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Lee (2003) develops a +/n-consistent estimator of the parametric compo-
nent of a partially linear quantile regression model, which is used to obtain
his one-step semiparametric efficient estimator. As a result, how well the ef-
ficient estimator performs depends on the quality of the initial \/n-consistent
estimator. In this paper, we aim to improve the small sample performance of
the one-step efficient estimator by proposing a new /n-consistent initial esti-
mator, which does not require any trimming procedure and is less sensitive to
data outliers and the choice of bandwidth than Lee’s (2003) initial consistent
estimator. Monte Carlo simulation results confirm that the proposed estima-
tor and the one-step efficient estimator derived from it have more desirable
empirical features than Lee’s estimators. (© 2005 Peking University Press
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1. INTRODUCTION

Conditional mean regression models can be used to study the average re-
sponses of a dependent variable to changes in explanatory variables. How-
ever, when residual heteroscedasticity arises, conditional quantile curves at
different probability masses have different shapes which lead to different
implications. As a result, looking at the average responses exclusively will
ignore idiosyncratic features of data and may give improper inferences in
empirical problems where we are interested in exploring responses other
the average one. Much of contribution in estimation of quantile regression
models is motivated by the seminal work of Koenker and Bassett (1978,
1982), Newey and Powell (1990), and Powell (1984). Buchinsky (1994)
and a special issue of Empirical Economics (2001, vol. 26) provide good
empirical applications in the framework of parametric regression models.
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For pure nonparametric estimation of conditional quantile curves, related
work includes the kernel and k-nearest neighbor estimators of Bhattacharya
and Gangopadtyay (1990), spline smoothing estimator of Koenker, Ng, and
Portnoy (1994), weighted Nadaraya-Watson estimator of Hall, Wolff, and
Yao (1999) and Cai (2002), the local linear regression approach of Fan, Hu,
and Truong (1994), the double kernel method of Yu and Jones (1998), and
others. Extension to semiparametric quantile regression models includes
the quantile index model of Khan (2001), the partially linear quantile re-
gression model of He and Shi (1996) and Lee (2003), the censored regression
model of Chen and Khan (2001).

In this paper, we are interested in estimating the partially linear quantile
regression model. Lee (2003) introduces a /n-consistent average quantile
regression (AQR) estimator and a one-step semiparametric efficient esti-
mator. How well the one-step semiparametric efficient estimator performs
empirically depends on the quality of the initial y/n-consistent estimator.
It is well-known that sample mean is more sensitive to outliers than me-
dian estimator, especially when the sample size is small. Therefore, we
suspect that Lee’s (2003) AQR estimator may not be a good candidate in
such cases and naturally the performance of his one-step efficient estimator
may be negatively influenced. Actually, this conjecture is confirmed by our
Monte Carlo experiments in Section 3. Motivated by this, we propose a new
initial \/n-consistent estimator—quantile-based quantile regression (QQR)
estimator, which requires no trimming procedure and is less sensitive to
data outliers and the choice of bandwidth than AQR estimator for small
samples; thus the one-step efficient estimator derived from it enjoys more
desirable stability and accuracy than that derived from AQR estimator.

The rest of the paper is organized as follows. Section 2 describes es-
timation methodology of the proposed estimator. Both consistency and
asymptotic normality results are derived. Monte Carlo simulations are
conducted to evaluate the small sample performance of the proposed es-
timator and Lee’s estimators in Section 3. Section 4 concludes. All the
proofs are left to the Appendix.

2. ESTIMATION METHODOLOGY

Assume that we have a partially linear quantile regression model defined
at a € (0,1) as follows

where X; € RF, By is a k x 1 vector to be estimated and Z; € R?, the
functional form of 6, (-) is unknown, i = 1,--- ,n. E, (V|z,2), the ath-
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quantile of V' conditional on (X, Z) = (z,2), is defined as
E, (Viz,z) =inf{v:Pr(V <v|X =2,Z =2) > a}. (2)

We assume that Z does not contain any elements of X, or essentially, we
assume that knowing Z = z can not be used to calculate the exact value
of z. For the sake of identification, we also assume that X and Z do not

contain 1, and any constant number will be absorbed into 6, (-).
’ AN
Let 7, = (Til RN ) contain all partial derivatives of 6, (z) at point
zi = (zi1, - ,zid)/ up to order p, with, in particular 7! = 7,/0, (2i) .
In total, there are m, distinct r*" order partial derivatives so that 7; is
anm = Y »_,m, by 1 vector. For any ||Z; — z]| = o(1), taking Taylor
expansion of 6, (z;) at z; yields

O (Z5) = O (2:) + T{wi; + o (1Z; — zl?), (3)
’ N
where w;; = (wilj, Sy wfj) contains the corresponding Taylor coefficients

with wj; being m,. x 1 vector, in particular, wilj = Z; — z;. This suggests
estimating 0, (Z;) by a local pt-order polynomial regression approach,
which extends the local linear regression approach of Fan, Hu, and Truong
(1994) to the multivariate case. In particular, a local constant regression
approach is applied when p = 0; a local linear regression approach is applied
when p = 1; and a local quadratic regression approach is applied when
p=2.

Under the framework of the partially linear quantile regression model, a
two-step semiparametric estimator is developed and called quantile-based
quantile regression (QQR) estimator. In the first step, the unknown func-
tion 6, (z) is recovered from data by nonparametric smoothing method at
each data point. That is, the optimization problem solved at each point ¢
is as follows

am{g}f{ﬁﬂ Zpa (Y; = X B — aio — ajywi;) K; (H ' (Zj—z), (@)
j=1
where a;; is an m x 1 vector, H = diag (h1,he, -+ ,hq) is a smoothing
parameter matrix, K (H 'u) = H?Zl k (Z—;) for any u € RY; p, (u) =
u(a— I (u <0)) is called the check function. The leave-one-out technique
is used here with K; (H_1 (Z; — zl)) =0 for j = i. Let (Eio,ail,ﬁa’i) be
the solution of (4) at the i*" point. In the Appendix, we show that for
any 1 = 1,2,--+ ,n, Ea,l' LN Ba,0 at nonparametric rate, and 0., (z:) = ajpo
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is the consistent estimator of 6,, (z;) . This step aims to obtain a consistent
estimator of 6 (z).

In the second step, a y/n-consistent estimator of 3, 0 will be derived by
solving the following minimization problem

BaQar = arg min > pa (Yi — X/Ba — fa (Zi)) , (5)
“T =1

~ n
where {Oa (ZZ)} are calculated from the first step. In the Appendix, we
i=1

show that BQ,QQR — ﬂa,O = Op (n71/2)'
Finally, {6, (2;)};_, can be estimated by the local linear regression ap-
proach

mbiana (Yj — X} Bagor — bio — by (Z; — Zz‘)) Ki (H ' (Z; — 2)),
. =

(6)

where b; = (bio.b};)" is a (d + 1) x 1 vector, and

-~

0 () = Eo (Yl — X{Baqerl|Zi = Zﬁ) =big,i=1,---,m.

For any matrix A, let ||A|| denote its Euclidean norm, ie. |4 =
[tr (AA’ )]1/ % and let |A| denote its determinant if A is a square matrix.
Let S;(Z) be a functional space such that g € §;(2) if g : £ — R, and
¢ (+) has the order of smoothness , and its [[]"" partial derivatives satisfies
the Lipschitz condition

HDmg (21) — Dl (zg)H < M ||z1 — 227, for any 21,29 € Z, (7)

where Z is a convex set of R, [ = [I]+~ with [I] being a nonnegative integer
and 0 < v < 1, and D*g(2) = 0°g (2) /02" - -- 025" with s = E?:l s; and
{si}?zl being nonnegative integer between 0 and [I].

Some regular assumptions required by the main theorems are listed be-
low.

AssumptioN 1. {(V;, X5, Z;)}i_, is an i.i.d. random sequence from a
joint probability distribution F (y,z,2) on R x R¥ x R%. Both Y|X,Z and
Z are continuously distributed.

AssuMPTION 2. Let f, (v|x, 2) be the conditional p.d.f of V given (X, Z) =
(z,z2), and let F, (v]x, z) be its corresponding conditional c.d.f.. f, (0|x, z) >



SEMIPARAMETRIC EFFICIENT ESTIMATION 109

0, and F, (0|z,2) = « for all x and z. Let f (z|x) be the conditional prob-
ability function of z given X = x. f, (v|x,z), f(z|z), and their first-
and second-order partial derivatives are continuous and uniformly bounded
(almost surely).

ASSUMPTION 3. 0, (2) € Sp+1(Z) and Pr{||D*0, ()| <M} =1 (a.s.)
for all0 < s <p+1orb,(z) € Spivy(Z2) for some v (0,1).

AssuMPTION 4. The product kernel is K (u) = H?Zl k (u;) for any u €
R?, where k(-) = 0 is a symmetric function taking values on a bounded

support [—1,1] and

/1 k(ul)dul:1,/_11K2(u)du:R(K)<oo. (8)

-1

!

Let w = (wl/, e ,wp/> be an m x d nonnegative integer matrix cor-
responding to the polynomial order of (Zj1 — zi1,- - , Zja — %id) in wij. In
particular, w" is m, X d matriz with Z?Zl wi; =1 forr=1,2,---,p, and

j=1,2,---,m,. Correspondingly, denote \(K) = ()\ (K)l . ,)\(K)p)

to be an m x 1 vector with X\ (K)" being m,. x 1 vector, and

p(K) e (K)

1 d "

ANE), = 1K(u) [Tw™ du, (9)
- =1
1 d T t

p(K)yp = | K@) [Ju"" du, (10)

wheret,r =12, . p;j=1,2,--- ;mp;l=1,2,-- ;mul' =1,2,--+ ,my.
Obviously, p(K) and X (K) are both finite. A(K); = 0 if some wj; is odd
and p (K)jp =0 if some Wi + Wl is odd.
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Finally, for any z € Z C R%, define

1 MNEK) X!
S()=E| fo (01X, 2) f(ZIX) [ MK) p(K) ME)X' [|Z=2z
X  X\K) xXXx'

ASSUMPTION 5. 0 < var (V) < o0, E (||XH4) < 00. E[XX'f, (0|X, Z)]

is nonsingular and finite matriz, and S (z) is nonsingular and finite (m + k + 1)
x (m +k + 1) matriz at each point z € Z C R<.

ASSUMPTION 6. ||H|| — 0, n? |H| — oo, and /n |H|PT" — 0 as n —

0o, where p+1 > & and 0 < v < %—ﬁ withE(HXHQM) < oo for

6> 0.

The proposed estimator can be extended to the case that Z contains
discrete variables as well as continuously distributed variables. In Assump-
tion 4, the kernel function k () having bounded support is not essential
and it is assumed merely to simplify the assumptions and proofs. The
main theorems of this paper are as follows and the proofs are left to the
Appendix.

THEOREM 1. Suppose that Assumptions 1 - 5 hold. Then at each point
iy if || — 0,0 [H| — o0, \/n [H| [H|"*" = O/(1), we have

Bai = Bag+0p (/2 |H| 12, (12)
Ou (20) = Oa () + 0, (n™V/2|H|T?), (13)
g . is i d 1
frea (Zl)wrv _ f‘rvaa (Zl)wr, +0, n-1/2 H h, 2 ) (14)
Dz 7 - 0z," 0z, 7 - 0z," i=1

foranyj:1,2,~--,mr;r:1,2,-~- » D-

Remark 2.1. Theorem 1 indicates that the optimal bandwidth H is
applicable. If the local p”*—order polynomial regression method is applied

here, the optimal bandwidth is h; 'n~ 2(p+11)+d, 1=1,2,---,d.
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THEOREM 2. Under Assumptions 1-6, we have
S d
Vi (Bugan = Bao) - N (0,90). (15)

where Qo = C~*DC~! with C = E[XX'f, (0|X, Z)] and

D = a(1—a)E{[X1—E(5(2|X1,Zl)} [Xl—E()N(2|X1,Zl)}/},

Xo = Xofu (0121, X2) f (21 X2) €187 (Z1) (1 M(K) X7)'.

Remark 2.2. Theorem 2 requires that h; ~ n™% with 1) +1) <a<iy
for: =1,2,--- ,n. It implies that p+ 1 > %. It implies that the optimal
bandwidth h; ~ n~ 7+07 does not satisfy this condition. Essentially,
this theorem requires undersmoothing in the first step estimation of the
unknown function 6, (z) . This undersmoothing condition /n |H|["™" — 0
as n — 00, is required to remove the bias term when 6, (z) is replaced by
0. (z) in the second step.

One can obtain a consistent estimator of £y by replacing the components
of 0y with its empirical counterparts. Thus a consistent estimator can be
calculated as follows

Q = C'DC!
a:i;X J. (013, 22)
D= a(ln—a)zn: [Xu—E(X'zHXu,Zu)} {Xli_E<X”|X”’Z“)}/7

i=1

where E ()Z'Ql | X1, Zli) has to be estimated by the sample splitting method.

However, we will not continue this line of discussion since the above pro-
posed estimator is mainly introduced as an initialy/n-consistent estimator
for the one-step semiparametric efficient estimator defined below. The ad-
vantage or contribution of this paper is that the QQR estimator does not
require any trimming procedure and is less sensitive to data outliers and the
bandwidth choice of the above first step nonparametric estimation. Such
stable property of the QQR estimator is expected to be passed on to the
one-step efficient estimator derived from it.

2.1. Semiparametric efficient estimator
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The estimator derived above is not semiparametric efficient in the sense
of Newey (1990, 1994). Lee (2003) shows that the semiparametric efficient

bound is
-1
-

provided that E [S,S)] is nonsingular, where S, is the efficient score for

Pa

Vs = a(l—a){E[f2(0]X,2) XX']

E [} (01X, Z) X|Z] E [f7 (01X, Z) X'|Z]
E[fz2 01X, 2)]Z]

fo (01X, 2)

Sa (YaX,Zveavﬂa) = (,Y(l . Oé)

[a_I(Y_ga(Z) _X/Boz < O)] [X_T(Z)]v
(17)
and
Tz - ELROX.2) x17)
B2 (01X, 2)|Z]
To obtain a semiparametric efficient estimator, Lee (2003) proposes a
two-step estimator. In the first step, a y/n—consistent estimator, AQR
estimator, is calculated as follows

B son = S T (Z:) B
“ Z?:1 Tz (Zi)

(18)

where 7, (z) = I (z € Z) is a trimming function over a compact subset Z €
R?. This trimming procedure is applied to remove the negative tail effects
of Z. In the second step, a one-step semiparametric efficient estimator is
constructed as follows

Bi.aqr = Ba,AQr+

1 n
Z §o¢ (//B\Q,AQR> ) (19)
i=1

i aga (Ba,AQR)/aﬂa]
=1
where

£, (01X, 2)

§a () = a(l—a)

_A J— /A
a—1+J<Y ea(jZ_) X@)

is the smoothed estimator of S, (8) in (17) and fo (0|X,Z) and T (Z) are
the kernel estimates of f, (0|X, Z) and T (Z), respectively; and

0 if v<—1

J(x)=14 05412 (z— 22+ 1a2°) if || <1 . (21)
1 if v>1
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It is reasonable to expect that the performance of the second step efficient
estimator depends on the quality of the first step estimator, 8, 4Qr, an es-
timator constructed from empirical averages of {50”} It is well-known
that sample averages are more sensitive to data outliers than sample medi-
ans. This argument can be paralleled to our case. The trimming function
T, (z) in (18) can remove some side effects of extreme estimates 3,,; at some
points; however, there is no theoretical guidances in choosing the trimming
function. Therefore, we construct the one-step efficient estimator, 5;@@ R
by using BQ,QQ r as the initial consistent estimator in (19).

The asymptotic results of 5}, oo Will be the same as in Theorem 5 of
Lee’s (2003); however, the proofs are omitted to make the paper dense and
we refer readers to Lee (2003) for assumptions required and proofs.

3. MONTE CARLO SIMULATIONS
The data is generated by the following model

yi = Xibo + 9(Zi) + 00 (Xi, Zi) (wi — Ep (wi)) (22)

where u; iidN (0,1) and E, (u;) is the p'"-quantile of u;, i = 1,2, ,n.
{(X;,Z;)}}_, is an i.i.d. random sequence from a joint normal distribution
with zero mean, unit variance, and a correlation of 0.5. We use the same
data generating designs as Lee (2003). Let DGP (ig, jo) be the true data
generating mechanism with

1

e if ip =1,
o0 (,2) = { Cexp (0.25 (x + 2)) if ig =2, (23)

where C' is a constant used to normalize the mean of oq (, z) to be %, and

1+2 it jo =1,
g(2) =< z+4dexp(—222)/V2r if jo =2, (24)
sin (7z) if jo=3.

Clearly, the value of iy describes whether disturbance heteroskedasticity
exists and jo is used to define the function form of g (-).

The quantiles of interest are o = 0.15,0.25,0.50,0.75,and 0.85. The sam-
ple size is n = 100. The number of Monte Carlo replications is m = 1000.
The Epanechnikov kernel function is used here k (u) = 2 (1 — u?) I (ju| < 1).
In the first step estimation, we choose p = 2 and the bandwidth h =
en~2/9G,, where &, is the sample standard deviation of Z. In order to mea-

sure sensitivity of the proposed estimator to the choices of bandwidth, we
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divide the interval [0.5,5.0] with equal increment 0.15 and let ¢ be any grid
value. The algorithm of Koenker and d’Orey (1987) is used to solve the
optimization problems (4) and (5).

For each set of Monte Carlo experiments, we then calculate the squared
root of mean squared errors and mean absolute bias of each estimator

m

RMSEy = |3 (Bus— o) 1 ABIASa = =3 [y ~ fuo
j=1

)

m 4
Jj=1

where ﬁa will be BQ7QQR,BQ7AQR,B;7QQR, and B;AQR. Tables 1 and 2
present the minimum, median and standard deviations of those RMSE,,
and ABIAS,.7(z) =1[Qo.01 (%) <z < Qo9 (z)] and 7(z,2) = I[Qo.01(%) <
z < Qo.99(2),Qo.o1(x) <z < Qo.99(x)], where Q, (z) and Q, () are the
empirical quantiles of z and z at probability mass p € (0, 1), respectively.

In Table 1, when iy = 1 (homoscedastic case), Bm AQR attains the semi-
parametric efficient bounds since var (Z|X) = 0.5 is a constant number.
In this case, we find that Ba, AQR has the smallest minimum RMSE values
but standard deviations are large and that B;QQ g has the smallest median
values and standard deviations. The standard deviations of RMSEs from
B aqr are very wild and ignored here.

The parameter j, in Eq. (20) is set to 0.5. Our experiences agree
with Lee’s comment on the choice of j, — 0 as n — oo—j, can not be
too small to regulate the behavior of 8 4op, which is of less concern to

B;’QQ r- The reason behind this is that small j,, tends to give zero values

to >, 8§a (BQ,AQR)/G@I, which actually occurs ﬁa,AQR is far away
from the true value as a result of inappropriate choice of the bandwidth h.
Or the ill performance of S, @qr then 5 oop lies in its sensitivity to the
choice of bandwidth A in the first step nonparametric estimation of Ba, AQR-

In addition, although ﬁa, AQr and ﬁ; aqr are both efficient theoretically
in the presence of homoscedastic residuals, due to the requirement of extra
nonparametric estimations the one-step efficient estimators ﬂ;,QQ r and

B; AQR underperforms B(, AQr in terms of minimum RMSE values.
When ig = 1, i.e. heteroskedastic case, both Bj; Agr and B;QQ R outper-
form their respective initial estimators 3., aqr and B,ggr and have similar

minimum RMSE values; however, B;;}QQ g provides the most promising re-
sults in terms of stability across different bandwidth choices. Therefore,
in light of RMSEs, 5 5o may be recommended to empirical econometri-
cians because of its stability with respect to the choice of h in the first step
estimation and the smallest mean squared errors.
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TABLE 1.
Summary statistics of squared root of mean squared errors
DGP Prob. QQR AQR QQR* AQR*
(40, Jo) Min. Median Stdev. Min. Median Stdev. Min. Median Stdev. Min. Median

0.15 0.065 0.070 0.008 0.060 0.078 0.801 0.066 0.069 0.007 0.065 0.073
0.25 0.058 0.062 0.009 0.053 0.074 1.054 0.058 0.060 0.007 0.057 0.083
(1,1) 0.5 0.052 0.054 0.005 0.049 0.050 0.794 0.052 0.053 0.003 0.052 0.052
0.75 0.056 0.060 0.007 0.052 0.060 0.791 0.057 0.058 0.005 0.056 0.059
0.85 0.064 0.067 0.006 0.057 0.062 3.012 0.065 0.067 0.005 0.063 0.065

0.15 0.065 0.070 0.009 0.060 0.077 0.802 0.066 0.069 0.007 0.065 0.073
0.25 0.058 0.061 0.009 0.052 0.073 1.054 0.058 0.060 0.007 0.057 0.085
(1,2) 0.5 0.053 0.055 0.005 0.048 0.056 0.794 0.052 0.054 0.003 0.052 0.055
0.75 0.059 0.061 0.006 0.052 0.060 0.792 0.058 0.060 0.005 0.057 0.059
0.85 0.066 0.069 0.005 0.056 0.063 3.013 0.066 0.068 0.004 0.064 0.069

0.15 0.067 0.073 0.005 0.059 0.077 0.802 0.068 0.072 0.005 0.065 0.073
0.25 0.060 0.064 0.006 0.053 0.074 1.055 0.058 0.062 0.006 0.057 0.083
(1,3) 0.5 0.055 0.063 0.015 0.050 0.070 0.792 0.054 0.057 0.006 0.053 0.068
0.75 0.061 0.067 0.008 0.053 0.067 0.791 0.059 0.063 0.005 0.058 0.070
0.85 0.068 0.074 0.007 0.059 0.072 3.023 0.067 0.072 0.007 0.065 0.078

0.15 0.058 0.066 0.017 0.058 0.089 0.381 0.054 0.059 0.011 0.054 0.078
0.25 0.050 0.056 0.014 0.051 0.085 0.507 0.048 0.051 0.009 0.049 0.071
(2,1) 0.5 0.044 0.046 0.005 0.046 0.049 0.375 0.044 0.045 0.003 0.045 0.045
0.75 0.048 0.051 0.006 0.050 0.065 0.374 0.047 0.049 0.005 0.048 0.052
0.85 0.056 0.058 0.006 0.056 0.070 4.984 0.052 0.054 0.006 0.053 0.056

0.15 0.061 0.065 0.017 0.060 0.089 0.381 0.056 0.059 0.011 0.056 0.077
0.25 0.052 0.056 0.014 0.053 0.085 0.508 0.050 0.052 0.009 0.050 0.070
(2,2) 0.5 0.045 0.048 0.005 0.048 0.056 0.374 0.045 0.046 0.003 0.045 0.049
0.75 0.050 0.052 0.005 0.052 0.064 0.374 0.048 0.050 0.004 0.049 0.052
0.85 0.058 0.062 0.005 0.058 0.069 4.984 0.054 0.056 0.005 0.054 0.058

0.15 0.063 0.069 0.010 0.063 0.091 0.381 0.058 0.064 0.008 0.058 0.075
0.25 0.053 0.059 0.008 0.055 0.087 0.508 0.051 0.054 0.007 0.051 0.071
(2,3) 0.5 0.047 0.058 0.018 0.051 0.076 0.373 0.046 0.051 0.008 0.047 0.063
0.75 0.055 0.063 0.013 0.055 0.073 0.373 0.050 0.055 0.006 0.051 0.060
0.85 0.066 0.076 0.013 0.063 0.078 4.994 0.058 0.064 0.008 0.056 0.071
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TABLE 2.
Summary statistics of mean absolute biases
DGP Prob. QQR AQR QQR* AQR*
(40, Jo) Min. Median Stdev. Min. Median Stdev. Min. Median Stdev. Min. Median

0.15 0.051 0.055 0.006 0.047 0.050 0.037 0.052 0.054 0.005 0.050 0.055
0.25 0.046 0.048 0.007 0.042 0.046 0.044 0.045 0.047 0.005 0.045 0.050
(1,1) 0.5 0.042 0.043 0.004 0.039 0.040 0.031 0.041 0.042 0.003 0.041 0.042
0.75 0.045 0.047 0.005 0.042 0.044 0.033 0.045 0.046 0.004 0.045 0.046
0.85 0.051 0.053 0.005 0.046 0.047 0.102 0.052 0.053 0.004 0.050 0.051

0.15 0.051 0.055 0.007 0.048 0.050 0.036 0.051 0.053 0.006 0.050 0.055
0.25 0.046 0.048 0.007 0.042 0.046 0.044 0.045 0.047 0.006 0.045 0.050
(1,2) 0.5 0.043 0.044 0.004 0.038 0.042 0.031 0.042 0.043 0.002 0.041 0.043
0.75 0.047 0.048 0.005 0.041 0.044 0.033 0.046 0.047 0.004 0.045 0.047
0.85 0.052 0.055 0.004 0.044 0.048 0.102 0.052 0.054 0.003 0.051 0.052

0.15 0.053 0.057 0.004 0.046 0.050 0.037 0.053 0.056 0.004 0.051 0.056
0.25 0.047 0.051 0.005 0.041 0.045 0.044 0.046 0.049 0.005 0.045 0.050
(1,3) 0.5 0.044 0.050 0.012 0.040 0.047 0.030 0.043 0.046 0.004 0.042 0.049
0.75 0.048 0.053 0.006 0.042 0.047 0.032 0.047 0.050 0.004 0.046 0.050
0.85 0.053 0.058 0.006 0.046 0.052 0.102 0.053 0.057 0.006 0.051 0.055

0.15 0.046 0.051 0.015 0.045 0.054 0.033 0.043 0.046 0.009 0.042 0.052
0.25 0.039 0.044 0.011 0.041 0.052 0.036 0.038 0.041 0.007 0.038 0.046
(2,1) 0.5 0.035 0.037 0.004 0.036 0.039 0.023 0.035 0.035 0.002 0.035 0.036
0.75 0.037 0.040 0.004 0.040 0.045 0.026 0.037 0.038 0.004 0.038 0.041
0.85 0.044 0.046 0.004 0.045 0.049 0.166 0.041 0.042 0.004 0.041 0.043

0.15 0.048 0.051 0.014 0.048 0.054 0.032 0.044 0.046 0.009 0.043 0.052
0.25 0.041 0.044 0.011 0.042 0.052 0.036 0.039 0.041 0.007 0.039 0.046
(2,2) 0.5 0.036 0.038 0.004 0.038 0.042 0.022 0.036 0.037 0.002 0.036 0.039
0.75 0.039 0.041 0.004 0.041 0.045 0.026 0.038 0.039 0.003 0.039 0.041
0.85 0.045 0.049 0.004 0.045 0.050 0.166 0.042 0.044 0.004 0.042 0.045

0.15 0.049 0.055 0.009 0.049 0.055 0.030 0.046 0.050 0.006 0.046 0.055
0.25 0.042 0.046 0.007 0.044 0.051 0.035 0.040 0.043 0.005 0.040 0.047
(2,3) 0.5 0.037 0.046 0.014 0.041 0.050 0.020 0.037 0.040 0.006 0.037 0.046
0.75 0.043 0.049 0.011 0.044 0.051 0.025 0.040 0.044 0.005 0.041 0.046
0.85 0.051 0.060 0.011 0.049 0.056 0.166 0.045 0.050 0.007 0.044 0.051
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In Table 2, when ig = 0, 3(1, AQr has the smallest minimum and median
mean absolute bias but large variations across different choices of band-
width. When i = 1, 5, oop has the smallest minimum, median and stan-
dard deviations of mean absolute bias. Therefore, in terms of mean absolute
bias, ﬂj;QQ r is preferred in the presence of disturbance heteroscedasticity

and [ 4o is preferred in the presence of disturbance homoscedasticity if
appropriate bandwidth A is used.

Since quantile regression models are of more interest for heteroscedastic
case than for homoscedastic case, where ﬁ;’QQ g overperforms the other

three estimators, QZ,QQ r Will be our selling product to empirical econo-
metricians who are interested in applying the partially quantile regression
models to their data.

4. CONCLUSION

In this paper, we improve the small sample performance of Lee’s (2003)
efficient estimator of the parametric component of the partially linear re-
gression model by proposing a different initial \/n-consistent estimator from
his AQR estimator. Monte Carlo simulations indicate that the one-step ef-
ficient estimator calculated from our QQR estimator has desirable perfor-
mance in small samples: No subjective trimming parameter to be required
and stabile performances with respect to the choice of bandwidth make our
QQR estimator is more user-friendly.

APPENDIX

Two frequently used formulas in the following proofs are
y
Po(T—y)—po () =yla—I(x < O)]+/ [I(z<t)—I(x<0)]dt (A1)
0

for any = # 0; and

Pr{zn:f(i:Vi:O):O(l)} =1 (as), (A.2)

where I (i:V; =0) =11if V; = 0; 0 otherwise. Equation (A.2) is the result
of the continuity assumption of V| X, Z and the LLN. And in the following
context, we denote E (-|I;) = E (| X;, Z;) .

Proof of Theorem 1. Suppose that we are estimating (3, and 0, (z)
at a particular point (xo, 20, yo). Corresponding to w;; and w defined in

/
. _ 1/ / _ d
Section 2, we define ¢ = (q o ,qp) where ¢ = [[;_; h

r
wi;

for r =

i
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1,2,---,p; j = 1,2,--- ,m,. For example, qilj = (hy,- - ,hd)' and ¢ =
(h3, hihg, - ) Finally, let Q = diag (¢) be an m x m diagonal matrix
and

Y =Y — X’Bao 00 (20) — Thwois

(
KiiK(H 72’0) andKi: OleZ:ZO,
(1 won b X! )/
N @j0 — ba (20)
then 6, = /n|H| | @ (@i1 —70) | will minimize

o~

a T 5&,0

=
I

én (5) = Z [pa (}/z - X;ﬁa —ag — a/1w0i) — Pa (i/z*)} K;

|

which is convex in d. The rest of proofs will follow the proofs in Fan, Hu,
and Truong (1994). First, rewrite above equation as

G (0) = E |Gu (91X, 2]+ > KWiloh (V) = B (o (V) [1)]+ R (9),

Vn|H| |
(A.3)

where at any given § € © C R™*+1 we obtain R, (§) = o, (1), since
E[R, (0)] = 0 and Condition A (iv) in Fan, Hu, and Truong (1994) is
verified as follows

E{lpa (V7 =) = pa (V) = ol (¥ 1}

- {/t[I<Y*<s> T <oa} +o)

- / / [V < s1) = I (Y < 0))(I(Y < 52) — I (V" < 0))]ds1dss

IN

[l plel
/ / Pr(0 < Y| < |t|)dsidss = o (t*) ast — 0,
o Jo

where the second equation follows from (A.1) and (A.2).
Denote
1

G = 0a (20) + Thwoi — 0o (Z:) = — 55T !7gp+1>’wgi+1, (A.4)
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where T(p ) (p +1) (Z;) and Z; lies between zg and Z;. Because the kernel

functlon K( ) is zero outside the unit circle, only those points that are close
to zo will be used, that is, only Z; such that HH‘1 (Z; — Zo)“ < 1 has effect
on the summation. Hence,

|Gl =0 (HH||p+1) uniformly over such i that |[H ™" (Z; — zO)H <1.

Since Y| X, Z is continuously distributed, we have Pr{>_" | I (Y;* =0) = O (1)}
= 1 almost surely. Then applying formula (A.1), we have

E [@n (6) X, z}

n l
= S ERES )+
=1

VnlH]|

(V) < t) = (Y7 <O dt| I, { +0, (1)

0\3‘

w!s
w;sé

- 14%0) v
= S K B, (V) 1] + / S (G ) — Fy (GI)]dt b + 0, (1)
2.5 Vo J '
& 8'S,,0

= ZKWEm<mm+ +0, (1), (A.6)

ValH] 2 z
where
. v
K, /[uu@m—ﬁwm»@+w—uumm—ﬁmm»@w
1=1 0
_ Fm
_ K;/ [(fo @o\L) = £o TI1)) G — (fu @o\L) — £0 (OV)) ] dt
=1 0
i 14%0) SW,W!§
M Kz 2 % L
< 2 (C THI‘ |Gil n|H|>

= O (IHP It ) 0 (JHI™) =0, (1), (A7)
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where (; lies between (; + t and 0, and 7; lies between ¢; and 0. (A.7)
holds under Assumption 6, since for any given small value ¢ > 0 and
HH‘1 (Z; — zo)H <1, I have

Pr [ ma 0w >en
ax NG €
anee
nPr( 5\/147;1 >€n”>

< nMw — 0, (A.8)
(n1/2—v5)

IN

asn%oo1fE(||X||)<ooforr>2andv<5—%

Lemma 1 below shows that S,, = n‘H‘ Yoy fo (01L) KiW, W] = S (20) +
op (1) if |H|| — 0, n|H| — o0, as n — oo, where S (z¢) is defined in
equation (11). Therefore, for any given §, I have

. -~ ¢S 4

Yo KiWipl, (YF) with pl, (V) =

+ 7 (5), (A.9)

where 7, (§) = 0, (1), and W

= Vo
— I (Y <0). Then the convexity Lemma of Pollard (1991) yields
sup |ry, (8)] =0, (1) . (A.10)
5co

And simple calculations show that
On = —5(20) " Wi + 0, (1). (A.11)

Lemma 1 below shows that W,, = O, (1) if | H|| — 0, n.|H| — oo, /n [H| | H|"*"
= O(1) as n — oo. Hence, §,, = O, (1), which completes the proof of this
theorem. |

LemMA 1. If |H| — 0, n|H| — oo, and /n|H|||H|["™ = O(1) as
n — oo, then

Sp = S(20)+0p (1), (A.12)
W, = 0,(1). (A.13)
Proof. Since
1 wp Q! Xi

W,W! = Q'wy Q lwow, Q' Q twe X! |,
X; Xin)Z-Q_l XlX{
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then simple calculations yield

1 n
E <n|H| ;Kifv <0Xi7Zi)>

E[f, (01X, z0) f (20]X)] + O (1 H]*)

1 n
E|l —— ) Kw,,Q 'f, (01X, Z

E[f, (01X, 20) f (20| X)] A (K) +0 (1)

1 n
E <n|H| Z K;Q  woswh, Q1 f, (01 X5, Zz))
i=1

E[f, (01X, 20) f (20|X)] p (K) + O (I HI)

and

1 n
var |\ —-— Kzfv OX“Z1
var LG:Klw’folf 01X, Z;) | = O( L >
n|H| — 0 ’ n|H|)’

1 « 1
- KO0 Ywewh.0 1 X. 7. — I
var <n|H| Lzzl zQ wO’LwOrLQ fv (O‘ 7y z)) O (n|H>

I
Q
—

3
E)—‘
~

Hence, if E (HX,H4) < oo holds, and ||H|| — 0,n|H| — o0 as n — oo,

then S, = S (20) + 0, (1).
In addition, we obtain

o)
B (Wa) = ValH|H" | M) +0 (J1H]7) |
0(1)

and
var (Wn)

B [var (W, 2)] + var [ (Wo1x. 2)]

o =a)+ 0 (IHI") | 1117 B (k2waw)) + 0 (JH)P*),
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if ||[H|| — 0, as n — oo, which will complete the proof of this Lemma. |

Proof of Theorem 2. Let Y* =Y, — 9 (Z;) — X!Ba0. Then 5
Vvn (50 — ﬂmo) will minimize

= 3 o (020 X15) (7))

=3 [on (v o2 =20 - SR ) - (v 0 (20 - 1 (20)]

which is convex in 8. Rewriting Q7 (8) yields

~

Qi (0) = B [@: (9)1X, 2] + ZX T(V; < 0)] + Ry (5). (A.14)

Applying formula (A.1), if V; # 0, we have

po (Vi =0 (2) = X{fa) = pa (V)

~ 5 X,
- {ax(zi)ea(ziw ﬁ} o — I (V; < 0)]

(Z:)—b0(2Z:)+ 25
+/ (Vi < 1)~ T(V; < 0)] dt
0

and
Pa (}71*) — pa (Vi)

_ [;9; (Z) — 0. (Zi)} [0 — I(V; < 0)]
0.(Z:)—0a(Z:)
+/ (Vi <t)— (Vi <0)]dt
0

Hence, if V; #0

po (Yi = b (2) = XiBa) = pa (Vi (A.15)
G (20) 00 (Z0)+ 225
5 X,
= - 10i<0)+ / [T (Vi <) — I (V; < 0)] dt.
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By (A.2), we have

B(Q.0)1X.2)

-y / [, (t1T3) — F, (O1L,)] dt + o, (1)
= G200z

- 2671 (Z fo (OI1;) XiX£> 5+ \6/5 > £ (O11) X, (éa (Z:) — 6, (Zz.)>
i=1 i=1
8.(Z:)—

+> / f/ (; )tht+op(1)

i=1

00(Z:)—00(Z;)

n

:\/Eva (012) X: (0 () ~ b (1))

+3 (zn:f (o|1,) XX>5+0,,(1), (A.16)

where ¢ lies between ¢ and 0, and

G20 —0a(20)

< wy (P (020 - 0. 2))

1
1 H2(P+1) 1—v
o0 (1)-+0, (IHIPP*) 4 )

= Op (1)5

X,
NG

6/ 1 — —_
\/),(7 =0p(n7")

~ 2
for0 < v < 3 by (A8)and £ 00, (8 (Z0) = 0a (20) = Oy (IHIP"™) + 1) -

nl—v HH”2(P+1) =0

— 0 as n — o0, since max;

_1
) WO H]



124 YIGUO SUN

Next, we need to show that R, (§) = o, (1). We have E [R,, (§)] = 0, and
by (A.1) and (A.2), R, (0) can be rewritten as

R, (8) = zn: T, — E(Ty| X, Z)] + 0, (1), (A.17)
B (2:) 00 (Z,
T, = / [I(v; <t)—I(V; <0)]dt, (A.18)

00 (Z:)—04(Z;)

then

E (R (9))

= Y BT - E@IX. 2 +o(1) < nE (1)

i
i=1

< nE // Pr (0 < [Vi] < max (|t], |s]) | X, Z) dtds
00 (Z:)—0a(Z:)
~ / 'Y . X!
< nE |Pr G (Z2) — 0 (Z0)] + | 2250 x, 7)) OXiKi0
\/ﬁ n
= 0<1)’

since

ga (Zi) - 9a (Zi)

op (n™") again by (A.8).
Next, since

=0 (1) + 00 (G ) w2

i & ~
7 Xl 01 Z) E (0 (2:) = 00 (2))1X. 2)
= 0, (VRIHIP) =0, (1), (A.19)

if /n|H|"™" — 0 as n — oo, then

Qr (8) = 6'Dy + 6'Cpb/ 2+ 1y (8), (A.20)
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where 7, (§) = 0, (1), and

DH:IZX{ 1(Vi < 0)+ £ (0113) |6 (Z) — 0 (2)
B (0. (2) ~ 02 (2) X, 2) | .

— l - YxX. X' P o= /
C, = anv oL X X! % C=E(f,(0|X,2) XX').

i=1

Then sups y, (6) = 0p (1) holds by the convexity lemma of Pollard (1991).
It follows that gn =n (3(1 — ﬂa,()) = —C7'D,, + 0, (1) holds. It implies
that Ba RN Ba,0, and

Vit (Ba = o) = N (0,), (A.21)

where Qg = C~1DC~!, with D = lim,_.. E[D, D,] if D,, % N (0, D) as
n — oo.

Next, we are going to show that D, 4N (0, D). First, by the results of
Theorem 1, we have

M; = fL (Z» 00 (Z) = B (B (Z:) — 00 (21X, 2)
‘H| ZKmZWmZ V <£mz) _Fv (6mz|Im7Il)]7
m##i
sup |gni = O (IHP*),
where
Kmi:K(H —7;)); and K,y = 0if m =4,

/

Wini = ( 1 wzm ! X ) )
gmi - 9& (Z ) + T Wim — 904 ( )
(

e1 = (10 - ) a (m+k+1) x 1 vector.
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Then

2D, 1 -
\/ﬁ = n(nfl) ZZHn(Az;Am)

i=1 m##i

§1(Z) (n—1)
n|H|
XKmini [I (Vm < fmz) - Fv (5mz|lm7 Il)]} )

~ /
Hn (AmAm) = Xi {Oé — I(‘/z < O) + fv (O|Il) il
where A; = (X;,Z;,V;). Thus H, (A;, A,,) is a symmetric function and
E[H, (4;,Ap)] = 0. Since
E (|1, (Ai, An)IP| = 0 (1HI™) = 0 (m),

if n|H| — oo as n — oo, then, by the Lemma 3.1 in Powell et al. (1989),
we obtain

Lo~ B+l Zj; o (A3) = Bra (A0)] + 0y (x}ﬁ)
— % :1 rn (Ai) + 0p <\/15> )

where r,, (4;) = E[H, (Ai, Am) |A;] # 0 but Er, (A;) = 0. Simple calcu-
lations show that

E [’f’n (Al) Tn (Az)/]

a(l—a)E { X~ B (Xuln)] [xi - B ()?mf)]} +o()
= D+o,(1),

/

where X,, = Xn fo (01Zi, Xon) f (Zi Xin) €057 (Z:) (1 XN(K)" X!)'. Fi-
nally, the multivariate CLT for i.i.d. samples yields D,, = \/—15 S T (Ay) 4,
N (0,D), as n — oo, which will complete the proof of this theorem. |
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