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1. INTRODUCTION

Both the convexity assumption and the perfect divisibility assumption
are two fundamental assumptions used in major modern economic anal-
yses. Unfortunately, neither the convexity of production sectors nor the
perfect divisibility of commodities is a convincingly realistic description of
economic reality. As a matter of fact, the prominent feature of economic
reality is the presence of large indivisibilities. How to deal with economies
in the presence of indivisibilities has long been one of the major challenges
in economic theory; see Lerner (1944), Debreu (1959), and Scarf (1986,
1994).

The aim of this paper is to establish equilibrium existence theorems for
a general exchange economy in which agents exchange several indivisible
goods and money. It is well known that competitive equilibrium theory runs
into difficulties when indivisible goods are considered, or more generally,
the quntities of goods are restricted to integers. Nevertheless, it has been
shown by Quinzii (1984), Gale (1984), Svensson (1984), and Kaneko and
Yamamoto (1986) that if there is a single divisible good (say money) in an
economy and if each agent has utility for one indivisible object only, then
there still exists an equilibrium under certain reasonable conditions. Their
models extend the model of Shapley and Scarf (1974) in which no divisible
goods are present. More general results have recently been obtained by e.g.,
Bikhchandani and Mamer (1997), Laan, Talman and Yang (1997), Bevia,
Quinzii and Silva (1999), Gul and Stacchett (1999), Yang (2000), Danilov,
Koshevoy, and Murota (2001), Murota and Tamura (2001). In these new
models, agents can sell and buy several indivisible goods. It might also be
worth pointing out that the models proposed in Bikhchandani and Mamer
(1997), Bevia et al. (1999), Gul and Stacchett (1999), Murota and Tamura
(2001) deal with the cases in which preferences are quasilinear in money,
whereas those proposed in Quinzii (1984), Gale (1984), Svensson (1984),
Keneko and Yamamoto (1986), Laan et al. (1997), and Danilov et al.
(2001) deal with somehow more general situations where quasilinearity is
not required.

In this paper we will introduce a more general competitive exchange
economy with indivisible goods and money. There are finitely many agents
and finitely many indivisible goods. Each agent is initially endowed with
several units of each indivisible good and certain amount of money. Money
is treated as a perfectly divisible good. The agents’ preferences depend on
the bundle of the quantity of indivisible goods and the quantity of money
they consume. Preferences are quite general and are not required to be
quasilinear in money. We derive necessary and sufficient conditions for
the existence of a competitive equilibrium in the economy. It is further
shown that our sufficient conditions are general and interesting enough to
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cover most existence conditions that have been introduced in the literature.
Furthermore, this paper, to our knowledge, is also the first to present a
necessary and sufficient condition for the existence of equilibrium in an
economy where preferences can be quite general and quasilinearity is not
required, whereas previous necessary and sufficient conditions established
by Bikhchandani and Mamer (1997), and Murota and Tamura (2001) can
only apply to the case in which agents have quasi-linear utilities in money.

The rest of the paper is organized as follows. In Section 2 we present a
general model and introduce necessary and sufficient conditions. A simple
nonexistence example is given. In Section 3 we prove equilibrium existence
results, and then we discuss several typical applications of the general model
in Section 4.

2. A GENERAL EQUILIBRIUM MODEL

We first introduce some notation. Let Ik denote the set of the first k
positive integers. Let Rn be the n-dimensional Euclidean space and Zn

be the set of all integer vectors of Rn. The vectors 0n and 1n are the all-
zero vector and the all-one vector of Rn, respectively. We use the notation
Rn

+ for the nonnegative orthant {x ∈ Rn | x ≥ 0n} and Zn
+ for the set

{x ∈ Zn | x ≥ 0n}. For each i ∈ In, the vector e(i) denotes the i-th unit
vector of Rn. For a subset B of Rn, the notation Co(B) denotes the convex
hull of B.

We consider a competitive economy in which m agents, denoted by Im,
exchange n indivisible goods, denoted by In. These goods can be houses,
cars, trucks, aircrafts, computers, machines, and so on. Each agent is
initially endowed with a bundle of indivisible goods, denoted by ωi ∈ Zn

+,
and some amount of money, denoted by mi. The preference of each agent
over goods is specified by a utility function ui : Zn × R → R. Let W
denote the social endowment of all indivisible goods, i.e., W =

∑m
i=1 ω

i.
Each agent i has a possible consumption set Y i = Xi × R+ where Xi is
a bounded subset of Zn

+ and contains at least ωi, i ∈ Im, and 0n. It is
natural to require that Xi is bounded since in reality no agent would like
to have an infinite amount of indivisible goods.

For each i ∈ Im and each price vector p ∈ Rn
+, the demand correspon-

dence Di(p) is defined by

Di(p) = {x | ui(x, p>ωi +mi − p>x)
= max{ui(y, s) | y ∈ Xi, s ≥ 0, p>y + s ≤ p>ωi +mi} }.
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Definition 2.1. A list of vectors (p, x1, x2, · · · , xm) ∈ Rn
+ × D1(p) ×

D2(p) × · · · × Dm(p) is a competitive equilibrium if
∑m

i=1 x
i = W (=∑m

i=1 ω
i).

Let tm be a number strictly greater than
∑

i∈Im
mi, i.e., the total

amount of money in the market. The parameter tm will be called a critical
value. Let P denote the set of p ∈ Rn

+ for which there exists a list of vectors
(x1, · · · , xm) ∈ Co(D1(p))× · · · × Co(Dm(p)) such that∑m

i=1 x
i
j ≤Wj for j ∈ In with pj = 0,∑m

i=1 x
i
j = Wj for j ∈ In with 0 < pj < tm,∑m

i=1 x
i
j ≥Wj for j ∈ In with pj ≥ tm.

(1)

Clearly, P includes the set of all possible equilibrium price vectors. To
ensure the existence of equilibrium, we impose the following assumptions
on the economy:
A1 For each i ∈ Im and each x ∈ Zn, ui(x, ·) is a continuous and nonde-
creasing function.
A2 For each i ∈ Im and each s ∈ R+, x ≥ y implies ui(x, s) ≥ ui(y, s),
for any x, y ∈ Xi.
A3 For each i ∈ Im, mi is a positive real number such that ui(ωi,mi) ≥
maxx∈Xi ui(x, 0).
A4 If the set P is nonempty, then there exists some p ∈ P such that there
exists a list of vectors (y1, · · · , ym) ∈ D1(p) × · · · ×Dm(p) also satisfying
the inequalities (1).

Assumption A1 needs no explanation. This assumption is weaker than
those made in the literature. Assumption A2 says that all goods are desir-
able. Free disposal is a sufficient condition for this assumption. Assumption
A3 implies that the initial endowment is at least as good as any state with-
out consumption. These three assumptions are quite natural and almost
minimal. Assumption A4 says that if a system of linear inequalities (2.1)
has a solution in the convex hull Co(D1(p))×· · ·×Co(Dm(p)), then it also
has an integral solution in D1(p) × · · · × Dm(p). We can easily see that
Assumption A4 is nessesary for an equilibrium to exist. This assumption
will be referred to as integral inequality satisfiability (IIS) condition. In
the next section we will demonstrate the existence of equilibrium under
Assumptions A1 through A4. Furthermore, we will show that under As-
sumptions A1, A2 and A3, the economy has an equilibrium if and only if
Assumption A4 holds. In this sense, Assumption A4 is also a very natural
and minimal condition. To get an intuitive knowledge of Assumption A4,
we will immediately give an example here. There are two agents 1 and 2
in the economy. Agent 1 initially has one dollar and one indivisible good
A and agent 2 has one dollar and one indivisible good B. Their utilities
are given by ui(S, s) = Vi(S) + s, i = 1, 2, where V1(∅) = V2(∅) = 0,
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V1(A) = 7/6, V1(B) = 1, V1(AB) = 4/3, V2(A) = 1/3, V2(B) = 1/4,
V2(AB) = 5/6. Although Assumptions A1, A2 and A3 are satisfied here,
the economy has no equilibrium at all. In fact, the price vector p̄ = (pA, pB)
with pA = 1/2 and pB = 1/3 is the only possible equilibrium price vector
for the economy, i.e. P = {p̄}. At p̄, we have D1(p̄) = {{A}, {B}} and
D2(p̄) = {∅, {A,B}}. Clearly, Assumption A4 is not satisfied.

3. EXISTENCE OF AN EQUILIBRIUM

In this section we will show the existence of an equilibrium for the econ-
omy as described in the last section under the four assumptions. Define
ψ(p) =

∑m
i=1Di(p) − {W} and φ(p) =

∑m
i=1 Co(Di(p)) − {W} for all

p ∈ Rn
+, where recall that W =

∑m
i=1 ω

i. Let m̄ be a number no less than
the critical value tm. Define an n-dimensional cube Cn(m̄) by

Cn(m̄) = {p ∈ Rn
+ | pl ≤ m̄ for all l ∈ In}.

Now we are ready to present our main theorem which states the existence
of an equilibrium and tells its location.

Theorem 3.1. Under Assumptions A1 through A4, the economy has at
least one competitive equilibrium with its equilibrium vector p∗ ∈ Cn(m̄).

Proof. The proof will be divided into three steps:
Step 1: We will show that under Assumptions A1, A2 and A3 the

correspondence φ is an upper semi-continuous point-to-set mapping with
nonempty, convex and compact values. To prove this statement, we first
show that for each i ∈ In, Di is nonempty-valued upper semi-continuous on
Cn(m̄). Take an arbitrary point p̄ from Cn(m̄). Clearly, Di(p̄) is nonempty.
Let B(p, δ) denote the δ-neighborhood of a point p. Take any point p∗ from
Cn(m̄). Let {ph} be a sequence of points in Cn(m̄) converging to p∗ and
{xh} be a sequence of points in Xi converging to x∗ such that xh ∈ Di(ph)
for each h. To show the upper semi-continuity of Di, we only need to
prove x∗ ∈ Di(p∗). First notice that since Xi is bounded (and hence is
a finite set), it is easy to see that there exists a positive integer M such
that xh = x∗ for all h ≥ M . Secondly, note that pl>xl ≤ pl>ωi + mi for
all l. It follows that p∗>xl ≤ p∗>ωi + mi. Suppose to the contrary that
x∗ 6∈ Di(p∗), then it holds

ui(x∗, p∗>(ωi − x∗) +mi) < ui(x, p∗>(ωi − x) +mi) (2)

for all x ∈ Di(p∗). It will be shown that there exists a point x̄ ∈ Di(p∗) such
that p∗>x̄ < p∗>ωi +mi. Obviously, p∗>x ≤ p∗>ωi +mi for all x ∈ Di(p∗).
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Suppose to the contrary that p∗>x = p∗>ωi +mi for all x ∈ Di(p∗). Then
Assumption A3 implies

ui(x∗, p∗>(ωi−x∗)+mi) < ui(x, p∗>(ωi−x)+mi) = ui(x, 0) ≤ ui(ωi,mi)

for all x ∈ Di(p∗). Hence ωi ∈ Di(p∗). This, together with mi > 0 from
Assumption A3, means that ωi ∈ Di(p∗) and p∗>ωi < p∗>ωi + mi. It
contradicts the assumption that p∗>x = p∗>ωi +mi for all x ∈ Di(p∗). We
thus have proved that there exists a point x̄ ∈ Di(p∗) such that p∗>x̄ <
p∗>ωi +mi. Then by Assumption A1 and Equation (2) there exists a δ > 0
such that p ∈ B(p∗, δ) implies p>x̄ < p>ωi +mi and ui(x∗, p>(ωi − x∗) +
mi) < ui(x̄, p>(ωi− x̄)+mi). Hence there exists a positive integer M̄ ≥M
such that for all h ≥ M̄ , ph ∈ B(p∗, δ), xh = x∗ and ui(xh, ph>(ωi − xh) +
mi) < ui(x̄, ph>(ωi − x̄) + mi). This implies xh 6∈ Di(ph) for all h ≥ M̄ ,
yielding a contradiction.

Now it is known that the sum of a finite number of upper semi-continuous
correspondences is upper semi-continuous. Therefore ψ is upper semi-
continuous. Since for each p ∈ Cn(m̄) the set ψ(p) contains only a finite
number of elements, φ(p) is closed. Again it is known that the convexified
upper semi-continuos correspondence is still upper semi-continuous. The
conclusion now follows immediately.

Step 2: We will show that P is nonempty. Note that φ satisfies the
conditions of the stationary point theorem; see e.g., Hartman and Stam-
pacchia (1966). Thus there exist a point p̄ ∈ Cn(m̄) and a list of vectors
(y1, y2, · · · , ym) ∈ Co(D1(p̄))× Co(D2(p̄))× · · · × Co(Dm(p̄)) such that∑m

i=1 y
i
j ≤Wj if p̄j = 0∑m

i=1 y
i
j = Wj if 0 < p̄j < m̄∑m

i=1 y
i
j ≥Wj if p̄j = m̄.

(3)

Recall m̄ ≥ tm. Clearly, P is nonempty.
Step 3: We will show that there is an equilibrium. Since P is a nonempty

set, Assumption A4 holds for some p∗ ∈ P. It follows from Assumption
A4 that there exists a list of vectors (x1, x2, · · · , xm) ∈ D1(p∗)×D2(p∗)×
· · · ×Dm(p∗) satisfying the following inequalities:∑m

i=1 y
i
j ≤Wj if p∗j = 0∑m

i=1 y
i
j = Wj if 0 < p∗j < tm∑m

i=1 y
i
j ≥Wj if p∗j ≥ tm.

(4)

Let I1 = {l ∈ In |
∑m

i=1 x
i
l < Wl}, I2 = {l ∈ In |

∑m
i=1 x

i
l = Wl} and

I3 = {l ∈ In |
∑m

i=1 x
i
l > Wl}. Notice that (I1, I2, I3) is a partition of

In. It follows from Equation (4) that l ∈ I1 implies p∗l = 0, l ∈ I2 implies
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p∗l ≥ 0, and l ∈ I3 implies p∗l ≥ tm. We will show that I3 is empty. Suppose
to the contrary that I3 is nonempty. Since (p∗)>xi ≤ (p∗)>ωi +mi for all
i ∈ Im, we have

(p∗)>(
m∑

i=1

xi −
m∑

i=1

ωi)

=
∑
l∈I1

p∗l (
m∑

i=1

xi
l −Wl) +

∑
l∈I2

p∗l (
m∑

i=1

xi
l −Wl) +

∑
l∈I3

p∗l (
m∑

i=1

xi
l −Wl)

=
∑
l∈I3

p∗l (
m∑

i=1

xi
l −Wl) ≤

m∑
i=1

mi.

Hence we have
∑

l∈I3 p∗l ≤
∑

l∈I3 p∗l (
∑m

i=1 x
i
l − Wl) ≤

∑m
i=1mi. It

follows that p∗l ≤
∑m

i=1mi for all l ∈ I3. However, p∗l ≥ tm >
∑m

i=1mi for
all l ∈ I3, which yields a contradiction.

So far we have proved that
∑

i∈Im
xi

j = Wj whenever p∗j > 0. We still
have to show that there is a list of vectors (x∗1, · · · , x∗m) ∈ D1(p∗)× · · · ×
Dm(p∗) such that

∑m
i=1 x

∗i = W . Suppose that the set I1 is nonempty. Let
(yi)’s be nonnegative integer vectors such that

∑n
i=1 y

i = W−
∑n

i=1 x
i and

xi +yi ∈ Xi. Let x∗i = xi +yi for each i ∈ Im. Since p∗j = 0 for j ∈ I1 and
yi

j = 0 for j ∈ In \ I1, we have (p∗)>x∗i = (p∗)>xi for all i ∈ Im. It follows
from Assumption A2 that ui(x∗i, (p∗)>(ωi−x∗i)+mi) = ui(x∗i, (p∗)>(ωi−
xi) +mi) ≥ ui(xi, (p∗)>(ωi − xi) +mi). This implies that x∗i ∈ Di(p∗) for
all i ∈ Im. By the definition of (yi)’s it is clear that

∑m
i=1 x

∗i = W . We are
done.

Following the proof of Theorem 3.1, we immediately have the following
two results.

Theorem 3.2. Under Assumptions A1 through A3, the economy has a
competitive equilibrium with its equilibrium vector p∗ ∈ Rn

+ if and only if
Assumption A4 holds.

If utility function ui is quasi-linear in money (i.e., ui(x, s) = f i(x) + s
with f i(0n) = 0), we will call f i a reservation value function. In the quasi-
linear case, we have

Theorem 3.3. Suppose that each agent i ∈ Im has a quasi-linear utility
in money ui(x, s) = f i(x) + s with f i(0n) = 0, and f i is weakly increasing
(i.e., for any x, y ∈ Xi, x ≤ y implies f i(x) ≤ f i(y)), and that mi is a
positive real number such that mi ≥ maxx∈Xi f i(x) − f i(ωi). Then the
economy has a competitive equilibrium with its equilibrium vector p∗ ∈ Rn

+

if and only if Assumption A4 holds.
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Theorem 3.3 has somehow generalized the earlier results of Bikhchan-
dani and Mamer (1997) since the model here is slightly more general than
theirs. We can summarize their model here. There are one seller and m
buyers in the market. The seller (in fact a fictitious agent) has a set of
indivisible objects, denoted by {e(1), · · · , e(n)}, with some money, and his
utility function is u0(x,m) = m, while the m buyers have no initial en-
dowment of objects but money with mi > f i(1n), i ∈ Im. Each buyer
has a quasi-linear utility in money ui(x,m) = f i(x) +m with f i(0n) = 0,
where reservation function f i is weakly increasing. The consumption set
Xi of each agent is given by Xi = {x ∈ Zn

+ | x ≤ 1n }. They introduced a
necessary and sufficient condition for the existence of an equilibrium. For
a similar model, Bevia et al. (1999) proved the existence of an equilibrium
if reservation functions f i are weakly increasing submodular and have car-
dinality property. They proved such reservation functions satisfy the well
known gross substitute condition proposed by Kelso and Crawford (1982).
We will come back to this point in the subsequent section.

4. APPLICATIONS

In this section we will show several applications of the model presented in
Section 2. Before doing this, we first review several concepts from the field
of discrete optimization. Given a set In, we call a set function f : 2In → R
a submodular function on 2In if it satisfies

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ), ∀S, T ⊆ In. (5)

We assume from now on that f(∅) = 0 for any set function f ; see Fujishige
(1991) for more detail. The generalized polymatroid (or g-polymatroid),
introduced by Frank (1984), is defined by

P(f, g) = {x ∈ Rn | ∀S ⊆ In : g(S) ≤ x(S) ≤ f(S) }, (6)

where f and −g are submodular functions satisfying the following condi-
tion:

f(S)− g(T ) ≥ f(S \ T )− g(T \ S), ∀S, T ⊆ In.

A nonempty polyhedron is said to be integral if each of its nonempty faces
contains an integral point. It is known that a g-polymatroid P(f, g) is
integral if f and g have only integer values, and that if P and Q are integral
g-polymatroids in Rn, then P + Q is also an integral g-polymatroid and it
holds that

(P + Q) ∩ Zn = (P ∩ Zn) + (Q ∩ Zn).
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See Danilov et al. (2001) and Murota and Tamura (2001) for a related
application of polymatroids.

Introduced by Murota and Shioura (1999) and Murota (1998), a function
g : Zn → R ∪ {−∞} with the effective domain dom(g) = {z ∈ Zn | g(z) >
−∞} being nonempty and bounded is called M\-concave if it satisfies the
following condition:
(M \) For x, y ∈ dom(g) and k ∈ supp+(x− y),

g(x) + g(y) ≤
max[g(x− e(k)) + g(y + e(k)), max

l∈supp−(x−y)
{g(x− e(k) + e(l)) + g(y + e(k)− e(l))}],

where supp+(x − y) = {k ∈ In | xk > yk} and supp−(x − y) = {k ∈ In |
xk < yk}.

An M\-concave function is related to g-polymatroids as shown in Murota
and Shioura (1999).

Theorem 4.1. A function g : Zn → R ∪ {−∞} with the effective do-
main dom(g) = {z ∈ Zn | g(z) > −∞} being nonempty and bounded is
M\-concave if and only if g satisfies the following conditions:
(i) the convex hull of the effective domain dom(g) is an integral g-polymatroid;
(ii) For each p ∈ Rn, defining

Y (p) = arg max{g(z)− p>z | z ∈ Zn} (7)

then the convex hull Co(Y (p)) of Y (p) in Rn is an integral g-polymatroid
and it holds Y (p) = Co(Y (p)) ∩ Zn.

With respect to the concept of integral g-polymatroid, we have the
following simple but quite useful lemma.

Lemma 4.1. If for each i ∈ Im and p ∈ Rn
+, Co(Di(p)) is an integral g-

polymatroid and Di(p) = Co(Di(p))∩Zn, then Assumption A4 is satisfied.

Proof. Suppose that there exist a partition (J1, J2, J3) of V and a list
of vectors (x1, · · · , xm) ∈ Co(D1(p))× · · · × Co(Dm(p)) such that∑m

h=1 x
h
j ≤Wj for j ∈ J1∑m

h=1 x
h
j = Wj for j ∈ J2∑m

h=1 x
h
j ≥Wj for j ∈ J3

(8)

Since for each i ∈ Im Co(Di(p)) is an integral g-polymatroid, the sum∑
i∈Im

Co(Di(p)) is also an integral g-polymatroid and it holds that

{
∑
i∈Im

Co(Di(p))} ∩ ZV =
∑
i∈Im

Di(p).
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Let B be a box in RV defined by the direct product of intervals

[0,Wj ] for j ∈ J1

[Wj ,Wj ] for j ∈ J2

[Wj ,+∞) for j ∈ J3

(9)

From (8) {
∑

i∈Im
Co(Di(p))} ∩ B is nonempty and it is also an integral

g-polymatroid since a nonempty intersection of an integral g-polymatroid
and an integral box is an integral g-polymatroid. It follows that there exists
a list of integral vectors (y1, · · · , ym) ∈ D1(p)×· · ·×Dm(p) satisfying the in-
equalities (8).

We now consider the models presented by Quinzii (1984), Gale (1984),
Svensson (1984), Kaneko and Yamamoto (1986) in which there are the
same number of indivisible objects as agents. It is easy to check that
Assumptions A1, A2 and A3 are satisfied by their conditions. It re-
mains to see how Assumption A4 is also satisfied by their conditions.
Notice that in their models all agents have the same consumption set
Xi = {0n, e(1), e(2), · · · , e(n)}, i ∈ In. Since the convex hull of any subset
of Xi is an integral g-polymatroid, the convex hull of the demand set of
agent i, Co(Di(p)), must be also an integral g-polymatroid. It follows from
Lemma 4.1 that Assumption A4 is satisfied.

When each agent has a quasi-linear utility function ui(x, s) = f i(x) + s
with f i(0n) = 0 and f i is M\-concave. We have

Theorem 4.2. Suppose that each agent i ∈ Im has an initial endow-
ment (ωi,mi) and has a quasi-linear utility in money ui(x, s) = f i(x) + s
with f i(0n) = 0, and f i is a weakly increasing M\-concave function on the
consumption set X = {x ∈ Zn | 0n ≤ x ≤

∑
i∈Im

ωi} and that mi is a
positive real number such that mi ≥ f i(W ) − f i(ωi). Then the economy
has a competitive equilibrium with its equilibrium vector p∗ ∈ Rn

+.

Proof. Clearly, Assumptions A1, A2 and A3 are satisfied. We need to
show that Assumption A4 is also satisfied. To do so, we will show that
the convex hull of the demand set Di(p) of each agent i is an integral
g-polymatroid and Di(p) = Co(Di(p)) ∩ Zn. Note that

Di(p) = {x | f i(x)−p>x = max{f i(y)−p>y | y ∈ X, p>y ≤ p>ωi+mi} }.

Because of the budget constraint, Co(Di(p)) may not be an integral g-
polymatroid. Consider the following set

Yi(p) = {x | f i(x)− p>x = maxy∈X(f i(y)− p>y) }.
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Since f i is M\-concave, by Theorem 4.1 Co(Yi(p)) is an integral g-polymatroid
and Yi(p) = Co(Yi(p)) ∩ Zn. We will show Yi(p) = Di(p). Suppose that
x∗ ∈ Yi(p). Then we have f i(x∗)− p>x∗ ≥ f i(ωi)− p>ωi. It follows from
Assumptions A2 and A3 that

mi + f i(ωi)− p>x∗ ≥ f i(W )− p>x∗ ≥ f i(ωi)− p>ωi.

Now it is easy to see that p>x∗ ≤ p>ωi +mi. Hence x∗ ∈ Di(p). We are
done.

Finally we consider a modified version of the model presented by Kelso
and Crawford (1982). In this model each agent initially owns a set Ni of
indivisible objects with certain amount of money mi. Of course, some Ni

might be an empty set. Let In denote the set of all indivisible objects in
the economy. Each agent is assumed to have a quasi-linear utility function
ui(S, s) = f i(S) + s with f i(∅) = 0. The reservation value function f i is
weakly increasing, i.e., for any S, T ⊆ In, f i(S) ≤ f i(T ). Then the demand
set Di(p) can be written as

Di(p) = {S | f i(S)−
∑
h∈S

ph

= max{f i(T )−
∑
h∈T

ph | T ⊆ In,
∑
h∈T

ph ≤
∑

h∈Ni

ph +mi} }.

From the definition of Di(p), we see that the consumption set for each
agent is the set X = {x ∈ Zn | 0 ≤ x ≤

∑
i∈In

e(i) }. We will show that
there exists an equilibrium if Assumptions A2 and A3 and the following
condition hold.

(GS) For any two price vectors p and q such that p ≤ q, and any A ∈
Di(p), there exists B ∈ Di(q) such that {i ∈ A | pi = qi} ⊆ B.

Assumption (GS) says that given a price p, if agent i chooses object j in his
choice set, then agent i will still want to choose object j in his new choice
set when the prices of other objects rise, but the price of object j remains
the same. This assumption can be seen as an extended version of the well-
known gross substitutes (GS) condition proposed by Kelso and Crawford
(1982) in which they impose no budget constraints. As pointed out in Roth
and Sotomayor (1990, p.183), the introduction of budget constraints may
cause the core to be empty. Nevertheless, as shown above in Theorem 4.2,
the budget constraints are redundant in determining the demand correspon-
dences if mi is a positive real number such that mi ≥ f i(In)− f i(Ni).

Theorem 4.3. Suppose that each agent i ∈ Im has a quasi-linear util-
ity in money ui(S, s) = f i(S) + s with f i(∅) = 0, and f i is a weakly
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increasing function and that mi is a positive real number such that mi ≥
f i(In) − f i(Ni). Then the economy has a competitive equilibrium with its
equilibrium vector p∗ ∈ Rn

+, if f i satisfies the gross substitutes condition
(GS) for every i ∈ Im.

The following theorem has been shown by Fujishige and Yang (2000).

Theorem 4.4. A weakly increasing reservation value function f i satis-
fies the gross substitutes condition (GS) if and only if f i is M\-concave.

Then it is easy to see the conditions stated in Theorem 4.3 satisfy those
stated in Theorem 4.2 and thus there exists an equilibrium. Note that in
the above theorem the effective domain of each reservation value function
f i is given by 2In .

Finally we mention that two special classes of reservation value functions
with the GS property are found by Kelso and Crawford (1982) and Bevia
et al.(1999). Furthermore, Gul and Stacchetti (1999) introduce two new
conditions which are equivalent to the GS condition.
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