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1. INTRODUCTION

A number of theoretic and empirical studies have provided evidence on
asymmetric effects of monetary policy on output.1 In theory these asym-
metries can arise from a convex aggregate supply curve, such as menu cost
model and wage indexation. They also can arise on the aggregate demand
side due, for example, to credit rationing constraints or a liquidity trap.
Over the past decade the literature on the bank lending channel has pro-
moted the role of banks in the monetary transmission mechanism. This
so-called lending view stresses that the asymmetry of the loan response to
policy, as arising due to differences in bank balance sheet strength, which
is commonly characterized by bank asset size or bank capital. Using micro
banking data disaggregated into different bank-size categories, Kashyap
and Stein (1995) argue that the sensitivity of loans to changes in mon-
etary policy is related to bank size. Loans of big banks, whose borrow-
ers have greater access to national credit markets, have greater sensitivity
to changes in monetary policy than loans at smaller banks. Focusing on
different responses between capital-constrained and unconstrained banks,
rather than between big and small banks, Peek and Rosengren (1995) ex-
amine why the magnitudes of the effect of monetary policy are likely to be
weakened when banks face binding capital constraints. Kishan and Opiela
(2000) emphasize that the loan growth of small, undercapitalized banks is
more responsive to changes in monetary policy than loan growth at lager
and better-capitalized banks. Despite the theoretical arguments regarding
loan asymmetry, empirical studies have not explicitly investigated many of
these issues. Although empirical studies have measured the effects of policy
on loans over the entire business cycle, they fail to differentiate between the
effects of expansionary and contractionary policy on bank loans for banks
of different sizes.2

The main purpose of this paper is to explore whether bank-lending be-
havior can provide a convincing explanation for the asymmetric effect of
monetary policy on output. We investigate whether contractionary and ex-
pansionary policies have asymmetric impacts on bank loans, and whether
there are further differences in the response of small banks and large banks
to policy actions. We also investigate the link between changes in bank
lending and aggregate economic activity. Note that the Commerce De-
partment tracks loan growth because it is a coincident indicator of out-
put growth, and studies by Walsh and Wilcox (1995) and Friedman and

1See Ball and Mankiw (1994), Cover (1992), De Long and Summers (1988), Karras
(1996a, 1996b), Morgan (1993), Ravn and Sola (1996), Rhee and Rich (1996), Weise
(1999), and Kandil (2000).

2See Kashyap and Stein (1995), Kishan and Opiela (2000) and Peek and Rosengren
(1995).
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Kuttner (1993) show a strong relationship between loan growth and GDP
growth. To carry out our analysis, we use a nonlinear vector autoregres-
sive approach to simultaneously capture the existence of the lending view
of the monetary transmission mechanism, the strong relationship between
loan growth and output growth, and the asymmetric effect of monetary
policy on bank loans and output. To emphasize differences in banks asset
size as indicators of balance-sheet strength, we aggregate the Call Reports
data over the period 1976Q1-1999Q3. Our results show that asymmetry
in the response of bank lending to monetary policy is not a substantially
contributing factor in explaining the different responses of output to con-
tractionary and expansionary policy.

The remainder of the paper is organized as follows. Section 2 identi-
fies a nonlinear smooth transition vector error-correction model. Section
3 describes the details of the data and estimation results. Section 4 pro-
vides the investigation of the asymmetries by computing the generalized
impulse response functions. The final section draws the conclusions and
some remarks.

2. MODEL SETUP

2.1. Setup of the Benchmark Model

The vector autoregression model (henceforth, VAR) is widely used as
a convenient method to capture the simultaneous dynamic relationships
among a set of variables. Once estimated, a VAR can be used to simu-
late the response over time of the dependent variables to shocks to the
disturbances in any or all of the equations.

Our VAR system has four endogenous variables, including the log of real
big-bank loans (BL), the log of real small-bank loans (SL), the log of real
gross domestic product (Y), and the real federal funds rates (RFR). The
data used to construct these series will be described in a later section.
Based on statistical tests we cannot reject the null hypothesis that our
four series each have a unit root. We then test for cointegration, and find-
ing cointegration we model our series with a vector error-correction model
(henceforth, VECM). The VECM provides information about the short run
dynamics as well as the long-run relationship among the variables.

Our benchmark model can be written as:

DXt = A0
0 +

n∑

p=1

A0
1p ∗ DXt−p + A0

2 ∗ ECt−1 + E0
t , (1)

where DXt = (DBLt, DSLt, DYt, DRFRt)
′, and the error-correction term

is ECt.
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2.2. Smooth Transition Model

The main purpose of this paper is to examine asymmetries in the ef-
fects of expansionary and contractionary monetary policy on bank lending
and aggregate output. We are therefore interested in a nonlinear model,
one that allows different regimes in response to changes in monetary policy.
Granger and Teräsvirta (1993) summarize a wide variety of nonlinear mod-
els, including regime-switching models for time series. Regime-switching
models can be classified into two general categories.3 One is the smooth
transition regression (henceforth, STR) model,4 which assumes that the
variable defining a regime is observable. The other is the Markov regime-
switching regression model, which assumes that a regime (or state of the
world) is not known with certainty but that the probabilities of being in
each regime and of transitioning between regimes can be estimated. We
use the STR model here, because the monetary policy variable that defines
the state of the world is observable.

Broadly speaking, the STR model can be expressed as:

DXt = A0 + A1 ∗ DXt−1 + A2 ∗ ECt−1

+ (B0 + B1 ∗ DXt−1 + B2 ∗ ECt−1) ∗ F (zt−d) + Et, (2)

where F (zt−d) is the transition function, a continuous function of the tran-
sition variable zt−d and bounded between zero and unity. The transition
function can be specified as either

F (zt−d) = (1 + exp{−γ(zt−d − k)/σz})
−1, whereγ > 0 (3)

or

F (zt−d) = 1 − exp{−γ(zt−d − k)2/σ2
z}, where γ > 0. (4)

If the function F is defined by equation (3), the corresponding model is
called the logistic STR model. It is called the exponential STR model if
F is defined by equation (4). The value of the function F will depend
on the deviation between the value of the transition variable zt−d and the
threshold value k, and on the smooth transition parameter γ which governs
the rate of adjustment between the two regimes. The standard deviation
of the transition variable σz facilitates our estimation of γ.

3The properties and application of these two categories in modeling financial variables
are discussed in detail by Franses and Van Dijk (2000).

4The threshold models can be considered as a special case of STR models. Chan
and Tong (1986); Lüukkonen, Saikkonen and Teräsvirta (1988); Teräsvirta and Ander-
son (1992) and Tersvirta (1994, 1998) introduced the STR models in a univariate (or
autoregressive) version. Granger and Teräsvirta (1993) and Weise (1999) extend these
models to a multivariate context.
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As the value of the function F approaches zero, the dynamics of the
model are generated only by the Ai in equation (2), but as the value of the
function F approaches one, the dynamics are captured by both the Ai and
Bi. This is emphasized if we rewrite equation (2) as:

DXt = (A0 + B0 ∗ F (zt−d)) + (A1 + B1 ∗ F (zt−d)) ∗ DXt−1

+ (A2 + B2 ∗ F (Zt−d)) ∗ ECt−1 + Et. (5)

2.3. Testing for Appropriateness of Linearity and Identifying

the Nonlinear VECM

Before attempting to specify and estimate our nonlinear VECM, we check
whether or not a linear model would suffice. We use a multivariate version
of Granger and Ter?svirtas (1993) test for linearity based on a third-order
Taylor expansion. The alternative hypothesis is nonlinearity, and the test
is based on the following representation:

DXt = A0 + A1 ∗ DXt−1 + A2 ∗ ECt−1

+

3∑

j=1

(B0j + B1j ∗ DXt−1 + B2j ∗ ECt−1) ∗ zj
t−d + Et, (6)

where zt−d is from a set of potential transition variables. The null hypoth-
esis is H0: B0j = B1j = B2j = 0, where j = 1, 2 and 3.

In order to decide between the logistic STR and exponential STR model,
we test a sequence of sub-hypotheses:

H0a: B03 = B13 = B23 = 0,
H0b: B02 = B12 = B22 = 0 given B03 = B13 = B23 = 0, and
H0c: B01 = B11 = B21 = 0 given B02 = B12 = B22 = B03 = B13 =

B23 = 0.
This specification procedure works as follows. If H0a is rejected, choose a
logistic STR model. If H0a is not rejected but H0b is rejected, choose an
exponential STR model. If both Hoa and H0b are not rejected but H0c

is rejected, then choose a logistic STR model. This decision rule can be
sensibly made if the null of linearity is rejected.

In a small sample case, for each equation with each possible transi-
tion variable, we calculate F -statistics as F = [(RRSS − URSS)/(3p(q +
1))]/[URSS/(T − 4p(q + 1) − 1)], where T is the number of the avail-
able observations, p is the lag length, q is the number of endogenous vari-
ables, and RRSS and URSS are residual sum of squares from the re-
stricted and unrestricted regressions, respectively. However, this test is
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not strictly appropriate in the system as a whole. Instead we can calcu-
late log-likelihood ratios. Let Ωu =

∑
ûtût

′/T and Ων =
∑

ν̂tν̂t
′/T be

the estimated variance-covariance matrices of residuals from the restricted
and unrestricted models, respectively. Then we calculate log-likelihood ra-
tios as LR = T {ln |Ωu| − ln |Ων |} which are asymptotically distributed as
χ2(pq(q + 1)).

3. DATA AND ESTIMATION RESULTS

3.1. Data

Quarterly data on federally insured commercial bank balance sheet items
(e.g. on total assets and total loans) were obtained from the Report of Con-
dition and Income (or Call Reports). The data is available on-line from the
Federal Reserve Bank of Chicago from 1976Q1 to 1999Q3. In order to con-
struct consistent time series, we rely heavily on notes created by Kashyap
and Stein (2000) to adjust for changes over time in variable definitions. A
fuller discussion of the data employed and variables constructed appears in
the Appendix A.

We divide the banks into two size categories, those with assets less than
or equal to $300 million, and those with assets over $300 million C in 1999
dollars.5 Banks are placed in a size category based on their real total
assets for that quarter, where the real total assets are total assets deflated
by the consumer price index not seasonally adjusted. Aggregated data on
bank loans are deflated by the consumer price index, and then logged.6

Most of the empirical work regarding the bank-lending channel uses the
nominal federal funds rate as the measure of the indicator of the monetary
policy, following Bernanke and Blinder (1992). In this paper we construct
quarterly data on the real federal funds rate as an indicator of monetary
policy because it more plausibly captures the real cost of borrowing, which
in turn affects the real sector of the economy. Appendix B provides details
of constructing the expected inflation rate, and thereby the real federal
funds rate, which is defined as the difference between nominal federal funds
rate and expected inflation rate. We note that our measure of expected

5We use these divisions since Kishan and Opiela (2000) find banks with assets <= $300
million and with capital leverage ratio <= 8% to be the most responsive. Gilbert and
Hansen (2001) also use the same division.

6Kashyap and Stein (2000) explain how they dealt with bank mergers. Since we look
at aggregates of small and big banks, we do not have the same difficulties with mergers.
If a small bank (a big bank) is still classified as a small bank (a big bank) after merging
with another bank, then there is no problem. But even if a small bank switches its
classification from small to big after merging with another bank in a specific quarter,
this bank will be switched to the big bank category after the merger, and again there is
no problem.
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inflation is predetermined at time t, so that a policy change in the nominal
funds rate translates directly into a change in the real federal funds rate at
time t. For comparison to the literature, we have also estimated a version
of our model using the nominal funds rate as our measure of policy, and
the results are quite similar. Finally, the log of real gross domestic product
measures aggregate economic activity.

FIG. 1. Time Series in Levels
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The time series in levels and in differences are shown in Figure 1 and
Figure 2, respectively. On the basis of Augmented Dickey-Fuller (hence-
forth, ADF) tests, all variables appear to be nonstationary.7 The Schwarz
information criterion indicates that our VAR has lag length one. Because
all series have unit roots, we conduct the Johansen-type likelihood ratio
tests for cointegration. The results given in Table 1 indicate the existence
of one cointegrating vector. Thus, our benchmark model is identified as a

7Before doing the ADF tests, we first tested the adequacy of the lag specification with
diagnostic Q-statistics, serial correlation LM tests, and ARCH tests. All series passed
these tests.
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FIG. 2. Time Series in Differences
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first-order linear VECM as follows:

DXt = A0
0 + A0

1 ∗ DXt−1 + A0
2 ∗ ECt−1 + E0

t , (7)

where ECt = BLt − 2.61 ∗ SLt − 2.08 ∗ Yt − 0.03 ∗ RFRt + 40.52.8

3.2. Estimation of the LSTVECM

Table 2 reports the results of linearity tests for each equation of the
VECM and for the system as a whole. We considered a range of possible
threshold variables z, listed in the first column. The tests for linearity,
H0, reject linearity in the system test for all the threshold variables we
considered except DSLt−1. The rejection of linearity is strongest when the

8Because real GDP is seasonally adjusted, we seasonally adjust the growth rate of bank
loans and the expected inflation rate. In order to get consistent series when computing
the error-correction term, the bank loans series in level are also seasonally adjusted.
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TABLE 1.

Johansen Cointegration Tests

Sample: 1976:3-1999:3

Series in level: BL, SL, Y and RFR

Eigenvalue Likelihood 5 Percent 1 Percent Hypothesized

Ratio Critical Value Critical Value No. of CE(s)

0.245 49.916 47.21 54.46 None *

0.177 23.779 29.68 35.65 At most 1

0.044 5.717 15.41 20.04 At most 2

0.016 1.489 3.76 6.65 At most 3

*(**) denotes rejection of the hypothesis at 5%(1%) significance level

L.R. test indicates 1 cointegrating vector at 5% significance level

Normalized Cointegrating Coefficients: 1 Cointegrating Equation

(standard errors in parentheses)

BL SL Y RFR Constant

1.000 −2.608 −2.078 −0.032 40.524

(1.327) (0.603) (0.019)

Notes: Trace statistic for a system with autoregressive order one, linear determin-
istic trend in the variables and in the cointegration vector(s). The critical values
are from Eviews 3.1. BL, SL, Y, and RFR denote the log of the real big bank
loans, real small bank loans, real GDP and the real federal funds rate, respectively.

transition variable is either the change in the policy variable (DRFRt−1)
or the change in real GDP (DYt−1).

We next report results for the test H0a, the test for the significance of
the third order terms in the Taylor expansion on which the linearity test
H0 is based. Rejection indicates that the logistic smooth transition model
would best fit the data. We only report these results for variables that led
to rejection of linearity in test H0. We reject H0a when DRFRt−1 is the
transition variable.

Finally, we report results for the test H0b, the test for the significance of
the second order terms in the Taylor expansion. Rejection indicates that
the exponential smooth transition model would best fit the data. We only
conduct this test for the variables that did not reject H0a. We reject H0b

for DBLt−1 and DYt−1.
Our results provide strong evidence not only against linearity but also in

favor of a logistic smooth transition VECM (henceforth, LSTVECM) when
the transition variable is the lagged change in the real federal funds rate
(DRFRt−1). Hence we adopt that variable as the transition variable.

There can be numerical problems in estimation of smooth transition
regression models related to estimating the slope of the transition function
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TABLE 2.

P-values of Linearity Tests

zt DBL DSL DY DRFR System

H0

DBLt−1 0.174 0.003 0.143 0.199 0.029∗

DSLt−1 0.207 0.104 0.092 0.040 0.053

DYt−1 0.024 0.070 0.006 0.062 0.001∗

DRFRt−1 0.707 0.714 0.007 0.000 0.005∗

H0a

DBLt−1 0.418 0.024 0.420 0.927 0.188

DYt−1 0.038 0.361 0.011 0.566 0.057

DRFRt−1 0.608 0.696 0.017 0.077 0.043∗

H0b

DBLt−1 0.031 0.008 0.272 0.081 0.007∗

DYt−1 0.300 0.029 0.128 0.582 0.050∗

Notes: * indicates rejection of the null at the 5% significance
level. DBL, DSL, DY, DRFR, and z denote real big bank
loan growth, real small bank loan growth, real GDP growth,
the change in the real federal funds rate, and the transition
variable, respectively.

γ and the threshold value k. The problems with estimating the threshold
value have been outlined in Hansen (1997), and we follow his advice to deal
with these by using a grid search. There are also potential problems with
the smooth transition parameter. When γ is large the smooth transition
regression model is very close to a threshold regression model. This can
make estimation of γ difficult in small samples, because accurate estimation
requires a sufficient number of observations of the transition variable on
both sides of k. We adopt a two-dimensional grid search to determine initial
values for γ and k. We do this by picking values of γ and k that minimize
the log of the determinant of the variance-covariance matrix of residuals.
In the final step we use the prior estimates of all parameters except γ to get
estimates of all the parameters including k, given the previously estimated
value γ.

Our estimation results are reported in Table 3. The estimation of the
smooth transition parameter γ equals 74.55. The threshold value k equals
−1.69, which is significantly different from zero and lies in the lower tail
of the distribution of the change in the real federal funds rate. The tran-
sition function F (zt−d) can be written as (1 + exp(−74.55 ∗ (DRFRt−1 +
1.697)/1.493))−1. The histogram of the transition variable and the graph
of the transition function are depicted in Figure 3.

It is important to note that in the equations for the growth rate of output
(DYt) and the change in the real federal funds rate (DRFRt), the coeffi-
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TABLE 3.

The Estimation of LSTVECM

DBL DSL DY DRFR

Constant −1.331 1.028 4.474 11.492

(0.697) (0.654) (0.014) (0.000)

DBLt−1 0.918 0.514 −0.111 −0.091

(0.169) (0.251) (0.754) (0.870)

DSLt−1 −0.745 −0.016 −0.057 1.260

(0.450) (0.980) (0.914) (0.129)

DYt−1 −0.088 −0.301 1.163 0.461

(0.931) (0.659) (0.032) (0.589)

DRFRt−1 −0.446 0.473 1.924 4.345

(0.775) (0.652) (0.021) (0.001)

ECt−1 −2.766 1.302 10.176 27.841

(0.597) (0.711) (0.000) (0.000)

F (zt−1) 1.637 −1.430 −3.877 −11.987

(0.633) (0.535) (0.034) (0.000)

DBLt−1 ∗ F (zt−1) −0.606 −0.324 0.194 0.067

(0.369) (0.475) (0.588) (0.906)

DSLt−1 ∗ F (zt−1) 1.048 0.296 0.227 −1.336

(0.294) (0.660) (0.669) (0.112)

DYt−1 ∗ F (zt−1) 0.499 0.555 −1.033 0.101

(0.629) (0.425) (0.061) (0.908)

DRFRt−1 ∗ F (zt−1) 0.186 −0.588 −1.861 −4.388

(0.905) (0.575) (0.026) (0.001)

ECt−1 ∗ F (zt−1) 2.186 1.696 −10.265 −26.813

(0.683) (0.638) (0.000) (0.000)

R2 0.321 0.488 0.311 0.485

Notes: P-values are in parenthesis. DBL, DSL, DY, and DRFR, EC,
z denote real big bank loan growth, real small bank loan growth,
real GDP growth, a change in real federal funds rate, error-correction
term and transition variables, respectively. The transition function
F (zt−1) = (1 + exp{−74.55 ∗ (zt−1 + 1.697)/1.493}) − 1. The error-
correction term ECt = BLtC2.61∗SLtC2.08∗YtC0.03∗RFRt+40.52.

cients on their own lags are greater than one (in absolute value). This may
appear to indicate that the model exhibits nonstationarity. To address this
issue we examine the two extreme regimes. In one the transition function
equals one, so the dynamics will be captured by the sum of the coefficients
associated with their own lags. Using our estimation results, the DYt and
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FIG. 3. Transition Variable
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DRFRt equations can be expressed as:

DYt = 0.6 + 0.08 ∗ DBLt−1 + 0.17 ∗ DSLt−1 + 0.13 ∗ DYt−1

+ 0.06 ∗ DRFRt−1 − 0.09 ∗ ECt−1

DRFRt = −0.5 − 0.02 ∗ DBLt−1 − 0.08 ∗ DSLt−1 + 0.56 ∗ DYt−1

− 0.04 ∗ DRFRt−1 + 1.03 ∗ ECt−1

The sum of the coefficients associated with DYt−1 equals 0.13 in equation
DYt, and that associated with DRFRt−1 equals −0.04 in equation DRFRt.
Thus there is no issue of nonstationarity.
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The other extreme case is when the transition function equals zero. Our
estimated model can be expressed as:

DYt = 4.47 − 0.11 ∗ DBLt−1 − 0.06 ∗ DSLt−1 + 1.16 ∗ DYt−1

+ 1.92 ∗ DRFRt−1 + 10.18 ∗ ECt−1

DRFRt = 11.49− 0.09 ∗ DBLt−1 + 1.26 ∗ DSLt−1 + 0.46 ∗ DYt−1

+ 4.35 ∗ DRFRt−1 + 27.84 ∗ ECt−1

Here it appears that unstable dynamics may be brought about by the
coefficient on DYt−1 in equation DYt and the coefficient on DRFRt−1 in
equation DRFRt, which equal 1.16 and 4.35, respectively. However, upon
further reflection this may not be a concern. First, it is clear that these
regions are not common in the sample. But, more importantly, we find
that the coefficients associated with the error correction term are large and
stabilizing. For example, consider a state of the world with DRFRt−1 <<
−1.69, so that the transition function is zero and the model looks to be
potentially nonstationary. But a large decline in RFRt also results in a
larger (positive) value for the error correction term ECt, which in turn
tends to increase DRFRt and counter the direct effect of DRFRt−1 on
DRFRt. Of course, a more formal approach is to consider the impulse
response functions and make sure the model generates a stationary response
to disturbances. We do this below.

One of the crucial issues we are concerned is whether the behavior of big
bank loans is different from small bank loans. Our estimation results show
the coefficients in the equations of bank loans are insignificantly different
from zero. We conduct the log-likelihood ratio (henceforth, LR) test to
see the equality of the coefficients on the first two equations in our esti-
mation. The LR statistics equals 48.29, much greater than χ2

12,0.05, so we
overwhelmingly reject the null of equality. This implies that large bank
and small bank loans behave differently.

4. INVESTIGATING THE ASYMMETRIES

Based on the estimated model, we investigate the asymmetric effects
which are generated as responses to shocks to monetary policy. Because
nonlinear models can exhibit asymmetries with respect to both the size
and sign of shocks, we calculate the generalized impulse response functions
(henceforth, IRFs), following the methods described by Koop, Pesaran, and
Potter (1996).9 Because IRFs in nonlinear models are history-dependent,

9See the Appendix C for details of computing the generalized IRFs.
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we calculate these for a contractionary period (1980Q4) and an expansion-
ary period (1983Q1). The results are shown in Figures 4-7.

FIG. 4. Impulse Response Functions to the Relatively Small Shocks in 1980:4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13

DBLp05

DBLn05

DBLp10

DBLn10

DBLp15

DBLn15

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13

DSLp05

DSLn05

DSLp10

DSLn10

DSLp15

DSLn15

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1 2 3 4 5 6 7 8 9 10 11 12 13

DYp05

DYn05

DYp10

DYn10

DYp15

DYn15

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10 11 12 13

DRFRp05

DRFRn05

DRFRp10

DRFRn10

DRFRp15

DRFRn15

Real GDP 

growth

Change in 
policy

Big bank
loan growth

Small bank
loan growth

The ‘p’ and ‘n’ denote the positive and negative shock, respectively. The number
05, 10, and 15 denote the different standard deviations in size. For example,
DBLp05 shows the response of DBL to a positive one-half standard deviation
shock.

Figure 4 shows our estimates of the impulse responses of DBL, DSL,
DY , and DRFR to shocks to monetary policy changes, DRFR, in 1980Q4.
Panel (c) of Figure 4 shows that in response to a positive shock to DRFR,
real output growth first rises sharply for one quarter, and then declines
sharply. It reaches its trough about two quarters after the DRFR shock,
and gradually rebounds to its pre-shock level about nine quarters after the
DRFR shock. For a positive one standard deviation shock to the change in
the real federal funds rate, real output growth rises to about 0.07 percent
above baseline, then declines, reaching a trough about 0.04 percent below
the baseline before gradually returning to the baseline path. In panel (a)
of Figure 4, there is a short, sharp, and significant decrease in growth of
real big bank loans in response to a positive shock to the DRFR. After this
large decline, big bank lending growth declines toward the baseline, which
it returns to about two and one-fourth years after the shock. We attribute
the decline in lending that immediately follows a monetary contraction to
the increased costs of borrowing from banks. As expected, the response
of DBL, plotted in panel (a), is much greater than the response of DSL,
plotted in panel (b). Because large firms have relatively greater access



THE EFFECT OF MONETARY POLICY 143

to alternative sources of finance, (for example they can issue corporate
bonds), when large firms face a contractionary policy which may increase
their costs of borrowing from banks, these large firms will choose to find
other sources of finance rather than pay the higher cost of loans. This
reduces the volume of loans at the big banks. Small firms do not have
this ability to easily access other sources of finance. When small firms
face an increased cost of borrowing due to a contractionary policy, their
dependence on bank loans makes them more likely pay the higher cost.
Therefore, the small banks will not have as big a change in the volume
of loans. In this sense it follows that the bigger the bank, the larger the
change in loan growth in response to a change in monetary policy.

FIG. 5. Impulse Response Functions to the Relatively Big Shocks in 1980:4
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The ‘p’ and ‘n’ denote the positive and negative shock, respectively. The number
15, 20, and 25 denote the different standard deviations in size. For example,
DBLp15 shows the response of DBL to a positive one and one-half standard
deviation shock.

Figure 5 shows the impulse response functions for large shocks to mon-
etary policy in 1980Q4. Compared to Figure 4, we see that both positive
and negative shocks cause only slightly different responses when the size of
the shock is not greater than one and one-half standard deviation. How-
ever, the responses to a negative shock are completely flipped around when
the size of the shock is greater than one and one-half standard deviation.
This happens because such a large negative shock to the change in the real
federal funds rate causes a switch from one regime to another. The large
negative shock essentially decreases the transition variable so much that
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it declines below the threshold value of −1.7 percent, leading to a regime
change and vastly different dynamics. Here a negative two and one-half
standard deviation decline in the change in the real federal funds rate,
about −3 percent, causes a large decline in growth of real big bank loans
(−1.25 percent), in growth of real small bank loans (−0.57 percent), but
a large increase in real output growth (+1.5 percent) and in the change in
the real federal funds rate itself (+3 percent). These responses are tem-
porary, with output growth and the change in the real federal funds rate
declining quickly to the baseline path, while bank loan growth increasing
more gradually. Small bank loan growth only returns near the baseline
level after more than two years.

FIG. 6. Impulse Response Functions to the Relatively Small Shocks in 1983:1
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The ‘p’ and ‘n’ denote the positive and negative shock, respectively. The number
05, 10, and 15 denote the different standard deviations in size. For example,
DBLp05 shows the response of DBL to a positive one-half standard deviation
shock.

The impulse response functions for the model for 1983Q1 in Figures 6
and 7 do not show this remarkably different response to the different sign
and size of the shock. Comparing Figure 4 to Figure 6, the responses
to small shocks are very similar despite the different initial conditions.
However, comparing Figure 5 to Figure 7, the responses differ greatly to
shocks greater than one and one-half standard deviation.

Our results show how change in monetary policy will bring about changes
in economic activity and loan growth. These results imply that bank lend-
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FIG. 7. Impulse Response Functions to the Relatively Big Shocks in 1983:1
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The ‘p’ and ‘n’ denote the positive and negative shock, respectively. The number
15, 20, and 25 denote the different standard deviations in size. For example,
DBLp15 shows the response of DBL to a positive one and one-half standard
deviation shock.

ing behavior is not independent of the monetary transmission mechanism
and has different impacts due to the differences in bank size. Our results
also show that the asymmetric effect of policy is not always intensified by
the bank lending channel. That is, different signs of shocks and different
initial conditions do not give rise to significant differences in responses when
the shocks are small. When the sizes of the negative shocks are sufficiently
big they cause a change in regime and thereby cause asymmetries.

5. CONCLUDING REMARKS

We employ the logistic smooth transition vector error correction model
(LSTVECM) to investigate the asymmetric interaction of bank lending,
aggregate output and monetary policy. We differentiate the effects of ex-
pansionary and contractionary monetary policy on loan growth and out-
put. Our results indicate that the asymmetric effect is not intensified by
the bank lending channel; however, the different sizes of the shocks to the
change in the real federal funds rate lead to large asymmetries in the case
of big negative shocks to the change in the real federal funds rate. Our
results show that big bank loan growth has a much greater response to
monetary policy, compared to that of small banks. We also provide the
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evidence that banks play an important role in the monetary transmission
mechanism.

We imposed two strong assumptions in our model. First, we assume
that each equation in our system has the same threshold value and the
same smoothing parameter; therefore we have the same transition function
in each equation. Second, we only assume there is a single threshold, a
two-regime model. In this sense the state of the world is only described by
two regimes. In future work it might be useful to allow multiple regimes
as well as multiple thresholds.

APPENDIX: DATA DESCRIPTION

Our sample is drawn from the set of all insured commercial banks whose
regulatory filings show that they have positive assets. Between the first
quarter of 1976 and the third quarter of 1999, this yields 1,000,524 bank-
quarters of data. We construct two main series from the Call Reports
that are used in our empirical work. Our size categories are formed by
sorting the banks on the basis of their real total assets. Real total assets
are from the call report item rcfd2170, deflated by the consumer price
index. Throughout our sample, the total assets data are measured on a
consistent basis, but much more detail concerning bank assets and liabilities
was collected starting in March 1984. Therefore many series are defined
somewhat differently before and after that date.

The data for total loans after March of 1984 come from item rcfd1400 in
the Call Reports. The series is defined as “Gross Total Loans and Leases”.
In March of 1984, the series was changed to include “Lease Financing
Receivables”, which comes from item rcfd2165 in Call Reports. Therefore,
prior to March 1984, the series rcfd1400 and the series rcfd2165 must be
summed to insure comparability. As mentioned by Kashyap and Stein
(2000), we unfortunately have no way to avoid some discontinuity for many
big-bank loans, because in December 1978 banks began reporting their
lending on a consolidated basis with foreign and domestic loans no longer
separately identified.

APPENDIX: CONSTRUCTING THE REAL FEDERAL

FUNDS RATE

The BLS releases the consumer price index (CPI) for the previous month
on the 15th of each month. For example, we know the CPI for December
2001 on the 16th of January 2002. Therefore, during the 1st-15th of Jan-
uary 2002, we only know the CPI prior to December 2001. We then can
compute the monthly inflation rate for November 2001 and prior to that
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time. Because the quarterly inflation rate can be calculated by the formula
(CPIt/CPIt−3 − 1) ∗ 100, we also know the quarterly inflation rate for the
third quarter of 2001 during that time. Thus, during the 1st-15th of Janu-
ary 2002, we can forecast the quarterly inflation rate for the second quarter
of 2002 using not only the quarterly inflation rate for the third quarter of
2001, but also the monthly inflation rate for November 2001 and October
2001.

From the 16th of January 2002 to the 15th of February 2002, we can
compute the monthly inflation rate for December 2001 and prior to that
time. We then can forecast the quarterly inflation rate for the second quar-
ter of 2002 using the quarterly inflation rate for the third quarter of 2001,
the monthly inflation rate for December 2001, November 2001, and Octo-
ber 2001. From the 16th of February 2002 to the 15th of March 2002, we
can compute the monthly inflation rate for January 2002. Then, we can
forecast the quarterly inflation rate for the second quarter of 2002 using
the quarterly inflation rate for the third quarter of 2001, the monthly infla-
tion rate for January 2002, December 2001, November 2001, and October
2001. From the 16th to the last day of March 2002, we can compute the
monthly inflation rate for February 2002. During that time, we can fore-
cast the quarterly inflation rate for the second quarter of 2002 using the
quarterly inflation rate for the third quarter of 2001, the monthly inflation
rate for February 2002, January 2002, December 2001, November 2001,
and October 2001. The resulting quarterly inflation rate forecasting for
second quarter of 2002 can be obtained by weighting over these four types
of forecasting and are presented in annualized rate. Throughout our analy-
sis we use the (monthly) CPI over the period 1975:02-1999:03 to estimate
the quarterly expected inflation rate over the period 1976:1-1999:3. In the
graph below, the inflation rate from the actual data is called PIACT, while
our constructed inflation rate forecasting is called PIHAT.
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To demonstrate the PIHAT performed well, we conduct some diagnostic
tests, including the test of unbiasedness and efficiency, the Breusch-Godfrey
Serial Correlation LM Test, ARCH Test, and forecast-encompassing test.

One widely used test for biasedness regresses the actual values PIACT
on a constant and the forecast values PIHAT:

PIACT = a + b ∗ PIHAT + e,

and tests whether a = 0 and b = 1. Table B.1 reports the results for the
current quarter forecast of inflation rate. It indicates no problem of bias,
with an insignificant constant and a significant coefficient on the forecast.
The Wald test indicates that we cannot reject the joint test of a = 0 and
b = 1. Table B.2 and Table B.3 show that the null hypothesis of no serial
correlation is not rejected at even the 10% significant levels. That is, the
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serial correlation tests indicate no evidence of serial correlation. Thus, our
forecast appears unbiased and efficient.

TABLE 1.

Test of Unbiasedness

PIACT Coefficient Std. Error t-Statistic Prob.

C −0.217 0.585 −0.370 0.712

PIHAT 1.046 0.111 9.414 0.000

Wald Test under H0: a = 0 and b = 1

F-statistic 0.086 Probability 0.918

Chi-square 0.172 Probability 0.918

TABLE 2.

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 0.878 Probability 0.419

Obs*R-squared 1.799 Probability 0.407

TABLE 3.

ARCH Test

F-statistic 1.432 Probability 0.235

Obs*R-squared 1.440 Probability 0.230

For forecast-encompassing test, we follow the procedure applied by Jansen
and Kishan (1996). First, we regress PIACT on a constant and PIACT (−3)
to get the fitted value, PIACTF. Then we regress PIACT on a constant,
PIACTF and PIHAT to test whether PIHAT adds information to the fore-
cast PIACTF. PIHAT seems to have more information than PIACTF but
we are not sure which one is a better forecast for the inflation rate. The
encompassing test mainly provides evidence to compare the different infor-
mation content of the variables. In our application, the test asks whether,
given the conventional forecast (PIACTF), our constructed forecast (PI-
HAT) adds any useful information for forecasting. Similarly, we can ask
whether, given our constructed forecast, the conventional forecast adds any
useful information for forecasting. To conduct this test, Jansen and Kishan
(1996) suggest running two regressions. One is to regress the difference be-
tween PIACT and PIHAT on the difference between PIACTF and PIHAT.
The other is to regress the difference between PIACT and PIACTF on the
difference between PIHAT and PIACTF. The results of the encompass-
ing tests are reported in Table B.4. For the current quarter inflation rate
forecast, our constructed forecast (PIHAT) encompasses the conventional
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forecast (PIACTF) at the 5% significant level (t-statistic 4.41, probability
value 0.00), while the conventional forecast (PIACTF) does not encompass
our constructed forecast (PIHAT) at the 5% significant level (t-statistic
−1.18, probability value 0.24). Thus our constructed forecast (PIHAT)
contains information not available in the conventional forecast (PIACTF),
and is in this sense superior to PIACTF. Consequently, we demonstrate
the evidence that our constructed forecast (PIHAT) passes the diagnostic
tests of unbiasedness and efficiency and encompassing test, and that there
is no serial correlation.

TABLE 4.

Forecast-Encompassing Tests

PIA = PIACT − PIHAT

PIAR = PIACTF − PIHAT

Dependent Variable: PIA

Variable Coefficient Std. Error t-Statistic Prob.

PIAR −0.366 0.310 −1.183 0.240

PIB = PIACT − PIACTF

PIBR = PIHAT − PIACTF

Dependent Variable: PIB

Variable Coefficient Std. Error t-Statistic Prob.

PIBR 1.367 0.310 4.411 0.000

APPENDIX: COMPUTING THE GENERALIZED

IMPULSE RESPONSE FUNCTIONS FOR LSTVECM

The following algorithm is used to compute the generalized impulse re-
sponses in this paper. The nonlinear model generating the q-dimensional
variable in difference DX is assumed to be known, that is, sampling vari-
ability is ignored. Because we have error-correction term, we need convert
the variable in difference to the variable in level. Then we can compute
the evolution of the error-correction term. The shock to the ith variable
of DX, vi0, occurs in period 0, and responses are computed for h periods
thereafter. The shock is a positive or negative 0.5, 1, 1.5, 2, or 2.5 standard
deviation shock to the DRFR. With the DRFR placed last in the order-
ing, there is no contemporaneous effect on other variables in the system.
The structural shocks are identified using a Choleski decomposition in that
order.

1. Pick a history ωr
t−1. The history is the actual value of the lagged

variables at a particular date.
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2. Pick a sequence of (q-dimensional) shocks vb
t+n, n = 0, . . . , h. The

shocks are drawn with replacement from the estimated residuals of our
LSTVECM. The shocks are assumed to be jointly distributed, so if date
t’s shock is drawn, all q residuals for date t are collected.

3. Using ωr
t−1 and vb

t+n, compute the evolution of DXt+n, over (h + 1)
periods. Then calculate the evolution of the variables in levels Xt+n =
DXt+n/100 + Xt over h periods. Therefore, the error correction term
ECt+n = (1,−2.61,−2.08,−0.03) ∗ X ′

t+n + 40.52 over h periods. Denote
the resulting baseline path in differences DXt+n(ωr

t−1, v
b
t+n), n = 0, . . . , h.

4. Substitute vi0 for the i, 0 element of vb
t+n and compute the evolution of

DXt+n over (h + 1) periods. Then calculate the evolution of the variables
in levels Xt+n = DXt+n/100 + Xt over h periods. Therefore, the error
correction term ECt+n = (1,−2.61,−2.08,−0.03) ∗ X ′

t+n + 40.52 over h
periods. Denote the resulting simulated path DXt+n(vi0, ω

r
t−1, v

b
t+n), n =

0, . . . , h.

5. Repeat steps 2 to 4 for 10,000 times and compute Ga
t+n(vi0) = [DXt+n(vi0, ω

r
t−1, v

b
t+n)−

DXt+n(ωr
t−1, v

b
t+n)]/10000 for the averaged impuse response functions.

Notice that, at Step 1, dates are chosen from a particular subsample of
the data, we try those dates for which lagged DRFR was maximum and
minimum. In the sense that monetary policy is extremely contractionary
and extremely expansionary at that moment, which is 1980Q4 and 1983Q1,
respectively.
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