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Department of Economics, University of Windsor
Windsor Ontario, N9B 3P4, Canada

and

Aslihan Salih

Faculty of Business Administration, Bilkent University
Bilkent 06533, Ankara, Turkey

The Black-Scholes pricing errors are larger in the deeper out-of-the-money
options relative to the near out-of-the-money options, and mispricing worsens
with increased volatility. Our results indicate that the Black-Scholes model
is not the proper pricing tool in high volatility situations especially for very
deep out-of-the-money options. Feedforward networks provide more accurate
pricing estimates for the deeper out-of-the money options and handles pricing
during high volatility with considerably lower errors for out-of-the-money call
and put options. This could be invaluable information for practitioners as
option pricing is a major challenge during high volatility periods. c© 2003 Peking

University Press

Key Words: Option pricing; Nonparametric methods; Feedforward networks;
Bayesian regularization; Early stopping; Bagging.

JEL Classification Numbers: G0, G1.

1. INTRODUCTION

The violations of the distributional assumptions behind the Black-Scholes
(1973) model have been investigated extensively. Black (1976) documents
that in the early years of trading on the Chicago Board of Trade, im-
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plied volatilities tended to increase with increasing strike price. Mac-
beth and Merville (1979) reports that the Black-Scholes prices, calculated
with the implied volatility of at- or near-the-money options, are on aver-
age less (greater) than market prices for in-the-money (out-of-the-money)
call options. Moreover the extent to which the Black-Scholes model un-
derprices (overprices) an in-the-money (out-of-the-money) option increases
with the extent to which the option is in-the-money (out-of-the-money)
and decreases as time-to-maturity decreases. This bias acts as if the im-
plied volatilities were inversely related to the exercise price and contrary
to Black’s (1976) results. Macbeth and Merville argue that these results
might be due to nonstationary variance of the underlying distribution of
asset returns. Rubinstein (1985) states that strike price bias is statistically
significant, but the direction of the bias changes from period to period.
Dumas, Fleming and Whaley (1998) argues that prior to the 1987 crash,
volatilities were symmetric around zero moneyness, with in-the-money and
out-of-the-money having higher implied volatilities than at-the-money op-
tions. However, after the crash, the call (put) option implied volatilities
were decreasing monotonically as the call (put) went deeper into out-of-
the-money (in-the-money). Since these findings cannot be explained by the
Black-Scholes model and its variations, researchers searched for improved
option pricing models.1

Nonparametric valuation models are a natural extension as it is easier to
relax the distributional assumptions. In this paper, we investigate the ro-
bustness of the feedforward network models when pricing deeper out-of-the
money options relative to the near out-of-the-money options. Our findings
indicate that the Black-Scholes pricing errors are larger in the deeper out-
of-the money options relative to the near-the-money options. Furthermore,
Black-Scholes mispricing worsens with increased volatility. Feedforward
networks provide more accurate pricing estimates for the deeper out-of-the
money options and handles pricing during high volatility with considerably
lower errors for out-of-the-money call and put options. This could be in-
valuable information for practitioners, as option pricing is a major challenge
during high volatility periods and our findings confirm that Black-Scholes
is not the proper tool for very deep out-of-the-money options.

Recently, a number of papers have used nonparametric methods to price
options. Ghysels et al. (1997) provide a survey of this literature. Two
papers appeal to financial theory to complement a strictly nonparamet-
ric approach. Gouriéroux, Monfort and Tenreiro (1994) apply a Kernel

1Bakshi, Cao and Chen (1997) review the parametric option pricing alternatives and
empirically compare the pricing performance of five different parametric models includ-
ing the Black-Scholes model for S&P 500 index options. Sarwar and Krehbiel (2000)
examine the out-of-sample pricing performance, bias of the stochastic volatility and
modified Black-Scholes option pricing models for European currency call options.
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M-estimator methodology to the option pricing problem by extending the
Black-Scholes formulation.2 In doing so, they recognize that the Black-
Scholes formula is not strictly valid, but that its shape can still be useful to
recover a pricing formula more in line with observed data. Aı̈t-Sahalia and
Lo (1998) use kernel estimation techniques for the option pricing function
and point out that several of the partial derivatives of the option pricing
function are of special interest such as the well-known delta of the option.3

Hutchinson, Lo and Poggio (1994) investigate several techniques for pricing
and hedging options nonparametrically with radial basis functions, projec-
tion pursuit regression, and feedforward networks. Gençay and Garcia
(2000) demonstrate that feedforward networks with hints can be used suc-
cessfully to estimate a pricing formula for options, with good out-of-sample
pricing performance. Gençay and Qi (2001) utilize bagging and Bayesian
regularization methods to improve the generalization performance of feed-
forward networks for option pricing models.

One of the most important issues in feedforward network estimation is
to construct an estimated network with desirable generalization properties.
Several methods have been suggested to prevent overfitting and to improve
generalization in neural networks. These include information-based crite-
ria such as Schwarz Information Criteria, Bayesian regularization (MacKay
1992), early stopping, and bagging4 (Breiman 1996) which we use here
to estimate parsimonious models. Our results indicate that bagging and
Bayesian regularization are robust network selection methods with desir-
able generalization properties.

Section 2 discusses the nonparametric approach to option pricing. Sec-
tion 3 describes our data set. Empirical findings are presented in Section
4. We conclude afterwards.

2. NONPARAMETRIC OPTION PRICING

The Black-Scholes pricing formula’s appeal to practitioners often origi-
nates from its analytical simplicity to determine the price of a European
option on a non-dividend paying asset by

Ct = StN(d1)−Ke−rτN(d2) (1)

with d1 = [ln(St/K) + (r + 0.5σ2)T ]/(σ
√

τ), d2 = d1 − σ
√

τ where N
is the cumulative normal distribution, St is the price of the underlying

2Aı̈t-Sahalia and Lo (1998) also use the same semiparametric approach, along with
their purely nonparametric approach.

3The first derivative of the option pricing formula with respect to the stock price.
4Bagging is the acronym for bootstrap aggregating.
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security, K is the exercise price, r is the prevailing risk-free interest rate,
τ is the time-to-maturity and σ is the volatility of the underlying asset.
Equation 1 contains neither preferences of individuals nor the preferences
of the aggregate market.

The Black-Scholes derivation has been mostly criticized for its distribu-
tional assumptions of the underlying security. Empiricial studies of stock
prices find too many outliers for a simple constant variance log-normal dis-
tribution (Merton 1976). Alternative explanations have been suggested by
many researchers. Oldfield et al. (1977), Rosenfeld (1980), and Ball and
Torous (1985) have fitted mixtures of continuous and jump processes to the
stock price data. Black (1976), Beckers (1980), and Christie (1982) docu-
ment negative correlation between stock prices and volatility. Schmalensee
and Trippi (1978) found that changes in implied volatilities are negatively
correlated with changes in stock prices. Blattberg and Gonedes (1974) con-
clude that volatility is a random process through time. Attempts to acco-
modate stochastic volatility and stochastic interest rates within the frame-
work of Black-Scholes analysis have been complicated by the complexity of
the estimation of the market price of risk. Bakshi, Cao and Chen (1997)
provide closed form solutions for valuing options under stochastic volatility
and stochastic interest rates using Heston’s (1993) Fourier inversion method
to calculate volatility and interest rate market risk premiums. Their results
document that stochastic volatility and stochastic interest rate models are
structurally misspecified. However adding the stochastic volatility feature
to the Black-Scholes model improves out-of-sample pricing and hedging
performance of the model. In a later paper Sarwar and Krehbiel (2000)
report that the Black-Scholes model calculated with daily revised implied
volatilities performs as well as the stochastic volatility model for European
currency call options. Derman and Kani (1994a,b), Dupire (1994) and
Rubinstein (1994) develop a deterministic volatility function (DVF) option
valuation model in an attempt to exactly explain the observed cross-section
of option prices. However, Dumas, Fleming and Whaley (1998) report that
the DVF option valuation model’s fit is no better than an ad hoc proce-
dure that merely smooths Black-Scholes implied volatilities across exercise
prices and time-to-maturity.

Nonparametric valuation models are a natural extension as it is easier to
relax the distributional assumptions. A natural nonparametric function for
pricing a European call option on a non-dividend paying asset will relate
the price of the option to the set of variables which characterize the option

Ct = f(St,K, σt, rt, τ) (2)

where St is the price of the underlying asset, K is the strike price, σt

is the volatility of the underlying asset, rt is the interest rate and τ is
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the time-to-maturity. It is generally more difficult to estimate a function
nonparametrically when the number of input variables is large. To reduce
the number of inputs, Hutchinson, Lo and Poggio (1994) divide the function
and its arguments by K and write the pricing function as follows:

Ct

K
= f(

St

K
, 1, σt, rt, τ). (3)

This form assumes the homogeneity of degree one in the asset price and
the strike price of the pricing function f. Another technical reason for
dividing by the strike price is that the process St is nonstationary while
the variable St/K is stationary as strike prices bracket the underlying asset
price process.5 This paper uses Equation 3 as the nonparametric model for
feedforward network estimation.

2.1. Feedforward Networks
An artificial neural network is a parallel distributed statistical model

made up of simple data processing units, which process information in cur-
rently available data, and makes generalizations for future events. Amongst
nonlinear methods, neural networks represent one of the most recent tech-
niques used in nonlinear modelling. This is partly due to some modelling
problems encountered in the early stage of development within the neural
networks field. In the earlier literature, the statistical properties of neural
networks estimators and their approximation capabilities were question-
able. For example, there was no guidance in terms of how to choose the
number of neurons and their configurations in a given layer and how to de-
cide the number of hidden layers in a given network. Recent developments
in the neural network literature, however, have provided the theoretical
foundations for the universality of feedforward networks as function ap-
proximators. The results in Cybenko (1989), Funahashi (1989), Hornik
et al. (1989,1990), and Hornik (1991) indicate that feedforward networks
with sufficiently many hidden units and properly adjusted parameters can
approximate an arbitrary function arbitrarily well. Hornik et al. (1990)
and Hornik (1991) further show that the feedforward networks can also
approximate the derivatives of an arbitrary function.

The universal approximation property in which both the unknown func-
tion and its derivatives can be uncovered from data is an important result
theoretically and has immediate implications for financial and economic
modelling. In options pricing, for instance, Hutchinson et al. (1994) and
Garcia and Gençay (2000) demonstrate that feedforward networks can be
used successfully to estimate a pricing formula for options, with good out-
of-sample pricing and delta-hedging performance. In the option pricing

5This point is emphasized in Ghysels et al. (1997).
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framework, it is crucial to approximate both the function and the deriva-
tives of the function accurately as the derivatives of the option pricing
formula are the risk management tools (e.g. delta, gamma of an option).
A small function approximation error may lead to larger errors in the
derivatives of the function and therefore poorly approximated risk man-
agement tools. Garcia and Gençay (2000) and Gençay and Qi (2001) show
that feedforward networks provide great enhancements over the parametric
econometric tools in terms of providing more accurate pricing and hedging
performances.

In a feedforward network model, the neurons (activation functions) are
organized in layers. The layer which contains the inputs is called the input
layer. Similarly, the layer where the output(s) of the network are located
is called the output layer. There can be a number of layers between the
input and the output layers. These layers, because they are kept between
the input and the output layers, are called the hidden layers. Depending
upon the network complexity or the nature of the studied problem, there
can be a number of hidden layers in a neural network model. A single
layer feedforward network has only one hidden layer whereas a multilayer
feedforward network would have several hidden layers.

FIG. 1. A two input and two hidden unit single layer feedforward network.

f(x;β,α)

6

β0 + β1g(α10 + α11x1 + α12x2) + β2g(α20 + α21x1 + α22x2)

g(α20 + α21x1 + α22x2)g(α10 + α11x1 + α12x2)

Q
Q

Q
Q

Q
Q

QQk

�
�

�
�

�
�

��3

6 6

XXXXXXXXXXXXXXXXXy

�����������������:

x1 x2



DEGREE OF MISPRICING 79

An example of a single layer feedforward network is presented in Fig-
ure 1. This figure demonstrates a two input single layer feedforward net-
work where xt = (x1t, x2t) are the inputs at t time; α’s and β’s are network
parameters. The underlying functional form f(xt, θ) is a network output
which depends on the inputs and the network parameters. The xt here rep-
resents a vector of all inputs at time t and the symbol θ represents the vector
of parameters, α’s and β’s. Often, f is termed to be the network output
function. This example demonstrates that a simple feedforward network
model can easily be seen as a nonlinear flexible regression model which can
be estimated with the standard optimization tools used in econometrics.

A further variation of this example would be to restrict the output to a
binary response. This can be achieved by assigning a threshold or signum
type activation function between the hidden and the output layers. If the
output is needed to be restricted to a certain interval and can take any value
within this interval, the piecewise linear, sigmoidal or hyperbolic tangent
activation functions can be used in an output layer.

As pointed out earlier, even a single layer feedforward network with suf-
ficiently many hidden units and properly adjusted parameters can theoret-
ically approximate an arbitrary function arbitrarily well. Although these
are important theoretical results which establish the universal approxima-
tion capabilities of feedforward networks, they may have limited practical
implications. One element of the theoretical universal approximation re-
sults is the requirement of sufficiently many activation functions in a single
hidden layer. In practice, the number of activation functions (or hidden
units) used in a network is constrained by the available degrees of freedom,6

which is controlled by the data length and the total number of parameters
of the network. Therefore, a sufficiently large number of hidden units in a
single layer may not be feasible in certain problems such as macroeconomic
data where there may only be two or three decades of annual observations
available.

Let xt and yt be the input (regressors) and the target (regressand) vec-
tors with dimensions 1 × n and 1 × w with t indicating the time index.7

The observations for a sample size N are denoted by x1,x2, . . . ,xN and
y1, y2, . . . , yN . Given inputs xt = (x1,t, . . . , xn,t), a single layer feedforward

6The degrees of freedom is the number of independent unrestricted random variables
constituting a statistic.

7For simplicity, we will assume that w = 1 here.
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network regression model with q hidden units is written as

yt = s

(
β0 +

q∑
i=1

βihi,t

)
+ εt,

hi,t = g

αi0 +
n∑

j=1

αijxj,t

 (4)

for i = 1, . . . , q or

yt = s

β0 +
q∑

i=1

βig

αi0 +
n∑

j=1

αijxj,t

+ εt

= f(xt, θ) + εt, (5)

where s and g are known activation functions; εt is an error term dis-
tributed with zero mean and variance σ2

t and the parameters to be es-
timated are θ = (β0, . . . , βq, α1, . . . , αq)′ and αj = (αj,0, . . . , αj,n). The
range of the output values of the feedforward network model is controlled
by s such that if the output takes discrete values, then s can be chosen to
be a threshold function, piecewise linear function or a signum function. If
the range of the output function is not restricted to a particular interval,
then it can simply be set to an identity function, where s(x) = x. In a
typical neural network model, s is normally an identity function.

Given the network structure in Equation 4 and the chosen functional
forms for s and g, a major empirical issue in the neural networks is to esti-
mate the unknown parameters θ with a sample of data values. A recursive
estimation methodology, which is called backpropogation is such a method
to estimate the underlying parameter vector θ from data.8 In backpro-
pogation, the starting point is a random weight θ vector that is updated9

according to

θ̂t+1 = θ̂t + η∇f(xt, θ̂t)
[
yt − f(xt, θ̂t)

]
, (6)

where ∇f(xt, θ̂) is the (column) gradient vector of f with respect to θ̂ and
η is the parameter which controls the learning rate. This estimation pro-
cedure is characterized by the recursive updating of estimated parameters.
The parameter updates are carried out in response to the size of the error
which is measured by yt − f(xt, θ̂). By imposing appropriate conditions

8A more detailed discussion of backpropogation can be found in Haykin (1999) and
White (1992).

9The hat symbol denotes the estimated parameter from data.
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on the learning rate and functional forms of s and g, White (1989) derives
the statistical properties for this estimator. He shows that the backprop-
agation estimator asymptotically converges to an estimator which locally
minimizes the expected squared error loss. Backpropogation and nonlinear
regression can be seen as alternative statistical methods to solve the least
squares problem. Compared to nonlinear least squares, backpropogation
fails to make efficient use of the information in the underlying data.

These recursive estimation techniques are important for large samples
and real time applications since they allow for adaptive estimation. How-
ever, recursive estimation techniques do not fully utilize the information
in the data sample. White (1989) further shows that the recursive esti-
mator is not as efficient as the nonlinear least squares (NLS) estimator.
One important aspect of the backpropogation methods is the choice of the
learning rate η. The inefficiency of the backpropogation originates from
keeping the learning rate constant in an environment where the influence
of random movements in xt are not accounted for in yt. This would lead
the parameter vector θ̂ to fluctuate indefinitely. A minimum requirement
is to drive the learning rate gradually to zero to achieve convergence. In
fact, White (1989) demonstrates that ηt has to be chosen not as a van-
ishing scalar but as a gradually vanishing matrix of a very specific form.
These arguments on learning rates are only valid if the environment is not
changing over time (stationary environment). If the environment is evolv-
ing (nonstationary environment), a gradually vanishing learning rate may
fail and a constant learning rate may be more suitable (see White,1989).

This paper uses the NLS estimator which minimizes

min
θ

L(θ) =
N∑

t=1

[yt − f(xt, θ)]2. (7)

Here, the goal is to choose the parameter vector θ such that the sum of
squared errors are minimized as much as possible. Since the function f
is nonlinear (a neural network model) and it is a nonlinear function of θ,
this procedure is named as nonlinear least squares or nonlinear regression.
This is a straightforward multivariate minimization problem. Conjugant
gradient routines studied in Gençay and Dechert (1992) work very well
for this problem. In Gallant and White (1992), it is shown that the least
squares method can consistently estimate a function and its derivatives
from a feedforward network model, provided that the number of hidden
units increases with the size of the data set. This would mean that a larger
number of data points would require a larger number of hidden units to
avoid overfitting in noisy environments.
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2.2. Network Selection
2.2.1. Information Theoretic Criteria

The specification of a feedforward network model requires the choice
of the type of inputs, the number of hidden units, the number of hidden
layers and the connection structure between the inputs and the output
layers. The common choice for this specification design is to adopt the
model-selection approach. Information based criteria such as the Schwarz
Information Criterion (SIC) and the Akaike Information Criterion (AIC)
are used widely. The SIC is computed by (Schwarz, 1978)

SIC = log

[
1
N

N∑
t=1

(yt − ŷt)2
]

+
w

N
log(N) (8)

where w is the number of parameters in the model and N is the number
of observations. The model with the smallest SIC is the preferred model.
The first term in the SIC criterion is the mean squared error (MSE)

MSE =
1
N

N∑
t=1

(yt − ŷt)2 (9)

where yt is the target variable at time t and ŷt is the estimated network
output at time t. The second term in SIC indicates that the simple estima-
tion model with fewer number of parameters is better if both models give
the same MSE’s. When two models have the same number of parameters,
the comparison of SIC is the same as the comparison of the mean squared
errors.

The AIC is computed by (Akaike 1973,1974)

AIC = log

[
1
N

N∑
t=1

(yt − ŷt)2
]

+
2
w

N (10)

where w is the number of parameters and N is the number of observations.
Swanson and White (1995) report that the SIC fails to select sufficiently

parsimonious models in terms of being a reliable guide to the out-of-sample
performance. Since the SIC imposes the more severe penalty than the AIC,
the results with AIC would lead to poorer out-of-sample predictions.

2.2.2. Bayesian Regularization

To design a network which generalizes outside of the training data,
MacKay (1992) proposes a method to constrain the size of the network
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parameters through the so-called regularization. With regularization, the
objective function becomes

F = γED + (1− γ)Eθ (11)

where ED is the sum of the squared errors, Eθ is the sum of squares of
the network parameters, and γ is the performance ratio, the magnitude of
which dictates the emphasis of the training. If γ is very large, then the
training algorithm will produce small errors. But if γ is very small, then
training will emphasize parameter size reduction at the expense of network
errors, thus producing a smoother network response.

The optimal regularization parameter γ can be determined by the Bayesian
techniques.10 In the Bayesian framework the weights of the network are
considered random variables. Let D = (y,x) represent the data set, θ rep-
resent the vector of network parameters, and M be the particular neural
network model used. With the data set D, the density function for the
weights can be updated according to the Bayes’ rule

P (θ|D, γ, M) =
P (D|θ, γ,M)P (θ|γ, M)

P (D|γ, M)
(12)

where P (θ|γ, M) is the prior density, which represents our knowledge of
the weights before any data is collected, P (D|θ, γ,M) is the likelihood
function, which is the probability of the data occurring given the weights
θ. P (D|γ, M) is a normalization factor, which guarantees that the total
probability is 1. If we assume that the noise and the prior distribution for
the weights are both Gaussian, the probability densities can be written as

P (D|θ, γ,M) = (π/γ)−N/2e−γED (13)

and

P (θ|γ, M) = [π/(1− γ)]−L/2e−(1−γ)Eθ (14)

where L is the total number of parameters in the neural network model.
Substituting Equation 14 into Equation 12, we obtain

P (θ|D, γ, M) = ZF (γ)e−F (θ) . (15)

In the Bayesian framework, the optimal weights should maximize the pos-
terior probability P (θ|D, γ, M), which is equivalent to minimizing the reg-
ularized objective function given in Equation 11.

10MacKay (1992) and Foresee and Hagan (1997) have detailed studies on this issue.
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The performance ratio can also be optimized by applying the Bayes’ rule,

P (γ|D,M) =
P (D|γ, M)P (γ|M)

P (D|M)
. (16)

Assuming a uniform prior density P (γ|M) for the regularization parameter
γ, the maximization of the posterior is achieved by maximizing the like-
lihood function P (D|γ, M). Since all probabilities have a Gaussian form,
the normalization factor can be expressed as

P (D|γ, M) = (π/γ)−N/2[π/(1− γ)]−L/2ZF (γ) . (17)

Assuming that the objective function has a quadratic shape in a small area
surrounding a minimum point, we can expand F (θ) around the minimum
point of the posterior density θ∗, where the gradient is zero. Solving for
the normalizing constant yields

ZF ≈ (2π)L/2(det((H∗)−1))1/2e−F (θ∗) (18)

where H = γ52 ED + (1− γ)52 Eθ is the Hessian matrix of the objective
function. Substituting Equation 18 into Equation 17, we can solve for the
optimal value of γ at the minimum point. This is done by taking the
derivative with respect to the log of Equation 17 and setting it equal to
zero.

The Bayesian optimization of the regularization parameters requires the
computation of the Hessian matrix of F (θ) at the minimum point θ∗. Fore-
see and Hagan (1997) propose using the Gauss-Newton approximation to
Hessian matrix, which is readily available if the Levenberg-Marquardt op-
timization algorithm is used to locate the minimum point. The additional
computation required of the regularization is thus minimal.

2.2.3. Early Stopping

With a goal to obtain a model with desirable generalization properties,
it is difficult to decide when it is best to stop training by just looking at
the learning curve for training by itself. It is possible to overfit the training
data if the training session is not stopped at the right point.

The onset of overfitting can be detected through cross-validation in which
the available data are divided into training, validation, and prediction (test-
ing) subsets. The training subset is used for computing the gradient and
updating the network weights. The error on the validation set is monitored
during the training session. The validation error will normally decrease
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FIG. 2. Early stopping method. The validation error will normally decrease during
the initial phase of training, as does the error on the training set. However, when the
network begins to overfit the data, the error on the validation set will typically begin to
rise. In the method of early stopping, when the validation error increases for a specified
number of iterations, the training is stopped, and the weights at the minimum of the
validation error are returned.

Error
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Number of
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during the initial phase of training (see Figure 2), as does the error on the
training set. However, when the network begins to overfit the data, the
error on the validation set will typically begin to rise. In the method of
early stopping, when the validation error starts to increase after a number
of iterations, the training is stopped, and the weights at the minimum of
the validation error are returned for the optimum network complexity.

2.2.4. Bagging

In bagging (or bootstrap aggregating), multiple versions of a predictor
are generated and they are used to get an aggregated predictor. The mul-
tiple versions are formed by making bootstrap replicates of the training set
and using these as new training sets. When predicting a numerical out-
come, the aggregation takes the average over the multiple versions that are
generated from bootstrapping. According to Breiman (1996), both theo-
retical and empirical evidence suggests that bagging can greatly improve
the forecasting performance of a good but unstable model where a small
change in the training data can result in large changes in a model.
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Let L represent the training set that consists of data {(yt,xt), t = 1, ..., NL},
where NL is the number of observations in the training set. Let a neural
network model be fitted to the training set and this generates a predictor
f(xt, L), e.g., if the input is xt, yt is predicted by f(xt, L). Now, suppose
we have a sequence of training sets {Lk, k = 1, ...,K} each consisting of
NL independent observations from the same underlying distribution as L.
We can use the {Lk} to get a better predictor than the single learning set
predictor f(xt, L) by working with the sequence of predictors {f(xt, Lk)}.
An obvious procedure is to replace f(xt, L) by the average of f(xt, Lk) over
k, i.e., by fA(xt) =

∑K
k=1 f(xt, Lk). However, usually there is only a single

training set L without the luxury of replicates of L. In this case, repeated
bootstrap11 samples L(b) = {(y(b)

t ,x(b)
t ), t = 1, ..., NL} can be drawn from

L = {(yt,xt), t = 1, ..., NL}. Each {(y(b)
t ,x(b)

t )} is a random pick from the
original training set {(yt,xt), t = 1, ..., NL} with replacement. The boot-
strap samples L(b) are used to form predictors {f(xt, L

(b)}. The bagging
predictor fB can thus be calculated as

fB(xt) =
B∑

b=1

f(xt, L
(b)) (19)

where B represents the total number of bootstrap replicates of the training
set.

We slightly modify the bagging procedure of Breiman (1996). First,
the available data are divided into the training, validation, and prediction
subsets. Second, a bootstrap sample is selected from the training set. The
bootstrap sample is then used to train the feedforward network with 1 to 10
hidden layer units. The validation set is used to select the best feedforward
network that has the optimal number of hidden layer units, and the best
model is used to generate one set of prediction on the testing set. This
is repeated 25 times giving 25 sets of predictions (B = 25). Third, the
bagging prediction is the average across the 25 sets of predictions, and the
prediction error is computed as the difference between the actual and the
bagging prediction values.

11Different bootstrap procedures can be implemented according to the nature of the
data.



DEGREE OF MISPRICING 87

3. DATA DESCRIPTION

The data are daily S&P 500 index12 options obtained from the Chicago
Board of Exchange for the period January 1988 to October 1993. The S&P
500 index option market is extremely liquid and it is one of the most active
options markets in the United States. This market is the closest to the
theoretical setting of the Black-Scholes model. The option contracts on
this index trade on the Chicago Board Options Exchange and mature on
the Saturday following the third Friday in the expiration month. They are
actively European style options, and the settlements are always in cash.
S&P 500 index options are very popular among institutional investors as
portfolio insurance instruments. For each option written on the S&P 500
index, the data set contains the date of the transaction, expiration month,
closing market price of the option, put-call identifier, exercise price, daily
S&P 500 closing index, the number of days to maturity, daily S&P 500
returns, dividend yields and the interest rate at the maturity of the option.

In constructing the data used in the estimation, options with zero volume
are not used. Put-call parity checks are done to eliminate erroneous prices,
therefore a put (call) is only included if there is a call (put) with the
same exercise price trading at that particular date. For Black-Scholes price
calculations, historical volatilities are calculated using the daily S&P 500
returns. If an option has less than 22 days to expiration, historical volatility
is calculated using the last 22 days daily returns. If an option has more
than 22 days to maturity then the historical volatility is calculated using
the historical returns that match the exact number of days to maturity.13

For each year, the sample is split into three parts: first half of the year
(training period), third quarter (validation period) and fourth quarter (pre-
diction period). One possible drawback of such a setup is that we will
always evaluate the predictive ability of our networks on the last quarter

12S&P 500 Stock index represents the market value of all outstanding common shares
of 500 firms selected by Standard and Poor’s.

13Black-Scholes prices are calculated with the Merton (1973) option pricing for-
mula which incorporates continuous dividend yield adjustment Ct = Ste−qτ N(d1) −
Ke−rτ N(d2) where d1 = [ln(St/K) + ((r− q) + 0.5σ2)T ]/σ

√
τ , d2 = d1 − σ

√
τ and q is

a dividend yield.
One can actually be more picky about the data and the method used in the Black-Scholes
price calculation such as using the actual dividend stream of the S&P 500 index instead of
the Merton’s continous dividend adjustment, or using high frequecy data for synchronous
prices of options and the underlying index, or using the implied volatilities instead of
historical volatility. However we use the exact same data for the feedforward networks
to price the options and hence comparisons between parametric and nonparametric
methods are fair. The degree of mispricing induced by the data in both methods is
beyond the scope of current research.
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of the year. The advantage is that it will facilitate comparison between
years. We estimate networks with 1 to 10 hidden units over half of the
data points for a particular year, the training sample. Next, we choose the
network in each family that gives the best mean square prediction error
over half of the remaining data points in the sample, called the validation
sample. Finally, we assess the prediction performance (MSPE) of the best
model chosen in the previous step for the models from the four methods
over the last quarter of data, the prediction sample.

4. EMPIRICAL FINDINGS

The network pricing performance measure is the mean squared predic-
tion error (MSPE) in the prediction sample. Results are presented in Table
1. For each year, we report the average mean squared prediction errors
(MSPE) of ten estimations for each family of networks, along with the
average number of hidden units selected,14 standard deviations of ten esti-
mations and the p-values of the Diebold-Mariano (1995) statistics. A ratio
of the Black-Scholes model’s MSPE relative to that of the neural network
models is also reported.

Table 1 indicates that all model selection methods provide substantially
smaller MSPE’s relative to the Black-Scholes model. For 1988, the im-
provements in the MSPE’s are in the order of 40 percent for the feed-
forward network models over the Black-Scholes model. For 1989-1993, the
improvements in the MSPE’s vary between 80-83% in favour of the feedfor-
ward networks when compared to the MSPE’s of the Black-Scholes model.
Between the model selection methods, Bayesian regularization (BR) and
bagging (BA) methods outperform the SIC and early stopping (ES) meth-
ods. ES does not affect the pricing accuracy. For 1988, 1989 and 1991,
the BR method provides the best pricing performance in the prediction
sample. In 1990, 1992 and 1993, the BA method is the best performing
model selection method in terms of best prediction performance.

The Diebold-Mariano (DM) test measures the loss differential of the
mean squared prediction errors between the feedforward network models.
For 1988, the p-value of the DM test is 1.6% for the BR model. In 1990 and
1993, the DM is less than one percent for BA and it is approximately 1% for
BR in 1991. For these years, the p-values indicate statistically significant
differentials for the MSPE’s of the BA and BR methods when compared

14To control for the potential uncertainty in the relative performance that might be
caused by different random seeds, the training starts with the same set of initial random
weights for all model selection methods.
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TABLE 1.

Out-of-Sample Mean Square Prediction Errors of the S&P 500 Call Options

(1988, Total Sample: 3434, Validation Sample: 1642, Prediction Sample: 1479)

Statistics SIC BR ES BA BS

x̄ 0.8044 (7) 0.7321 (7) 0.8044 (7) 0.7591 (7) 1.2905

σ 0.1084 0.0631 0.1085 0.0601

DM 0.0155 0.0867

Ratio 0.6233 0.5673 0.6233 0.5882

(1989, Total Sample: 3052, Validation Sample: 1565, Prediction Sample: 1515)

Statistics SIC BR ES BA BS

x̄ 0.4093 (9) 0.3991 (8) 0.4093 (9) 0.4003 (7) 1.8912

σ 0.0041 0.0069 0.0041 0.0025

DM 0.8116 0.9734

Ratio 0.2164 0.2110 0.2164 0.2117

(1990, Total Sample: 3605, Validation Sample: 2075, Prediction Sample: 2166)

Statistics SIC BR ES BA BS

x̄ 0.6003 (7) 0.5911 (6) 0.6003 (7) 0.5789 (7) 3.2905

σ 0.0089 0.0091 0.0089 0.0028

DM 0.9545 0.0010

Ratio 0.1824 0.1796 0.1824 0.1759

(1991, Total Sample: 4481, Validation Sample: 1922, Prediction Sample: 2061)

Statistics SIC BR ES BA BS

x̄ 0.3651 (8) 0.3457 (9) 0.3651 (8) 0.3478 (7) 1.7110

σ 0.0310 0.0058 0.0310 0.0065

DM 0.0082 0.0289

Ratio 0.2134 0.2020 0.2134 0.2033

(1992, Total Sample: 4374, Validation Sample: 1922, Prediction Sample: 1848)

Statistics SIC BR ES BA BS

x̄ 0.1398 (6) 0.1426 (6) 0.1398 (6) 0.1394 (7) 1.2110

σ 0.0064 0.0023 0.0064 0.0019

DM 0.8723 0.1912

Ratio 0.1154 0.1178 0.1154 0.1151
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TABLE 1—Continued

(1993, Total Sample: 4214, Validation Sample: 1973, Prediction Sample: 2030)

Statistics SIC BR ES BA BS

x̄ 0.0551 (8) 0.0573 (8) 0.0551 (7) 0.0485 (7) 0.7309

σ 0.0041 0.0043 0.0041 0.0008

DM 0.8824 0.0003

Ratio 0.0754 0.0784 0.0754 0.0664

Notes: This table presents the out-of-sample mean square prediction error (MSPE)
performance of feedforward networks and the Black-Scholes model for call option prices
from the SP500 call options. SIC, BR, ES, BA and BS refer to Schwarz Information
Criteria, Bayesian regularization, early stopping, bagging and Black-Scholes model,
respectively. The table reports the average (x̄) of the ten MSPEs corresponding to
ten networks estimated from different seeds. The average number of hidden units of
the ten runs are reported between parentheses next to the average MSPEs. σ is the
standard deviation of the ten MSPEs of the estimated networks. The Ratio is the ratio
of MSPEs of the Black-Scholes model and the feedforward network models. DM refers
to p-values of the Diebold and Mariano (1995) test for a mean loss differential. This
test statistic is distributed standard normal in large samples. All DM test statistics
are calculated from the loss differential of the mean square prediction errors between
the feedforward network models. MSPE reported figures have been multiplied by 104.

to the SIC-based networks. Although the SIC methodology is commonly
used in feedforward network selection, our results indicate that more robust
networks can be estimated with the Bayesian regularization and bagging
methods.

In an attempt to explore the complexity of the problem for the option
pricing models, the market/exercise price (C/K) is plotted against time-
to-maturity (τ) in Figure 3 for out-of-the-money call options. Figure 3
illustrates three cases, namely, the deepest out-of-the-money call options
(S/K < 0.95), deeper out-of-the-money call options (S/K ≥ 0.95 & S/K <

0.97) and the near out-of-the-money (S/K ≥ 0.97 & S/K < 0.99) call op-
tions. As Figure 3 illustrates there is a positive, but quite noisy, relationship
between C/K and τ for the near out-of-the-money call options. As it is
moved to deeper out-of-the-money call options, the relationship becomes
noisier with apparent outliers, and there is hardly any obvious functional
relationship for the deepest out-of-the money options. This figure illus-
trates the difficulty of estimating the price of out-of-the-money call options
due to the nature of the outliers and the noise in the empirical data.

Figure 4 depicts the relationship between the market and Black-Scholes
prices. The first observation is that the Black-Scholes prices are biased
estimates of the market prices. For the deepest out-of-the-money options,
the Black-Scholes prices overestimate market prices whereas market prices
are underestimated for the deeper and the near out-of-the money options.
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FIG. 3. S&P 500 Call Prices versus Time-to-Maturity. The market/exercise
price (C/K) is plotted against time-to-maturity (τ) for out-of-the-money call options.
There are three cases, namely, the deepest out-of-the-money call options (S/K < 0.95),
deeper out-of-the-money call options (S/K ≥ 0.95 & S/K < 0.97) and the near out-
of-the-money (S/K ≥ 0.97 & S/K < 0.99) call options. There is a positive, but quite
noisy, relationship between C/K and τ for the near out-of-the-money call options. As
it is moved to deeper out-of-the-money call options, the relationship becomes noisier
with apparent outliers, and there is hardly any obvious functional relationship for the
deepest out-of-the money options. This figure illustrates the difficulty of estimating the
price of out-of-the-money call options due to the nature of the outliers and the noise in
the empirical data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

Time−to−Maturity

C
al

l P
ric

e 
/ E

xe
rc

is
e 

P
ric

e

(a) S/K < 0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

Time−to−Maturity

C
al

l P
ric

e 
/ E

xe
rc

is
e 

P
ric

e

(b) S/K ≥ 0.95 & S/K < 0.97
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(c) S/K ≥ 0.97 & S/K < 0.99

In particular, the performance of the Black-Scholes model in explaining
the observed market prices is quite poor for the deepest out-of-the-money
options.

In Figure 5, the relationship between the market and the feedforward net-
work prices is presented. The feedforward networks largely eliminate the
overestimation bias observed in Figure 4 with the Black-Scholes model. The
estimated deepest out-of-the-money call options are centered around the
45-degree line with substantially less and smaller outliers. The performance
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FIG. 4. S&P 500 Call Prices versus Black-Scholes Call Price. This figure
depicts the relationship between the market and Black-Scholes prices. The first obser-
vation is that the Black-Scholes prices are biased estimates of the market prices. For the
deepest out-of-the-money options, the Black-Scholes prices overestimate market prices
whereas market prices are underestimated for the deeper and the near out-of-the money
options. In particular, the performance of the Black-Scholes model in explaining the
observed market prices is quite poor for the deepest out-of-the-money options.
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for the deeper and the near out-of-the-money call options are also substan-
tially improved without any evidence of underestimation bias and lack of
outliers. The comparison of Figures 4 and 5 indicates that the feedforward
network corrects under and overestimation bias of the Black-Scholes model
successfully. Since both feedforward network and the Black-Scholes model
use identical inputs, the gain from the feedforward network originates from
flexible functional form at which Black-Scholes model may be constraining
the data unnecessarily. The findings of the figures above corraborate the
results in Table 1 where the MSPE’s of the feedforward networks when
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FIG. 5. S&P 500 Call Prices versus Feedforward Network Call Price.
The relationship between the market and the feedforward network prices is presented.
The feedforward networks largely eliminate the overestimation bias observed in Figure 4
with the Black-Scholes model. The estimated deepest out-of-the-money call options are
centered around the 45-degree line with substantially less and smaller outliers. The
performance for the deeper and the near out-of-the-money call options are also substan-
tially improved without any evidence of underestimation bias and lack of outliers. The
comparison of Figures 4 and 5 indicates that the feedforward network corrects under
and overestimation bias of the Black-Scholes model successfully. Since both feedforward
network and the Black-Scholes model use identical inputs, the gain from the feedforward
network originates from flexible functional form at which Black-Scholes model may be
constraining the data unnecessarily.
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compared to the MSPE’s of the Black-Scholes model provide 40-80 percent
gains across years.

To investigate the effect of volatility on the mispricing, Figures 6 and 7
analyse the relationship between pricing errors and volatility for the Black-
Scholes and feedforward network models, respectively. An ideal model
should have ball shaped pricing errors centered around zero at all volatility
levels. For extreme volatilities, a desirable pattern is symmetric pricing
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FIG. 6. S&P 500 Call Volatility versus Black-Scholes Pricing Error. This
figure investigates the effect of volatility on the mispricing. Black-Scholes error is the
difference between Black-Scholes price and the market price. An ideal model should
have ball shaped pricing errors centered around zero at all volatility levels. For extreme
volatilities, a desirable pattern is symmetric pricing errors centered around zero. For the
deepest out-of-the-money options (S/K < 0.95), there are large positive pricing errors
for high volatility levels (volatility levels between 0.25 and 1) and pricing errors are
hardly symmetric around zero. For low volatility levels, there is a ball-type pricing error
around zero although there are a large number of negative errors for volatilities between
0.10 and 0.20. For the deeper out-of-the-money options (S/K ≥ 0.95 & S/K < 0.97),
the performance of the Black-Scholes model is more satisfactory, although large positive
pricing errors at higher volatility levels and negatively skewed pricing errors at low
volatility levels remain. The performance for the near out-of-the-money call options
(S/K ≥ 0.97 & S/K < 0.99) is similar to that of the deeper out-of-the-money options.
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errors centered around zero. Investigations of Figure 6 provide a num-
ber of insights for the performance of the Black-Scholes model. For the
deepest out-of-the-money options (S/K < 0.95), there are large positive
pricing errors for high volatility levels (volatility levels between 0.25 and
1) and pricing errors are hardly symmetric around zero. For low volatil-
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FIG. 7. S&P 500 Call Volatility versus Feedforward Network Pricing
Error. This figure investigates the effect of volatility on the mispricing. Feedforward
network error is the difference between the estimated feedforward network price and the
market price. An ideal model should have ball shaped pricing errors centered around
zero at all volatility levels. For extreme volatilities, a desirable pattern is symmetric
pricing errors centered around zero. The results with the deepest out-of-the-money
options is the most striking. Large positive pricing errors which were quite dominant in
the Black-Scholes model are now largely eliminated such that pricing errors are centered
around zero at high volatility levels. The negatively biased pricing errors at the low
levels of volatility are also largely corrected. The examinations of the deeper out-of-
the money and near out-of-the money options also indicate clear pricing error patterns
centered around zero for all levels of volatilities. These figures reveal that when results
are examined from the volatility window, a number of results emerge. In particular,
feedforward network provides lower bias in terms of the pricing performance relative to
the Black-Scholes model.
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ity levels, there is a ball-type pricing error around zero although there are
a large number of negative errors for volatilities between 0.10 and 0.20.
For the deeper out-of-the-money options (S/K ≥ 0.95 & S/K < 0.97),
the performance of the Black-Scholes model is more satisfactory, although
large positive pricing errors at higher volatility levels and negatively skewed
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FIG. 8. Time-to-Maturity versus Black-Scholes Error. An ideal model should
exhibit pricing errors centered around zero at all levels of time-to-maturity. This figure
illustrates that there are large positive pricing errors at all levels of time-to-maturity
for the deepest out-of-the-money call options estimated with the Black-Scholes model.
For the deeper out-of-the-money calls and the near out-of-the-money calls, there are
negatively slanted pricing errors towards higher levels of time-to-maturity with large
positive pricing errors remaining.
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pricing errors at low volatility levels remain. The performance for the near
out-of-the-money call options (S/K ≥ 0.97 & S/K < 0.99) is similar to
that of the deeper out-of-the-money options. In Figure 7, the study is done
between the pricing errors of the feedforward model and the underlying
volatility. The results with the deepest out-of-the-money options is the
most striking. Large positive pricing errors which were quite dominant in
the Black-Scholes model are now largely eliminated such that pricing errors
are centered around zero at high volatility levels. The negatively biased
pricing errors at the low levels of volatility are also largely corrected. The
examinations of the deeper out-of-the money and near out-of-the money
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FIG. 9. Time-to-Maturity versus Feedforward Network Error. An ideal
model should exhibit pricing errors centered around zero at all levels of time-to-maturity.
Feedforward networks successfully eliminate large positive pricing errors which were
dominating in Figure 8. For all levels of the out-of-the-money calls, the pricing errors are
centered around zero with no evidence of bias in either direction and lack of outliers. This
other view of the data provides further support for our earlier findings that feedforward
networks are invaluable tools for pricing options, in particular for the deepest out-of-
the-money calls.
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options also indicate clear pricing error patterns centered around zero for
all levels of volatilities. These figures reveal that when results are examined
from the volatility window, a number of results emerge. In particular, feed-
forward network provides lower bias in terms of the pricing performance
relative to the Black-Scholes model; Black-Scholes mispricing worsens with
increasing volatility and feedforward networks handle pricing during high
volatility with considerably lower errors for out-of-the-money calls. This
could be invaluable information for practitioners as option pricing is a ma-
jor challenge during high volatility periods and our findings confirm that



98 RAMAZAN GENÇAY AND ASLIHAN SALIH

Black-Scholes is not the proper pricing tool for very deep out-of-the-money
options.

Further investigation is carried out between time-to-maturity and pric-
ing errors. An ideal model should exhibit pricing errors centered around
zero at all levels of time-to-maturity. Figure 8 illustrates that there are
large positive pricing errors at all levels of time-to-maturity for the deep-
est out-of-the-money call options estimated with the Black-Scholes model.
For the deeper out-of-the-money calls and the near out-of-the-money calls,
there are negatively slanted pricing errors towards higher levels of time-to-
maturity with large positive pricing errors remaining. In Figure 9, feed-
forward network pricing errors are plotted against the time-to-maturity.
Feedforward networks successfully eliminate large positive pricing errors
which were dominating in Figure 8. For all levels of the out-of-the-money
calls, the pricing errors are centered around zero with no evidence of bias
in either direction and lack of outliers. This other view of the data pro-
vides further support for our earlier findings that feedforward networks are
invaluable tools for pricing options, in particular for the deepest out-of-the-
money calls.

We have also repeated the same study for the put options. Similar find-
ings prevail between feedforward networks and the Black-Scholes model
where the deterioration in the Black-Scholes model is the largest for the
deepest out-of-the-money put options. Large systematic pricing errors are
also present at the deeper out-of-the-money and the near out-of-the-money
put options for the Black-Scholes model. Feedforward networks successfully
correct for the over and under estimation pricing bias of the Black-Scholes
model.

5. CONCLUSIONS

For the deepest out-of-the-money options, the Black-Scholes prices over-
estimate market prices whereas market prices are underestimated for the
deeper and near out-of-the money options. In particular, the performance
of the Black-Scholes model in explaining the observed market prices is quite
poor for the deepest out-of-the-money options. The feedforward networks
largely eliminate the overestimation bias observed in the Black-Scholes
model. The estimated deepest out-of-the-money call options exhibit sub-
stantially less and smaller outliers. The performance of the deeper and the
near out-of-the-money call options are also substantially improved without
any evidence of underestimation bias and lack of outliers.
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To investigate the effect of volatility on the mispricing, we analyse the
relationship between pricing errors and volatility. An ideal model should
have ball shaped pricing errors centered around zero for all volatility lev-
els. For extreme volatilities, a desirable pattern is symmetric pricing errors
centered around zero. For the deepest out-of-the-money options, there are
large positive pricing errors for high volatility levels and pricing errors are
hardly symmetric around zero for the Black-Scholes model. Feedforward
network models successfully eliminate large positive pricing errors which
are quite dominant in the Black-Scholes model for the deepest out-of-the-
money options. The examinations of the deeper out-of-the money and
near out-of-the money options also indicate clear pricing error patterns
centered around zero for all levels of volatilities. Overall findings indicate
that Black-Scholes mispricing worsens with increasing volatility and feed-
forward networks handle pricing during high volatility with considerably
lower errors for out-of-the-money call and put options. This could be in-
valuable information for practitioners as option pricing is a major challenge
during high volatility periods.
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