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In this article we extend the class of non-negative, asymmetric kernel density
estimators and propose Birnbaum-Saunders (BS) and lognormal (LN) kernel
density functions. The density functions have bounded support on [0,∞).
Both BS and LN kernel estimators are free of boundary bias, non-negative,
with natural varying shape, and achieve the optimal rate of convergence for the
mean integrated squared error. We apply BS and LN kernel density estimators
to high frequency intraday time duration data. The comparisons are made on
several nonparametric kernel density estimators. BS and LN kernels perform
better near the boundary in terms of bias reduction. c© 2003 Peking University Press
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1. INTRODUCTION

With the rocketing development of electronic equipment with tremen-
dous storage capacity, high frequency or ultra high frequency tick-by-tick
data are recorded everywhere in the world, such as financial markets, credit
card services or any hi-tech companies employing scanning devices. The
term ”tick” is not in traditional sense of equally spaced time unit but a
time stamp whenever there is a piece of quantity coming in such as trading
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price. Among various interesting components, time duration (TD) catches
special attention from both researchers and practitioners. Let Xi = ti−ti−1

denote TD between two ticks or events occurring at times ti−1 and ti. One
example of TD studied later in this paper is the time interval between
two consecutive transactions. Numerous papers are presented in modelling
TD. Engle (1998) first advocates the autoregressive conditional duration
(ACD) model. By adding in the conditional information, the parametric
ACD models are capable of capturing the clustering phenomenon and se-
rial dependence of TD. Fernandes and Grammig (2001) further bring in
Box-Cox transformation to develop a family of ACD models. In order to
select the best model out of ACD family and justify the choice, one needs
to gauge the distance between the parametric probability density function
(pdf) implied by TD and its non-parametric estimate. With this objective
in mind, Fernandes and Grammig (2000) propose nice non-parametric D
and H specification tests and recommend choosing the model with the min-
imum distance. One upcoming task invoking our main concern throughout
this paper is how to obtain the most accurate non-parametric pdf estimate
of Xi for the finite sample size.

Let X1, . . . , Xn be a univariate random TD data from a distribution
with an unknown pdf f with bounded support on [0,∞). The curve of this
certain type of pdf declines sharply at the beginning and carries long tail
at the end (namely DSLT). DSLT feature is clearly displayed in Table 1.
Many methods have been created to handle the issue of boundary support.
Schuster (1985) introduces data reflection and Silverman (1986) proposes
negative-reflection, but they do not remove the asymptotic bias caused
by the discontinuity in the first derivative (Cowling (1996)). Eubank and
Speckman (1990) suggests semi-parametric models in which a parametric
function is first employed to fit the data, and a nonparametric method is
then adopted to the residuals. However, such a global parametric model
may not help to reduce the boundary bias or edge effect due to the allo-
cation of weight outside the support when smoothing is applied near the
boundary. Same argument is applied to the standard Rosenblatt-Parzen es-
timator. A fairly complete list of methods available for removing boundary
bias can be found in Chen (2000).

Recently the asymmetric kernel estimators are of wide interests. The
most popular choices include the beta kernel estimators in Brown (1999),
the Gamma kernel estimators GAM1 & GAM2 in Chen (2000) and the
inverse and the reciprocal inverse gaussian kernel estimators IG & RIG in
Scaillet (2001). They are free of boundary bias and achieve the optimal
rate of convergence in the mean integrated square error. Beta kernel has
its unique bounded support on [0,1] and the others have bounded support
on [0,∞).
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This article develops more flexible Birnbaum-Saunders (BS) and Log-
normal (LN) kernel estimators. Thus it extends the class of non-negative
kernel density estimators. LN distribution with scaling parameter α and
shaping parameter β is well known. It is a transformation of the nor-
mal distribution. BS distribution is introduced by Birnbaum and Saunders
(1969) to represent lifetimes with shaping parameter α and scaling parame-
ter β. The BS pdf is a mixture (with equal weights) of the Inverse Gaussian
IG(β, βα−2) pdf and the Reciprocal Inverse Gaussian RIG(β, β−1α2) pdf.
BS and LN kernel estimators are free of boundary bias, non-negative, with
natural varying shape, and achieve the optimal rate of convergence for the
mean integrated squared error. Furthermore, BS and LN kernels capture
DSLT quite well. Moreover, in estimating pdf of high frequency data, BS
and LN kernels take advantages over other existing kernels since they re-
duce the bias near the boundary. Thus BS and LN kernel estimators should
deserve more wide attention in estimating pdf of high-frequency or ultra
high-frequency data.

1.1. Outline of paper
The paper is organized as follows. In Section 2 we define BS and LN

kernel estimators and their properties such as bias, variance, mean squared
error and integrated mean square error. Two propositions are given for
bias and variance. In Section 3 we apply BS and LN kernel estimators in
estimating pdf of high frequency TD data from New York Stock Exchange’s
(NYSE) Trade and Quote (TAQ) database. In Section 4 we apply various
kernel estimators in estimating the pdf of a simulated Burr(1,3,1) data
and compare the corresponding point-wise properties, while Section 5 con-
cludes and outlooks. We provide the proofs of two propositions presented
in Section 2 in the Appendix.

2. BS AND LN KERNEL ESTIMATORS

Let X1, . . . , Xn be univariate random duration data from a distribution
with unknown pdf f which has bounded support on [0,∞). One represen-
tation of pdf of BS(α, β) distribution is

fBS(α,β)(y) =
1
2α

(√
1
βy

+

√
β

y3

)
1√
2π

exp
[
− 1

2α2

(
y

β
− 2 +

β

y

)]
where y > 0, α > 0, and β > 0. Its mean and variance are β

(
1 + 1

2α2
)

and
(αβ)2(1 + 5

4α2), respectively. The pdf of LN(α, β) distribution is

fLN(α,β)(y) =
1√

2πβy
exp

[
− 1

2β
(ln y − α)2

]
y > 0, β > 0
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Its mean and variance are exp(α + β/2) and exp(2α + β) (exp(β)− 1),
respectively.

As α = b1/2 and β = x, the class of BS kernels considered is

KBS(b1/2,x)(s) =
1

2
√

2bπ

(√
1
xs

+
√

x

s3

)
exp

[
− 1

2b

( s

x
− 2 +

x

s

)]
(1)

As α = lnx and β = 4 ln (1 + b), the class of LN kernels considered is

KLN(ln x,4 ln (1+b))(s) =
1√

8π ln (1 + b)s
exp

[
− (ln s− lnx)2

8 ln (1 + b)

]
(2)

where b is the bandwidth satisfying the condition that b → 0 and nb →∞
as n →∞.

The corresponding BS and LN kernel estimators are

f̂BS(x) = n−1
n∑

i=1

KBS(b1/2,x)(Xi). (3)

and

f̂LN (x) = n−1
n∑

i=1

KLN(ln x,4 ln (1+b))(Xi). (4)

For the comparison purpose, we list out the other kernels as follows.
GAM1 and GAM2 kernels (Chen (2000)) are

KGam1(x/b+1,b)(s) =
sx/b exp{−s/b}

Γ{x/b + 1}bx/b+1
, (5)

and

KGam2(ρb,b)(s) =
sρb(x)−1 exp{−s/b}

Γ{ρb(x)}bρb(x)
. (6)

where

ρb(x) =

{
x/b if x ∈ [2b,∞);
1
4 (x/b)2 + 1 if x ∈ [0, 2b).

IG and RIG kernels (Scaillet (2001)) are

KIG(x,1/b)(s) =
1√

2πbs3
exp

[
− 1

2bx

( s

x
− 2 +

x

s

)]
, (7)
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FIG. 1. MSFT 7/14/1999
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FIG. 2. YHOO 7/16/1999
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FIG. 3. ORCL 7/9/1999
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FIG. 4. Kernel Functions for b = 0.05
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FIG. 5. Kernel Functions for b = 0.2
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FIG. 6. Kernel Functions for b = 0.5
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FIG. 7. Kernel Shapes for x = 1
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and

KRIG(ln x,4 ln (1+b)(s) =
1√

2πbs
exp

[
−x− b

2b

(
s

x− b
− 2 +

x− b

s

)]
. (8)

As claimed in Chen (2000), GAM2 has a better global performance due
to the smaller mean integrated squared error (MISE). And there is no
significant difference between IG and RIG kernels, so hereafter we choose
BS, LN, GAM2 and IG for comparison.

From Figure 1 to Figure 3 we can see that high frequency TD data
usually result in small optimal bandwidths via methods such as biased
cross validation. By choosing b to be 0.05, 0.1, 0.2 and 0.5, we plot the
four kernels’ comparative shapes from Figure 4 to Figure 6, respectively.
As x goes through the value of 1, 2, 4 and 8 so it gives four plots on each
page. It’s clear that GAM2 kernel looks very stable and IG kernel is not
working at all (at least for the bandwidths stated). At the same time, BS
& LN tend to perform quite well but are sensitive to the deviations in the
bandwidths. However, if the bandwidth is close to the optimal, they cover
the x-values very well. For small values (close to 0), they perform better in
the coverage (smoothness) sense due to the multiplier of x before f ′ and x2

before f ′′(x). This statement can be confirmed by Figure 12 in section 4.
Fix x to be 1, 2, 4 and 8, in Figure 7 to Figure 10 we also provide the four
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FIG. 8. Kernel Shapes for x = 2
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FIG. 9. Kernel Shapes for x = 4
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FIG. 10. Kernel Shapes for x = 8
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FIG. 11. Burr(1,3,1), n = 10002

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Figure1: GAM2 (b=0.225)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Figure2: IG (b=0.067)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Figure3: BS (b=0.133)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Figure4: LN (b=0.034)



BIRNBAUM-SAUNDERS AND LOGNORMAL KERNEL ESTIMATORS 113

FIG. 12. Point-wise bias, squared bias, variance and mse for estimating pdf of
Burr(1,3,1)

0 5 10 15 20
−0.3

−0.2

−0.1

0

0.1

0.2

x

B
ia

s

Bias

GAM2
IG
BS
LN

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x

S
qu

ar
ed

 B
ia

s

Squared Bias

GAM2
IG
BS
LN

0 5 10 15 20
0

0.5

1

1.5

2
x 10

−4

x

V
ar

ia
nc

e

Variance

GAM2
IG
BS
LN

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x

M
ea

n 
S

qu
ar

ed
 E

rr
or

Mean Squared Error

GAM2
IG
BS
LN

comparative shape plots as bandwidths go through 0.05, 0.20 and 0.50 for
each kernel. Again, the small bandwidth 0.05 exposes the x-values quite
well for all kernels.

TABLE 1.

Simple Statistics for Original and Box-Cox (∗) Transformed Data.

Statistics MSFT1 -1.2(∗) YHOO2 -0.6(∗) ORCL3 -0.4(∗)
N 10720 10720 7745 7745 5048 5048

Max 36 0.822 64 1.529 56 2.000

Min 1 0.000 1 0.000 1 0.000

Median 1 0.000 2 0.567 2 0.605

Mode 1 0.000 1 0.000 1 0.000

Mean 2.190 0.261 3.030 0.469 4.645 0.729

Std Dev 2.197 0.302 3.596 0.469 5.681 0.609

Skewness 3.766 0.413 3.865 0.312 2.989 0.075

Kurtosis 26.272 1.395 26.139 1.617 15.523 1.641

L1 moment 2.190 0.261 3.030 0.469 4.645 0.729

L2 moment 0.886 0.157 1.464 0.256 2.478 0.342

L3 moment 0.497 0.037 0.795 0.043 1.227 0.021

L4 moment 3.707 0.531 5.189 0.967 8.175 1.524
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The integrated squared biases (IB) for BS and LN kernel estimators are

IBBS(b) =
1
4
b2

∫ ∞

0

(
xf ′(x) + x2f ′′(x)

)2
dx + o(b2). (9)

and

IBLN (b) = 4b2

∫ ∞

0

(
xf ′(x) + x2f ′′(x)

)2
dx + o(b2). (10)

Since we are selecting the bandwidth using MISE criterion the following
assumptions about the unknown probability density function are made:

(A1) f is twice continuously differentiable.
(A2)

∫∞
0

[xf ′(x)]2 dx < ∞ and
∫∞
0

[
x2f ′′(x)

]2
dx < ∞.

(A3)

(a) For BS,

3
16

f(x)− 1
4
xf ′(x) +

1
4
x2f ′′(x) = O(x1/2); (11)

(b) For LN,

2f(x)− 2xf ′(x) + x2f ′′(x) = O(x). (12)

Note: Assumptions (A1) and (A2) are necessary for the Taylor expansion
and the finiteness of the second moment respectively. The equations in (A3)
resemble first three terms of the Taylor expansion of f around x except for
the negative sign for the first derivative. It is important to notice that the
behavior of the function f in the vicinity of the origin should be ”smooth”
and the linear functional based on the function itself and first and second
derivatives should grow at the prescribed rate. Of course, higher order
expansion would require a bit modified conditions.

These assumptions will be used in the calculations related to the bias
and the variance for both kernels.

Assumption (A2) ensures that IBs for BS and LN are finite. Next, we
state two propositions with the proofs shifted to the Appendix.

Proposition 2.1 (Bias). The biases of BS and LN kernel estimators
are

Bias
[
f̂BS(x)

]
= b

[
1
2
xf ′(x) +

1
2
x2f ′′(x)

]
+ o(b) (13)

and

Bias
[
f̂LN (x)

]
= b

[
2xf ′(x) + 2x2f ′′(x)

]
+ o(b) (14)
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Proposition 2.2 (Variance). The variances of BS and LN kernel es-
timators are

V ar
[
f̂BS(x)

]
=

1√
2π

n−1b−1/2x−1f(x) + o(n−1b−1/2). (15)

and

V ar
[
f̂LN (x)

]
=

1
4
√

π
n−1b−1/2x−1f(x) + o(n−1b−1/2). (16)

One interesting feature is that all variances are of order o(n−1b−1/2),
except for GAM1 in the case of x/b → c for a non-negative constant c,
whose variance is of order o(n−1b−1). The integrated variances (IV) of BS
and LN kernel estimators are

IVBS(b) =
1√
2π

n−1b−1/2

∫ ∞

0

(
x−1f(x)

)
dx + o(n−1b−1/2). (17)

and

IVLN (b) =
1

4
√

π
n−1b−1/2

∫ ∞

0

(
x−1f(x)

)
dx + o(n−1b−1/2). (18)

From (13) and (15), as well as (14) and (16), the mean squared errors
(MSE) of BS and LN kernel estimators are

MSE[f̂BS(x)] = Bias2
[
f̂BS(x)

]
+ var

[
f̂(x)

]
(19)

=
1
4
b2
(
xf ′(x) + x2f ′′(x)

)2
+

1√
2π

n−1b−1/2x−1f(x)

+ o(n−1b−1/2 + b2)

and

MSE[f̂LN (x)] = Bias2
[
f̂BS(x)

]
+ var

[
f̂(x)

]
(20)

= 4b2
(
xf ′(x) + x2f ′′(x)

)2
+

1
4
√

π
n−1b−1/2x−1f(x)

+ o(n−1b−1/2 + b2)



116 XIAODONG JIN AND JANUSZ KAWCZAK

And from (9) and (17), as well as (10) and (18), the integrated mean
squared errors (MISE) of BS and LN kernel estimators are

MISE[f̂BS(x)] = IBBS(b) + IV BS(b) (21)

=
1
4
b2

∫ ∞

0

(
xf ′(x) + x2f ′′(x)

)2
dx

+
1√
2π

n−1b−1/2

∫ ∞

0

(
x−1f(x)

)
dx

+ o(n−1b−1/2 + b2)

and

MISE[f̂LN (x)] = IBLN (b) + IV LN (b) (22)

= 4b2

∫ ∞

0

(
xf ′(x) + x2f ′′(x)

)2
dx

+
1

4
√

π
n−1b−1/2

∫ ∞

0

(
x−1f(x)

)
dx + o(n−1b−1/2 + b2)

By minimizing the leading terms in (21) and (22), we obtain the optimal
bandwidths for BS and LN kernel estimators

b∗BS =

[
1√
2π

∫∞
0

(
x−1f(x)

)
dx
]2/5

[∫∞
0

(xf ′(x) + x2f ′′(x))2 dx
]2/5

n−2/5 (23)

and

b∗LN =

[
1

4
√

π

∫∞
0

(
x−1f(x)

)
dx
]2/5

28/5
[∫∞

0
(xf ′(x) + x2f ′′(x))2 dx

]2/5
n−2/5 (24)

The optimal bandwidths are of order O(n−2/5) for all kernels. Plugging
in the above optimal bandwidths to (21) and (22) we obtain the optimal
MISE

MISE∗
BS =

5
4

[∫ ∞

0

(
xf ′(x) + x2f ′′(x)

)2
dx

]1/5

×
[

1√
2π

∫ ∞

0

(
x−1f(x)

)
dx

]4/5

n−4/5 (25)
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and

MISE∗
LN =

5
23/5

[∫ ∞

0

(
xf ′(x) + x2f ′′(x)

)2
dx

]1/5

×
[

1
4
√

π

∫ ∞

0

(
x−1f(x)

)
dx

]4/5

n−4/5 (26)

3. EMPIRICAL APPLICATION

We apply BS and LN kernel estimators on high frequency time dura-
tion (TD) data. Three transaction level TD data, Microsoft 7/14/1999
(MSFT1), Yahoo 7/16/1999 (YHOO2), and Oracle 7/9/1999 (ORCL3) are
selected from the New York Stock Exchange’s (NYSE) Trade and Quote
(TAQ) database. Some special conditions are imposed based on TAQ doc-
umentation and the data are trimmed to 9:30AM-16:00PM trading hours.
TDs are measured in seconds between successive trades. If the record-
ing system is more advanced, TDs would be measured more accurately
in smaller grids such that they would behave much more in a continu-
ous fashion. As mentioned in Giot (2000), price durations feature a strong
time-of-the-day effect. Lots of researchers consider diurnally adjusted TDs.
Since in determining the diurnal factor, it’s subjective to choose the time
length for fitting a spline with nodes at each time period. Therefore with-
out loss of generality, we still use the raw TD data without transformation
in our paper. Similar work follows for diurnally adjusted TD data.

Out of 19826, 10995 and 7298 total duration observations from MSFT1,
YHOO2, and ORCL3, there are 9106, 2250 and 2250 zero durations (namely
D0), respectively. High percentage of D0 reflects the high intensity of trad-
ing. Denote π̃ the proportion of D0 counts out of total duration counts.
First we exclude D0 and obtain kernel estimator f̂(x) for the rest of the
data D1, then by defining weighted kernel estimator f̃(·) as

f̃(x) =

{
π̃ if x = 0;
(1− π̃)f̂(x) if x ∈ (0,∞).

we get the whole picture.
High frequency characteristic is obvious from the simple statistics for

D1 displayed in Table 1. Table 1 also provides L-moments describe in
Hosking (1990). L-moments are a linear combination of order statistics.
Significant advantages of L-moments over conventional central moments in
our case are: robustness to outliers and characterization of an unknown
distribution. Sample L1 moments are equivalent to sample mean. The
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2nd, 3rd and 4th sample L-moments are much more smaller than standard
deviation, skewness and kurtosis in the original data, respectively. In Table
1, simple statistics are also presented for D1 after Box-Cox transformation.
Apparently, Table 1 reveals the DSLT characteristic in high frequency data.

Bandwidth selection is an immediate issue directly related to applying
asymmetric kernels. Turlach (1993) and Chiu (1996) provide quite nice re-
views on bandwidth selection. In choosing optimal bandwidth for asymmet-
ric kernels, the practical methods available are least squares cross-validation
(LSCV), biased cross-validation (BCV), smoothed cross-validation (SCV),
etc. The plug-in method, bootstrapping method and adaptive varying ker-
nel size selection (Katkovnik and Shmulevich (2000)) are not applicable in
our case since they are pilot bandwidth and symmetric kernel-driven.

In this paper we apply BCV in our high frequency data to obtain the
optimal bandwidths. The duration histograms and kernel estimator func-
tions with those optimal bandwidths are overlayed from Figure 1 to Figure
3. Several important observations are worth mentioning. First, due to the
nature of high frequency, the optimal bandwidths b∗ are all of small values
less than 0.5. Second, although there exist differences among three data,
b∗ is extremely close for LN and GAM2 kernels. Last but not least, we can
see that all kernels except IG are doing good jobs in estimating pdfs. IG
obviously underestimate the frequency for small x-values. Therefore IG is
not suitable for estimating the pdf of high frequency duration data.

4. SIMULATION RESULTS

In order to compare the performance of BS, LN, GAM2 and IG ker-
nels, we selectively generate a random sample from a “neutral” Burr(1,3,1)
distribution. The pdf of Burr(µ = 1,k,r) is

fBurr(s) =
k·sk−1

(1 + r·sk)1/r+1
,

The mean and variance for Burr(1,k,r) are

E(S) =
Γ
(
1 + 1

k

)
·Γ
(

1
r −

1
k

)
r1+ 1

k ·Γ
(

1
r + 1

) ,

and

V (S) =
Γ
(
1 + 2

k

)
·Γ
(

1
r −

2
k

)
r1+ 2

k ·Γ
(

1
r + 1

) − [E(S)]2,

respectively. And the mean and variance for Burr(1,3,1) are 1.2092 and
0.9562, respectively. The nice feature about Burr is that, compared with
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Weibull, Gamma and some other parametric distributions, it captures the
DSLT quite well hence it is frequently cited by Fernandes and Grammig
(2000). Besides, it has closed form of CDF. First, we generate random
U(0,1) numbers with size equal to 10002, then we transform them into
Burr(1,3,1) by

y =
(

x

1− x

)1/3

The range of Burr(1,3,1) numbers is [0,17.55). We choose the optimal
bandwidth for each kernel by minimizing the integrated squared error

ISE(b) =
∫ 17.55

0

[f̂(x)− f(x)]
2
dx

The histogram and kernel estimator functions for Burr(1,3,1) are overlayed
in Figure 11. Again, all kernels except IG do good jobs in estimating the
Burr(1,3,1) pdf. All the optimal bandwidths are of small values. In Fig-
ure 12 we display the point-wise bias, squared bias, variance and mean
square errors of four kernel estimators for x∈[0,17.55) for Burr(1,3,1) den-
sity with size n=10002. From Figure 12 we can see that the bias, squared
bias, variance and MSEs are all go to zero as x greater than 5. It’s hard
to distinguish between BS and LN kernels from the graph since they are
overlapped. The squared bias for BS and LN are much more smaller than
that of GAM2 for the smaller values of x. Since variances are much smaller
than their corresponding squared bias, so MSEs of BS and LN is also much
smaller than MSE of GAM2. This confirms our statements in section 2.
Thus, by choosing BS and LN kernel estimators, we can quite well estimate
the pdf of high or ultra high frequency data.

5. CONCLUSION AND OUTLOOK

In this paper we introduced two new kernels BS and LN to estimate
the pdf with bounded support [0,∞). They are free of boundary bias,
non-negative, with natural varying shape, and achieve the optimal rate of
convergence O(n−2/5) for the mean integrated squared error. When we
apply these two kernels in high-frequency financial intraday time duration
data, we can see that they are better than IG kernel in terms of estimation
and better than GAM2 due to smaller squared bias and MSE. Since BS and
LN kernels achieve accurate non-parametric pdf estimates, we can apply
them in non-parametric specification tests as mentioned in Fernandes and
Grammig (2000). Although this paper concentrates on estimating pdf of
duration data for the illustration purpose, BS and LN kernels are also
suitable for estimating pdf of all other high frequency or ultra frequency
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data. To further extend the class of non-parametric kernels, more work can
be done to explore the Pareto kernel, Burr kernel, etc.

APPENDIX
Proof (Proof of Proposition 1.).

Bias of the BS kernel estimator.
Since

E
[
f̂BS(x)

]
=
∫ ∞

0

KBS(b1/2,x)(u)f(u) du = E [f(δx)] (A.1)

where δx is the BS(b1/2, x) random variable with

µδ = E[δx] = x

(
1 +

1
2
b

)
= x + O(b) (A.2)

Vδ = V ar[δx] = x2b

(
1 +

5
4
b

)
= x2b + O(b2) (A.3)

Employing Taylor expansion while plugging in (A.2) and (A.3) gives

E[f(δx)] = f(µδ) +
1
2
f ′′(x)Vδ + o(b)

= f
(
x +

x

2
b
)

+
1
2
f ′′(x)x2b

(
1 +

5
4
b

)
+ o(b)

= f(x) + f ′(x)
1
2
xb +

1
2
f ′′(x)x2b

(
1 +

5
4
b

)
+ o(b)

= f(x) + b

[
1
2
xf ′(x) +

1
2
f ′′(x)

]
+ o(b) (A.4)

(A.1) and (A.4) lead to (13).
Bias of the LN kernel estimator.

Since

E
[
f̂LN (x)

]
=
∫ ∞

0

KLN(ln x,4 ln (1+b))(u)f(u) du = E [f(δx)] (A.5)
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where δx is the LN(ln x, 4 ln (1 + b)) random variable and using Taylor ex-
pansion while plugging in (A.8) and (A.9) gives

E[f(δx)] = f(µδ) +
1
2
f ′′(x)Vδ + o(b)

= f
(
x(1 + b)2

)
+

1
2
f ′′(x)

[
x2(1 + b)4

(
(1 + b)4 − 1

)]
+ o(b)

= f(x) + f ′(x)b(2x + bx2) +
1
2
f ′′(x)b(4x2) + o(b)

= f(x) + b
[
2xf ′(x) + 2x2f ′′(x)

]
+ o(b) (A.6)

(A.7)

where

µδ = E[δx] = x(1 + b)2) = x + 2bx + b2x2 = x + O(b) (A.8)

Vδ = V ar[δx] = x2(1 + b)4[(1 + b)4 − 1] = 4x2b + 22x2b2 + O(b3) (A.9)

= 4x2b + O(b2).

Finally, (A.5) and (A.6) lead to (14).

Proof (Proof of Proposition 2.).
Variance of the BS kernel estimator.
The variance of f̂BS(x) is

V ar
[
f̂BS(x)

]
= n−1E

[
K2

BS(b1/2,x)(Xi)
]

+ O(n−1) (A.10)

Let λx be a BS
(
(b/2)1/2

, x
)

random variable such that

µλ = E[λx] = x

(
1 +

1
4
b

)
= x + O(b), (A.11)

Vλ = V ar[λx] =
x2

2
b

(
1 +

5
8
b

)
=

x2

2
b + O(b2). (A.12)

Then

E
[
K2

BS(b1/2,x)(Xi)
]

= C1
b E
[
λ−1/2

x f(λx)
]

+ C2
b E
[
λ−3/2

x f(λx)
]

(A.13)

where C1
b = (8πxb)−1/2 and C2

b =
(
8πx−1b

)−1/2. Therefore applying Tay-
lor expansion again while plugging in (A.11) and (A.12) gives
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E
[
λ−1/2

x f(λx)
]

= µ
−1/2
λ f(µλ)

+
1
2

(
3
4
x−5/2f(x)− x−3/2f ′(x) + x−1/2f ′′(x)

)
Vλ + o(b)

= x−1/2(1 +
b

4
)
−1/2

f(x +
x

4
b)

+ b

(
3
16

x−1/2f(x)− 1
4
x1/2f ′(x) +

1
4
x3/2f ′′(x)

)
+ o(b)

= x−1/2

(
1− 1

8
b +

3
128

b2 + o(b2)
)(

f(x) +
x

4
bf ′(x)

)
+ b

(
3
16

x−1/2f(x)− 1
4
x1/2f ′(x) +

1
4
x3/2f ′′(x)

)
+ o(b)

= x−1/2f(x) + O(b). (A.14)

We apply (11) to claim (A.14).
Similarly

E
[
λ−3/2

x f(λx)
]

= x−3/2f(x) + O(b). (A.15)

(A.10), together with (A.13), (A.14) and (A.15), gives (15).
Variance of the LN kernel estimator.

The variance of f̂LN (x) is

V ar
[
f̂LN (x)

]
= n−1E

[
K2

LN(ln x,4 ln (1+b))(Xi)
]

+ O(n−1) (A.16)

Let λx be a LN (lnx, 2 ln (1 + b)) random variable such that

µλ = E[λx] = x(1 + b) = x + O(b), (A.17)

Vλ = V ar[λx] = x2(1 + b)2
[
(1 + b)2 − 1

]
= 2x2b + 5x2b2 + O(b3) (A.18)

= 2x2b + O(b2).

Then

E
[
K2

LN(ln x,4 ln (1+b))(Xi)
]

= CbE
[
λ−1

x f(λx)
]

(A.19)
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where Cb = (16π ln (1 + b))−1/2. Therefore applying Taylor Expansion
again while plugging in (A.17) and (A.18) gives

E
[
λ−1

x f(λx)
]

= µ−1
λ f(µλ) +

1
2
(
2x−3f(x)− 2x−2f ′(x)

+x−1f ′′(x)
)
Vλ + o(b)

= (x + xb)−1
f(x + xb)

+ b

(
2x−1f(x)− f ′(x) + x

1
2
x−1f ′′(x)

)
+ o(b)

= x−1(1 + b)−1
f(x) +

b

1 + b
f ′(x) + o(b) (A.20)

= x−1(1 + b)−1
f(x) +

(
b− b2 −O(b3)

)
f ′(x) + o(b) (A.21)

= x−1(1 + b)−1
f(x) + bf ′(x) + o(b)

= x−1(1 + b)−1
f(x) + O(b). (A.22)

We also apply (12) to claim (A.20) and apply series expansion on b to
obtain (A.21) from (A.20). Based on the series expansion

(ln (1 + b))−1/2(1 + b)−1 = b−1/2 − 3
4
b1/2 +

65
96

b3/2 + O(b5/2)

= b−1/2 + o(b−1/2), (A.23)

together with (A.16), (A.19), (A.22) we have

V ar
[
f̂LN (x)

]
= n−1

[
(16π ln (1 + b))−1/2

x−1(1 + b)−1
f(x)

]
+ O(n−1b)

=
1

4
√

π
n−1b−1/2x−1f(x) + o(n−1b−1/2). (A.24)

(A.24) is exactly (16).
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