [θ̃] =
n∑

i=1

[
f2(xi, θ)

F (xi, θ)[1− F (xi, θ)]
xix

′
i

]−1

(9)

where θ denotes a vector of all parameters in the model and where xi

a vector of realizations of all variables influencing choice. An estimate
is obtained by evaluating Equation 9 at θ̃. Alternatively, one could use
the method of obtaining Equation 9 via computation of the Hessian of
the likelihood function which often must be obtained numerically due to
nonlinearities in the likelihood function itself.

3. SEMIPARAMETRIC GENERALIZED BINARY CHOICE
WITH KNOWN INDICES

The approach taken in this paper involves the nonparametric estima-
tion of a joint distribution function which has as its arguments generalized
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known indices of each conditioning variable. Estimation proceeds via the
method of kernels based on a nonparametric likelihood function which is
maximized using cross-validatory techniques. Cross-validation is employed
for both bandwidth and parameter selection and, in addition, the paramet-
ric form of the index itself can also be selected via cross-validation by letting
the nature of the index be an argument of the cross-validatory likelihood
function.

Kernel estimation of distribution functions can be based upon an es-
timator such as the Nadaraya-Watson (Nadaraya (1965), Watson (1964))
estimator of a joint density function. The kernel estimator of a joint density
function is given by

f̂(x1, . . . , xi) =
1

n
∏k

j=1 hj

n∑
i=1

K

(
x1 − xi1

h1
, . . . ,

xk − xik

hk

)
(10)

The kernel estimator of the joint distribution function (Prakasa & Rao
(1983 page 397)) is therefore given by

F̂ (x1, . . . , xk) =

∫ x1,...,xk

−∞
f̂(t1, . . . , ti) dt1, . . . , dtk

=
1

n
∏k

j=1 hj

n∑
i=1

∫ x1,...,xk

−∞
K

(
t1 − xi1

h1
, . . . ,

tk − xik

hk

)
dt1, . . . , dtk

=
1

n

n∑
i=1

Kint

(
x1 − xi1

h1
, . . . ,

xk − xik

hk

)
(11)

where Kint(·) =
∫ x1,...,xk

−∞ K(·) dt1, . . . , dtk is a kernel distribution function.
Once we assume a specific parametric function for the indices (gj(xij , θ

j),
j = 1, 2, . . . , k) we can then obtain the kernel estimator of the joint distri-
bution function of these indices via simple transformation of variables. For
the commonly used linear index this involves nothing more than simply
replacing variable j with the index itself.

It should be noted that we have used the standard Rosenblatt-Parzen
estimator (Silverman (1986 page 40, 76)), but this approach remains un-
changed when using other nonparametric density estimators such as gen-
eralized nearest-neighbor (Silverman (1986 page 21)) and adaptive (Silver-
man (1986 page 21)) approaches.

By way of example, consider a situation in which the indices are linear
in nature, hence an index for variable j would be given by θj

0 + θj
1xij .
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The kernel estimator of the joint distribution function (Pr[Yi = 1]) would
be given by

F̂ (θ1
0 + θ1

1xi1, . . . , θ
k
0 + θk

1xik)

=
1
n

n∑
i=1

Kint

[(
θ1
0 + θ1

1(x1 − xi1)
h1

)
, . . . ,

(
θk
0 + θk

1 (xk − xik)
hk

)]
(12)

while the gradient vector ∇F̂ (θ1
0 +θ1

1xi1, . . . , θ
k
0 +θk

1xik) would have typical
element

∂F̂ (θ1
0 + θ1

1xi1, . . . , θ
k
0 + θk

1xik)
∂xj

=
1
n

n∑
i=1

∂

∂xj
Kint

[(
θ1
0 + θ1

1(x1 − xi1)
h1

)
, . . . ,

(
θk
0 + θk

1 (xk − xik)
hk

)]
(13)

This estimator is very similar to the Priestly-Chow regression estimator
(Priestley & Chao (1972)) outside of the obvious difference in the nature
of the kernel function.

4. ESTIMATION OF THE MODEL.

In applied settings we clearly require a method of determining the smooth-
ing parameters h, the parameters of the index function θ, and possibly the
functional forms of the indices themselves.

Suppose for the moment that the form of the index is of known linear
form. We could therefore express the log-likelihood function as

L(θ, h) =
n∑

i=1

yi ln
[
F̂ (θ1

0 + θ1
1xi1, . . . , θ

k
0 + θk

1xik)
]

+ (1− yi) ln
[
1− F̂ (θ1

0 + θ1
1xi1, . . . , θ

k
0 + θk

1xik)
] (14)

We would like to proceed to select h and θ in a manner similar to that used
in a parametric framework.

Unfortunately, as is common in nonparametric settings, this objective
function is unbounded. We therefore considering maximizing the cross-
validatory log-likelihood function using a leave-one-out kernel estimator
in which observation i is omitted when computing F̂ (θ1

0 + θ1
1xi1, . . . , θ

k
0 +

θk
1xik). This now allow us to conduct data driven bandwidth and parameter

estimation. Letting L−i(θ, h) denote the cross-validatory likelhood function
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in which observation i is omitted when computing F̂ (θ1
0 + θ1

1xi1, . . . , θ
k
0 +

θk
1xik), we define

(θ̃, h̃) = argmax
θ,h

L−i(θ, h) (15)

and consistency of this method would be expected to follow given the results
of Stone (1974) though a rigorous proof of this statement is not attempted
here.

At this point it should be evident that we could admit the functional
form of the index as yet another argument entering this likelihood function
so that, in addition to the bandwidths h and index parameters θ, choice
of the index functions themselves could be data-driven thereby removing
the need to assume that the functional form of the index is known prior to
estimation.

Much of the focus of a number of excellent recent papers has been on
estimation of the index parameters themselves. However, Amemiya (1981
page 1488) notes that “when one wants to compare models with differ-
ent probability functions, it is generally better to compare probabilities
directly rather than comparing the estimates of the coefficients even after
an appropriate conversion.” He also suggests that “an alternative way of
comparing different models is to look at the derivatives of the probabilities
with respect to a particular independent variable.” In light of this, in this
paper interest will center on estimation of the choice probabilities F (·) and
their gradient ∂F (·)/∂x in this generalized setting when the distribution
function is not assumed to be of known parametric form.

We now turn to the behavior of the proposed method relative to existing
single-index methods. For comparison purposes, we consider a traditional
parametric approach along with the proposed approach.

5. SOME SIMPLE EXAMPLES

One key difference between many existing approaches and the proposed
approach lies in the modeling of the choice distribution itself. For instance,
the traditional parametric approach requires the presumption of a known
functional form for the distribution of an error term U , and the shape of
this distribution is independent of the distribution of the variables which
influence choice. However, in the proposed approach the distribution de-
pends on the variables influencing choice, which is also assumed by Klein
& Spady (1993) for instance though in a single-index setting.

We first consider the case of one conditioning variable in order to high-
light this difference. We first consider the case in which a Logit model
would be appropriate in that the distribution of X is symmetric, and then
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FIG. 1. Choice probability and gradient vector for simulated normal data x ∼
N(0, 1), n = 250. F̂l represents that based on the logistic parametric specification,

while F̂k represents that based on a nonparametric kernel estimator. All bandwidths
were selected via maximization of the cross-validatory maximum likelihood function.
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consider the case where X is bimodal in order to contrast the proposed
approach from existing approaches.

5.1. Univariate: Symmetric Distribution of X

We begin by considering the behavior of the proposed estimator relative
to that based on the widely-used logistic specification when the distribution
of the variables influencing choice is symmetric.

For the experiments, the choice probabilities were determined from the
Logit model

yi =
{

1 if
[
1/(1 + e−(θ0+θ1xi)) + ui

]
≥ 0.5

0 otherwise
i = 1, . . . , n (16)

where x ∼ N(0, 1) and u ∼ N(0, 0.252). The values of (θ0, θ1) were varied,
and results for four simulated data sets are plotted in Figure 1.

As can be seen, even for a sample which is small by nonparametric stan-
dards, the proposed approach appears to give reasonable estimates of the
choice probabilities and gradient which are consistent with the underlying
DGP.

However, suppose that the distribution of X was bimodal, for example.
The proposed approach would use this information while standard models
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FIG. 2. Choice probability and gradient vector for simulated bimodal normal data
x ∼ N(−2.5 : 2.5, 0.52 : 1.0), n = 250. F̂l represents that based on the logistic paramet-

ric specification, while F̂k represents that based on a nonparametric kernel estimator. All
bandwidths were selected via maximization of the cross-validatory maximum likelihood
function.
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cannot as they assume that choice probabilities are independent of the
distribution of the variables influencing choice.

5.2. Univariate: Bimodal Distribution of X

We now consider the behavior of the proposed estimator and the logistic
estimator when the data on X is bimodal, x ∼ N(−2.5 : 2.5, 0.52 : 1.0).

Which approach is appropriate? Clearly, if the latent-variable model is
driving choices then the Logit model is appropriate. However, if choices
are governed by variables influencing choices and not by an independent
error process, then the proposed approach will be able to capture such
behavior. In either case, predicted choice probabilities will be similar, but
choice gradients will differ.

5.3. Multivariate: Symmetric distribution of X1, X2
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FIG. 3. Choice probability and predicted choices for simulated data with X1, X2 ∼
N(), n = 500. The first column contains that for the kernel estimator, the second for
the Logit.

� � � � � � 
�

 �
 �

�
�

� � �

�

� �
� �


�

� � � � ! 
�

 �
 �

�
�

� � �

�

� �
� �


�

# � � % � ( ! � % � � � � � � + - � � ( �

 �
 �

�
�

� � �

�

� �
� �


�

# � � % � ( ! � % � � � � ! + - � � ( �

 �
 �

�
�

� � �

�

� �
� �


�

For the experiments, the choice probabilities were determined from the
Logit model

yi =

{
1 if

[
1

(1+e−(θ01+θ11xi1))
1

(1+e−(θ02+θ12xi2))
+ ui

]
≥ 0.5

0 otherwise
i = 1, . . . , n

(17)
where x1, x2 ∼ N(0, 1) and u ∼ N(0, 0.52). The values of (θ01, θ11, θ02, θ12)
were varied, and results for four simulated data sets are plotted in Figure
3. Note that the true choices should be Yi = 1 if X1, X2 is in the northwest
quadrant of the input space. However, there is noise thrown on top of
the inputs hence the somewhat gradual response of the probability due to
changes in the inputs.

An examination of Figure 3 reveals that models such as the Logit can-
not capture this simple thresholding which would be expected in simple
economic models. The Logit model can only fit one hyperplane through
the input space which falls down the diagonal axis. However, the kernel
estimator permits two (K) such hyperplanes thereby permitting consistent
estimation of the choice probabilities conditional upon the index specifica-
tion.

An examination of the choice gradients graphed in Figure 4 reveals both
the appeal of a multiple threshold approach and the limitations of single-
index models. The gradient with respect to X1 is everywhere negative and
everywhere positive with respect to X2. By way of example, note that,
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FIG. 4. Choice gradients for simulated data with X1, X2 ∼ N(), n = 250. The first
column contains that for the kernel estimator, the second for the Logit.
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when x2 = −3.5, the gradient with respect to X1 is zero almost everywhere.
The kernel estimator picks this up, but the Logit specification imposes
non-zero gradient where in fact there is none. The same phenomena can
be observed when X1 = 3.5 whereby the true gradient with respect to X2

is zero almost everywhere, but again the logistic specification imposes a
discernibly non-zero gradient.

This effect occurs when the data is in fact jointly symmetrically dis-
tributed. When the data is skewed, asymmetric, and/or bimodal, the
gradients given by widely-used parametric models should be viewed with
extreme caution.

6. SIMULATIONS - LATENT VARIABLE SPECIFICATION

We consider a simple simulation in order to gauge how the proposed
method performs relative to widely-used parametric methods. We consider
the case for which a Probit model is the correctly-specified single-threshold
parametric model. The second-order Epanechnikov kernel was employed for
the following set of simulations, and both the bandwidth and index param-
eters were selected via the proposed method of likelihood cross-validation.
For both the parametric and semiparametric approaches, we employ linear
indices throughout.
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TABLE 1.

DGP is a bivariate latent variable model.

% Correct Avg. Grad logL
n Par Sem Par Sem Par Sem

σu = 0.5

50 85% 85% 0.36 0.10 -15.4 -18.5

100 86% 86% 0.36 0.15 -30.6 -37.0

σu = 2.0

50 76% 76% 0.28 0.16 -23.8 -24.2

100 75% 75% 0.28 0.20 -49.1 -49.7

σu = 2.0

50 67% 67% 0.19 0.17 -30.0 -30.1

100 66% 66% 0.18 0.18 -61.2 -61.5

We consider the case where the true DGP is in fact a latent variable
model given by

Y ∗
i = β1 + β2Xi + Ui (18)

where Yi = 1 if Y ∗
i > 0 and where (β1, β2) = (0, 1), Xi ∼ N(0, 1) and

Ui ∼ N(0, σ2
u).

Since U ∼ N(0, σ2) then the Probit model is appropriate. In order to
facilitate comparison with the Probit model, we follow the convention of
expressing the choice probability gradient as the sample average of the
gradient. We therefore will compare percentage of correct predictions and
the sample average of the choice probability gradient for the parametric
Probit and the semiparametric specification proposed in this paper. 1,000
Monte Carlo replications were drawn from this DGP, and median per-
centage of correct predictions as well as median choice probability gradi-
ent are reported. For each replication, the proposed method of likelihood
cross-validation was used to select the bandwidth h and parameter vector
θ = (θ1, θ2). Sample sizes of n = 50 and 100 are considered, and results
appear in Table 1 below.

These results suggest that the predictive ability of the semiparamet-
ric model does not differ from that of a correctly specified Probit model,
while the proposed approach appears to have a slight downward bias in the
average choice probability derivative which disappears as the sample size
increases. Finally, this bias also disappears as the variance of U increases.
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7. APPLICATION - PREDICTING VOTING BEHAVIOR

We consider an example in which we model voting behavior given infor-
mation on various economic characteristics on individuals. For this example
we consider the choice of voting ‘yes’ or ‘no’ for a local school tax refer-
endum. Two economic variables used to predict choice outcome in these
settings are income and education. This is typically modeled using a Logit
or Probit model in which the covariates are expressed in logarithm() form.

Interest lies in the predictive power of the proposed approach versus
models such as the widely-used Logit or Probit models. This aim of this
modest example is simply to gauge the performance of the proposed method
in a real-world setting. Data was taken from Pindyck & Rubinfeld (1998
page 332-333), and there were a total of n = 95 observations available.
Table 2 summarizes the results from this modest exercise.

TABLE 2.

Comparison of models of voting behavior.

Average Derivative

Method % Correct log(income) log(education)

Logit 65.3% 0.04 0.20

Probit 65.3% 0.05 0.20

Kernel 67.4% 0.04 0.19

It appears that, for this example, the proposed method yields improved
prediction probabilities. As well, the average derivatives are extremely
close for both methods. However, an examination of Figure 5 reveals that
the derivatives are quite different which is missed when quoting the average
derivative as is typically done. As well, note the well-known fact that Logit
models impart the same shape on all derivatives when using the standard
linear index, but as can be seen this restriction is not imposed by the
proposed method.

This modest example is in no way intended to be a serious investigation
into the prediction of voting outcomes. For this simple application, the
predictive ability of the model increases when admitting multiple thresh-
olds, and the average choice probability gradient is in line with that from
standard models of binary choice. These results suggest that allowing for
multiple thresholds may improve predictive ability when modeling binary
choice and may constitute a tool which could benefit applied researchers in
their quest to model binary choice outcomes.
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FIG. 5. Choice probabilities and gradient vectors for voting data where X1 is
log(income) and X2 is log(education). The light lined surfaces (left hand side graphs)
are those for the proposed method while the dark liked surfaces (right hand side graphs)
are those for the Logit model. For this example both approaches employ linear indices.
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8. CONCLUSION

It is widely known that misspecification of parametric models can yield
biased and inconsistent estimates and inference based on such models would
be invalid. This paper proposes a method for estimating generalized binary
choice models admitting multiple thresholds for which the joint distribution
is estimated nonparametrically and the functional form of the index is data-
dependent. It is demonstrated how standard parametric models such as the
Logit model can distort both the choice probabilities and choice probability
gradient in simple situations. The proposed approach uses nonparametric
methods for estimation of the choice probabilities and associated gradients.

Future work includes orthogonality tests for a subset of variables and
extension of the index to include a fully nonparametric index in addition
to the choice probability distribution.
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