
ANNALS OF ECONOMICS AND FINANCE 6, 155–167 (2005)

A Simple Matching Method for Estimating Sample Selection

Models Using Experimental Data

Songnian Chen

The Hong Kong University of Science and Technology

and

Yahong Zhou

The Shanghai University of Economics and Finance

In this paper estimation of sample selection models using experimental data
is considered with some weak restriction imposed on the error distribution. Un-
der a normality setting, the most popular approach is the two-step method pro-
posed by Heckman (1979). But Heckman’s approach relies on the nonlinearity
of the probit function (i.e. the nonlinearity of the selection correction func-
tion ) unless some exclusion restriction is imposed. Furthermore, Heckman’s
method is sensitive to the underlying distributional assumption. Following
this two-step method, several semiparametric estimators have been proposed
for sample selection models by explicitly imposing the exclusion restriction.
Using experimental data, this paper proposes a simple semiparametric match-
ing method. There are certain advantages of our estimator over Heckman’s
estimator and the existing semiparametric estimators under either the para-
metric setting and semiparametric setting. We do not rely on the nonlinearity
of the selection correction function or the exclusion restriction. In addition,
unlike other semiparametric methods, we can also estimate the intercept term
in the equation of interest. The estimator is shown to be consistent and as-
ymptotically normal under some regularity conditions. A small monte carlo
study illustrates the usefulness of the new estimator. c© 2005 Peking University

Press
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1. INTRODUCTION

In this paper estimation of a regression equation (the outcome equation)
subject to a sample selection rule and random assignment is considered
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based on experimental data. The experimental data in question here is
generated as follows. In the first stage the selection rule identifies the
group of nonparticipants for whom the regression equation is observable.
In the second stage, some randomization scheme is applied to the remain-
ing individuals, among whom the regression equation is only observable for
the randomized-out group. In the context of job training program eval-
uations (see e.g., Heckman et. al 1998), we are interested in estimating
the earnings equation for nontrainees using experimental data (henceforth
the baseline earnings equation). This is an important step in determining
various aspects of the program benefits and characterizing the selection
bias. In the first stage, a selection rule classifies the whole sample into
nontrainees (or nonparticipants) and prospective trainees. In the second
stage only a fraction of the prospective trainees receive training according
to certain random assignment, while the remaining portion of the latter
group are randomized out for the training program. Thus we observe the
baseline earnings equation for the nonparticipants and the randomized-out
control group.

Estimation of sample selection models in the context of evaluating vari-
ous training programs has mainly been based on techniques developed for
nonexperimental data sets. In recognizing deficiencies of the conventional
methods and limitations of the nonexperimental data, many researchers
have turned to the available experimental data to recover various aspects
of training programs (see, e.g., Lelonde (1986), Fraker and Maynard(1987),
Heckman et. al (1998)). There have been numerous social experiments, es-
pecially for the purpose of evaluating the impact of federal job training on
earnings and employment. In this paper we propose a new approach to
estimating sample selection models by taking advantage of unique features
of experimental data.

For sample selection models, the least squares method would produce
inconsistent estimates due to the presence of the selection correction term
in the outcome equation. The usual approach is to specify the distribution
of the underlying errors parametrically, normality in particular, and inde-
pendent of the explanatory variables. Then the parameters of the model
can be consistently estimated by maximum likelihood or other likelihood
based methods. The two-step method proposed by Heckman (1974,1976)
is by far the most popular approach by including a consistent estimate
of the selection correction term as part of the regressors in the outcome
equation. One important limitation of Heckman’s approach is its reliance
on the nonlinearity of the probit function (i.e. the nonlinearity of the se-
lection correction function ) unless some exclusion restriction is imposed.
More significantly, misspecification of the error distribution in sample se-
lection models will in general render likelihood-based estimators inconsis-
tent. Since a parametric form of error distributing can not generally be
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justified by economic theory, following Heckman’s two-step approach, sev-
eral semiparametric estimation methods have been proposed recently for
sample selection models (see, e.g., Andrews, Newey (1988), Powell (1989),
Heckman et. al (1998), among others), which only assume weak restriction
on the error distribution to guard against possible misspecification. These
semiparametric estimators, however, require that the exclusion be satis-
fied. In addition, the intercept in the outcome equation is absorbed into
the selection correction term in these semiparametric approaches, thus can
not be estimated along the slope parameters.

In the paper we propose a new semiparametric estimator by taking ad-
vantage of unique features of experiment data. The idea behind our esti-
mator is based on the following observation. In the experimental data with
mild conditions there exist pairs of individuals with offsetting selection bi-
ases. Simple matching of such pairs would eliminate the selection bias in
a straightforward way. Our estimator does not rely on the nonlinearity of
the selection correction function or exclusion restriction. Furthermore, un-
like other semiparametric methods, we can also consistently estimate the
intercept term in the outcome equation.

This paper is organized as follows. The next section describes the model
and motivates the proposed estimator. Section 3 gives regularity conditions
and investigates the large sample properties of the estimator. They are
shown to be consistent and asymptotically normal. Section 4 reports a
small monte Carlo study. The final section concludes.

2. THE MODEL AND ESTIMATORS

We consider estimation of the sample selection model with experimental
data defined by

y = xβ0 + u (1)

d = 1{wδ0 − v > 0} (2)

where we wish to estimate β0 ∈ RK2 and δ0 ∈ RK1 based on observations
of (d, (1− d)y, d(1−R)y, x, w)), and R is an random variable independent
of the other variables in the model that can take on values 0 and 1. Here
y is the potential outcome equation. d is a discrete choice variable, (x,w)
are vectors of exogenous variables which may have components in common
and R is an randomization indicator. Let z be a vector consist of the
distinct components in (x,w). In the first stage, the selection equation (2)
determines the subsample of nonparticipants with d = 0 for whom the
equation (1) is observable. For the remaining individuals, the potential
outcome equation is observable according as the randomization indicator
R is equal to 0 or not. Consequently the potential outcome equation is
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observable if d1 = 1 or d2 = 1 where d1 = (1−d) and d2 = d(1−R). In the
context of training programs evaluations with experiment data (see, e.g.,
Heckman et. al. 1998), here we are interested in estimating the baseline
earnings equation for nontrainees. d = 1 indicates that a person applies and
is provisionally accepted into the program before the act of randomization.
R = 1 if a person for whom d = 1 is randomly assigned into the program,
and R = 0 if the person is denied access to the program. Therefore we
observe the baseline earnings equation for the individuals with d1 = 1 or
d2 = 1.

When the error terms are normally distributed, the model can be esti-
mated by maximum likelihood. But the usual approach is the computa-
tionally simpler two-step method first proposed by Heckman (1974,1979).
Under normality we have

E(u|d1 = 1, z) = E(u|d = 0, z) = σ12σ
−1
1 λ1(wδ0/σ1)

and

E(u|d2 = 1, z) = E(u|d = 1, R = 0, z) = E(u|d = 1, z) = σ12σ
−1
1 λ2(wδ0/σ1)

where σ12=cov(u, v), σ1=var(v), λ1(t) = φ(t)/Φ(t), and λ2(t) = −φ(t)/(1−
Φ(t)) with φ(t) and Φ(t) denoting the density and distribution functions
for the standard normal random variable. Define d∗ = d1 + d2, so we have

E[u− d1λ1(wδ0)− d2λ2(wδ0)|d∗ = 1, z] = 0

Heckman’s two step estimator is based on the following moment equation
for the subsample d∗ = 1,

y = xβ0 − σ12σ
−1
1 (d1λ1(wδ0) + d2λ2(wδ0)) + ε1 (3)

such that E(ε1|d1, d2, z) = 0. Given a first step estimator δ̂ for δ0, β0 can
be consistently estimated by regressing y on (x, d1λ1(wδ̂) + d2λ2(wδ̂)) for
the subsample d∗=1. Note that when x = w, this approach will depend
on the nonlinearity of the λ1(wδ0) and λ2(wδ0). However, as pointed out
by Leung and Yu (1996), Nawata (1994), and Vella (1995), among others,
these functions can be close to be linear in certain ranges, which might lead
to unreliable estimates for β0.

Another potentially more serious drawback to this and other likelihood-
based methods is their sensitivity to the assumed parametric distribution of
the unobservable error terms in the model. Recently several semiparametric
estimators (e.g., Andrews (1991), Newey (1988), Powell (1989), among oth-
ers) have been proposed for sample selection models which do not impose
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parametric forms on error distributions. In the context of experimental
data, these semiparametric estimators are based on the following obser-
vation. Under the condition the error term (u, v) is independent of the
regressors (or the slightly weaker assumption of the index restriction), we
have the following partial linear setup for the subsample d∗ = 1

y = xβ0 + d1K1(wδ0) + d2K2(wδ0) + ε2 (4)

where K1(wδ0) = E(u|d1 = 1, z), K2(wδ0) = E(u|d2 = 1, z) are unknown
selection correction terms, and E(ε2|d1, d2, z) = 0. The objective of these
approaches is to eliminate the contaminating selection correction terms in
(4). Notice, however, that under the setup of equation (4), it is necessary
for w to have component not included in x for identification. In addition,
an explicit intercept term is not allowed in β0 since it would be absorbed
in the selection correction terms.

Instead of taking the equation (4) as the departure point, our estimation
approach will rely on the zero mean restriction E(u) = 0. The idea behind
our estimator is based on the following observation. If β0 were known,
then we can observe u given v > wδ0 for individuals with d1 = 1 and u
given v < wδ0 for individuals with d2 = 1. Under random sampling the
combination of the error terms ui1{vi > t} + uj1{vj < t} will have the
same moments as ui, for any constant t. If there exist pairs of observations
i and j with wiδ0 = wjδ0, then the zero mean restriction and a matching
of these two observations lead to the following zero mean condition

E{(1−Rj)[d1iui + d2juj ]|wiδ0 = wjδ0}
= E(1−Rj)E[d1iui + d2juj ]|wiδ0 = wjδ0]
= 0

i.e.

E{(1−Rj)[(1− di)(yi − xiβ0) + dj(yj − xjβ0)]|wiδ0 = wjδ0} = 0 (5)

Therefore estimation of β0 can be based on the moment equation (5). An
instrumental variables approach is adopted here. This approach could be
directly implemented if δ0 were known and there exist pairs of observations
in a random sample with exactly identical indices with positive probability.
Nevertheless, given a consistent estimator δ̂ for δ0, if the nuisance function
E[d1u|wδ0=t] is sufficiently smooth, the preceding matching arguments
would hold approximately for pairs of observations with approximately
similar pairs of wiδ̂ and wj δ̂, i.e.wiδ̂ ≈ wj δ̂.

As several methods exist in the econometric literature for semiparametric
estimation of the binary choice model, (see, for example, Cosslett (1983),
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Han (1987), Ichimura (1987), Klein and Spady (1993), and Powell, Stock
and Stoker (1989) ), in this article we assume a consistent estimator of δ0
exists, and therefore, we will concentrate on the estimation of β0. Conse-
quently, the estimator β̂ of β0 is defined as a weighted instrumental vari-
ables estimator

β̂ = Ŝ−1
xx Ŝxy (6)

where

Ŝxx =
2

n(n− 1)

∑
i<j

(1−Rj)(xi + xj)′((1− di)xi + djxj)
1
h
K(

wiδ̂ − wj δ̂

h
)

Ŝxy =
2

n(n− 1)

∑
i<j

(1−Rj)(xi + xj)′((1− di)yi + djyj)
1
h
K(

wiδ̂ − wj δ̂

h
)

where the kernel weight 1
hK(wiδ̂−wj δ̂

h ) gives declining weight to pairs with

large values of
∣∣∣wiδ̂ − wj δ̂

∣∣∣ .
3. LARGE SAMPLE PROPERTIES OF THE ESTIMATOR

In this subsection we derive the asymptotic properties of the proposed
estimator. We begin by making the following assumptions.

Assumption 1. The vectors (yi, xi, di, wi) generated from (1) and (2 )
are independent and identically distributed across i, with finite sixth order
moments for each component. The randomization indicator R is indepen-
dent of the other variables. The error term (u, v) is independent of z, with
E(u)= 0.

Assumption 2. The preliminary estimator δ̂ of δ0 is
√
n-consistent, and

has the following asymptotic linear representation

δ̂ = δ0 +
1
n

∑
ψi + op

(
n−1/2

)
for some ψi = ψ(di,wi), such that Eψ(di,wi) = 0 and E‖ψ(di,wi)‖2 <∞.

Assumption 3. Define gx(u) = E(xi|wiβ0 = u), with gw(u) similarly
defined, then each component of gx(u) and gw(u) are four times continu-
ously differentiable.
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Define

Sxx = E(xi + E(xi|wiδ0)′(xi + E(xi|wiδ0)p(wiδ0)E(1−Ri)

Assumption 4. The matrix Sxx is nonsingular.

Assumption 5. The kernel function K (·) has a bounded support. It
is four times continuously differentiable and satisfies

∫
K (u) du = 1 and∫

ulK (u) du = 0 for l = 1, 2, 3.

Assumption 6. The bandwidth sequence h satisfies nh6/ ln(n) → ∞,
and nh8 → 0 as n→∞ .

Assumption 1 describes the model and the data. The independence
assumption between (u, v) and x can be relaxed to allow x to include en-
dogenous variables, and the distribution of (u, v) can be allowed to depend
on w through the linear index wδ0. Several estimators for δ0 mentioned in
the previous section (Han (1987), Ichimura (1993), Klein and Spady(1993),
and Powell, Stock and Stoker(1989)) satisfy assumption 2. Assumption 4
is an identification condition. Notice that

Sxx = E(x′ixi + 3E(x′i|wiδ0)E(xi|wiδ0)p(wiδ0)E(1−Ri).

Assume that the support of wiδ0 is the whole line, then the nonsingularity
of Sxx is implied by the nonsingularity of Ex′ixi. Assumption 5 is a ‘higher’
order bias reduction kernel condition, which, together with the rate of
convergence condition on the bandwidth sequence in Assumption 6, ensures
that the estimator proposed is asymptotically unbiased. Assumption 3 is
a boundedness and smoothness conditions, which can be justified by some
primitive conditions on the distributions of the variables in the model (see
Lee (1994) and Sherman (1994) for some discussions on similar conditions).

Rewriting (6) as
√
n(β̂ − β0) = Ŝ−1

xx Ŝxu

where

Ŝxu =
2√

n(n− 1)

∑
i<j

(1−Rj)(xi + xj)((1− di)ui + djuj)
1
h
K(

wiδ̂ − wj δ̂

h
)
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we will establish the asymptotic results for β̂ in two steps; first, we show
that Ŝxx converges in probability to a nonsingular matrix; second, we es-
tablish an asymptotic linear representation for Ŝxu.

Lemma 1. Under Assumptions 1 through 6 above, as n → ∞, Ŝxx
p→

Sxx where Sxx is defined as in assumption 3.

Proof. mimic the proof of Lemma 5.1 of Powell (1989).

By assumption 3, Lemma 1 implies that the matrix inverse in the defin-
ition of β̂ is well defined in large samples.

Next we consider Ŝxu. The following lemma establishes an asymptotic
linear representation for Ŝxu, Similar to the proof of Theorem 5.1 of Powell
(1989) we can establish the follow lemma.

Lemma 2. Under conditions 1 through 6, we have

√
nŜxu =

1√
n

n∑
i=1

[ζi − Ωψi] + op (1)

where

ζi = [xi + E(xi|wiδ0)]u∗i
with u∗i = (E(1−Ri))((1−di)ui−λ(wiδ0))+(1−Ri)(diui+λ(wiδ0))p(wiδ0),
and

Ω = 2E(1−Ri)E[λ′(wiδ0)E(x|wiδ0)′(wi − E(w|wiδ0)p(wiδ0)].

Combining lemmas 1 and 2, we obtain the main theorem by the central
limit theorem.

Theorem 1. Under conditions 1-6, the estimator β̂ is consistent for β0,
and asymptotically normal,

√
n(β̂ − β0)

d→ N(0,Σ)

where

Σ = S−1
qq [Cζζ + ΩCψζ + CζψΩ′ + ΩCψψΩ′]S−1

qq

for Cζζ = E[ζiζ ′i], Cψψ = E[ψiψ′i] and Cψζ = E[ψiζ ′i] = C ′
ζψ.
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In order for large-sample inference on β0 to be carried out using the
estimator β̂, a consistent estimator of Σ needs to be constructed. In the
following one such estimator is proposed following Powell (1989).

Lemma 1 shows Ŝxx is a consistent estimator for Sxx. An analogous
estimator for Ω is

Ω̂ =
2

n(n− 1)

∑
i<j

(1−Rj)((1−di)ûi+dj ûj)
1
h2
K ′(

wiδ̂ − wj δ̂

h
)(xi+xj)′(wi−wj)

where ûi = yi − xiβ̂.
To estimate Cψψ and Cψζ , it is useful to assume that a sequence of {ψ̂i}

exists which satisfies

1
n

n∑
i=1

‖ψ̂i − ψi‖2 = op(1).

This sequence, of course, depends upon the particular first-step estimator of
δ0; an example of an appropriate sequence {ψ̂i} for a particular preliminary
estimator δ̂ is given by Powell, Stock and Stoker (1989). Similar sequences
can be constructed for the estimators proposed by Ichimura (1993) and
Klein and Spady (1993).

As for the sequence {ζi}, let

ζ̂i =
1

(n− 1)

∑
j 6=i

(1−Rj)(xi + xj)′((1− di)ûi + dj ûj)
1
h
K(

wiδ̂ − wj δ̂

h
).

Lemma 3. : Under Assumptions 1-7 above, as n→∞,

1
n

n∑
i=1

‖ζ̂i − ζi‖2 = op(1).

Proof. mimic Lemma 6.2 of Powell (1989).

4. A MONTE CARLO STUDY

In the section we present a small Monte Carlo study to illustrate the
usefulness of the proposed estimator. The data is generated according to
the following model

y = x1 + x2 + u
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d = 1{w1 + w2 + v > 0}
and R = 1{r > 0}, where v has the standard normal distribution. The
regressors x1 and x2 are draw from a normal N(0, 1) distribution and
a uniform U(−2, 2) distribution, respectively. Different designs are con-
structed by varying the distributions of the error terms and the structure
of (w1, w2). In all cases, r is draw from U(−0.5, 0.5) independent of the
rest of the variables in the model. u=

√
0.5 ∗ v +

√
0.5 ∗ v∗ with v∗ draw

from N(1, 0) independent of the other variables in the model. We con-
sider two different designs for the regressors with (w1, w2)=(x1, x2) and
w1 = x1and w2 = x2/2+x3/2 respectively, with x3 is drawn from a uniform
U(−2, 2) distribution independent of (x1, x2). Data on v are also generated
from three different distributions, namely, normality, nonnormality and
heteroscedasticity. Consequently we have six designs from these variations
of the regressors and error terms.

Here we consider the finite sample performance of our estimator, along
with the Heckman’s two step estimator; the estimators proposed by Newey
(1988) and Powell (1989) are also considered when the exclusion restric-
tion applies. The first-step estimator is chosen to be the probit maximum
likelihood estimator. The results from 300 replications from each design
are presented with sample size of 100. For each estimator under considera-
tion, we report the mean value (Mean), the standard Deviation (SD), and
the root mean square error (RMSE). For Powell’s estimator, we use the
standard normal density as the kernel function. For the Newey’s estima-
tor, the approximating series is . The bandwidth and the number of series
are chosen by generalized cross-validation (G. Wahba 1979). We also the
standard normal density as the kernel function for our estimator which the
bandwidth is chosen by minimizing MMh where

MMh = |
∑
i<j

(1−Rj)(xi+xj)((1−di)(yi−xiβ)+dj(yj−xjβ))
1
h
K(

wiδ̂ − wj δ̂

h
)|.

since our estimated is based on a related moment condition.
Table 1 reports the simulation results for our estimator and Heckman’s

two-step estimator for the first design where v is a standard normal N(0, 1).
In the case where (w1, w2)=(x1, x2), even though normality is correctly
specified, our estimator is superior due to “weak” nonlinearity of the probit
function in the relevant range. When there is an exclusion restriction, i.e.,
w1 = x1and w2 = x2/2 + x3/2, Heckman’s estimator is slightly better.

In Table 2 we consider the same design the error term departing from
joint normality; v=2v3

∗ + v2
∗ − 1 where v∗ is drawn from a standard normal

N(0, 1) independent of the other variables. In this case, joint normality is
misspecified. Heckman’s method produces inconsistent estimates for both
designs of the regressors. Our approach still provides reasonably good
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TABLE 1.

Results of simulation with normal errors

x 6= w x = w

Estimator Coeff. Mean SD RMSE Mean SD RMSE

Heckman α 0.999 0.172 0.171 0.974 0.307 0.308

β1 −1.006 0.075 0.075 −0.981 0.145 0.146

β2 0.996 0.137 0.137 0.984 0.218 0.219

Matching α 0.997 0.093 0.093 0.994 0.097 0.097

β1 −1.002 0.099 0.099 −0.987 0.121 0.121

β2 1.004 0.112 0.112 1.005 0.115 0.115

TABLE 2.

Results of simulation with nonnormal errors

x 6= w x = w

Estimator Coeff. Mean SD RMSE Mean SD RMSE

Heckman α 0.904 0.597 0.603 0.908 1.212 1.213

β1 −1.005 0.118 0.118 −0.972 0.292 0.293

β2 0.928 0.373 0.379 0.899 0.749 0.755

Matching α 0.999 0.154 0.153 1.002 0.132 0.132

β1 −0.998 0.152 0.151 −0.999 0.163 0.163

β2 0.990 0.170 0.170 0.976 0.204 0.205

estimates. Existence of an exclusion restriction improves the performance
of both estimators.

The results with a heteroscedastic error are reported in Table 3. The
error term v=exp(wδ0)v∗, where v∗ is a standard normal N(0, 1) indepen-
dent of the other variables. It is obvious Heckman’s estimate is biased,
while the other three estimators are still consistent. As expected, all the
estimators perform better when there is an exclusion restriction.

5. CONCLUSION

In this paper we consider semiparametric estimation of sample selection
models using experimental data. We propose a new estimator by matching
pairs of observations with offsetting selection bias. which does not rely
on the nonlinearity of the selection correction function or some exclusion
restrictions. We improve upon Heckman’s two-step under parametric set-
ting in that our estimator does not rely on the nonlinearity of the selection
correction function when there is no exclusion restriction. We also improve
upon the existing semiparametric estimators in that exclusion restriction is
not needed for our procedure. The estimator is shown to be consistent and
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asymptotically normal under some regularity conditions. A small monte
carlo study illustrates the usefulness of the new estimator.

Our estimator is based on access to random samples. Frequently, avail-
able data are in the form of choice based samples. It might be possible
to modify the current approach to still consistently estimate the outcome
equation using choice based samples. It is a topic for future research.
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