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Cross-asset derivative securities are studied and a dichotomous asset pricing
model (DAPM) is derived that significantly enriches the Sharpe-Lintner-Black
capital asset pricing model. An assets beta is shown to be observable ex ante
through the price of its cross-market call or put, and the DAPM separately
predicts the assets’ expected return - beta relations under the upper-market
and lower-market conditions. A sufficient condition for the DAPM to hold is
that assets return distributions satisfy Ross’ (1978) two-fund separation prop-
erty, which implies that any well-diversified portfolio is both mean-variance
and gain-loss efficient. c© 2005 Peking University Press
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1. INTRODUCTION

The mean-variance1 and the gain-loss2 analyses are two simple approaches
to portfolio selection and asset pricing. Both approaches assume that in-
vestment decisions involve the optimal trade-off between risk and expected

* I wish to thank several participants at the 2003 meetings of the Econometric Society
and the European Economic Association in Stockholm, as well as colleagues and seminar
participants at the University of Amsterdam, Hong Kong Baptist University, University
of Hong Kong, Tinbergen Institute for helpful discussions, comments, and suggestions.
Part of the paper was written during my visit at the HKBU in early 2003. I am partic-
ularly grateful to Prof. Yiu-Kwan Fan and Prof. Kin Lam for their hospitality, and to
the Wing Lung Bank for financial support.

11E.g., Markowitz (1952), Tobin (1958), Sharpe (1964), Lintner (1965), and Black
(1972). See also Cochrane and Saa-Requejo (2000).

22E.g., Domar and Musgrave (1944), Bawa (1975, 1976), Bawa and Lindenberg (1977),
Fishburn (1977). See also Bernardo and Ledoit (2000). Unlike Bawa and Lindenberg
(1977) who consider a more general class of mean-lower partial moment models, however,
the aim of the present paper is to enrich the CAPM with stronger predictions. Thus we
focus on expected-loss in the class of downside risk measures.
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return. Both imply two-fund separation in that any two efficient funds
span the entire efficient frontier. When the risk-free asset exists, the port-
folio problem boils down to finding a common risky portfolio that has the
highest Sharpe ratio (risk premium over standard deviation) or the high-
est gain-loss ratio (expected gain over expected loss). The two approaches
differ only in their “risk” measures. Since standard deviation and expected
loss do not always rank risks in the same way, in general the mean-variance
(MV) and the gain-loss (GL) approaches represent two different paradigms
and they may yield different portfolio advice as well as asset pricing rela-
tions.

A quite common assumption made in portfolio theory as well as in the
empirical asset pricing literature, however, is that the asset returns satisfy
the multivariate normal distributions. As shown by Bawa and Lindenberg
(1977), this assumption implies that the GL (or equivalently, mean-loss)
criterion yields the same Sharpe-Lintner-Black capital asset pricing model
(CAPM). Bernardo and Ledoit (2000) also show a one-to-one relation be-
tween the Sharpe ratio and the GL ratio under normally distributed and
risk-neutral benchmark distributions. In other words, the multivariate nor-
mality assumption ensures that the optimal risky portfolio is both MV and
GL efficient in having the highest Sharpe ratio and GL ratio among all
assets and portfolios. Multivariate normality, on the other hand, is only
a special case of the class of separating distributions delineated by Ross
(1978), who shows that two-fund separation holds for all investor prefer-
ences3 if and only if the asset returns satisfy a set of two-fund separability
conditions (henceforth two-fund separability). One of the contributions of
this paper is to show that two-fund separability also implies the existence
of an optimal risky portfolio that is both MV and GL efficient.

Implications of MV and GL efficiency for asset-pricing relations have
not been fully explored to date. This paper reports a number of new
results that are of both theoretical and practical interest. One of these
results is that a benchmark portfolio is MV and GL efficient if and only if
a dichotomous asset pricing model (DAPM) holds. Denote by ri the gross
return on asset i and by r0 the gross risk-free interest rate. We say that
the DAPM holds if for all asset i their upper-market expected gains xi

(= ri − r0 if rm > r0 and = 0 otherwise) and lower-market expected losses
xi (= r0 − ri if rm ≤ r0 and = 0 otherwise) satisfy the following equations

3That is, for all expected utility preferences where the utility functions are monotone
increasing and concave on the real line. An unverified conjecture is that Ross’ findings
might be extended to some nonexpected utility preferences as well. Although the MV
and GL efficiency condition is motivated in this paper by way of no-approximate arbi-
trage, the condition can also be derived from MV and GL preferences of investors. The
reader is referred to Zou (2003) for a more general class of non-linear preferences which
includes the MV and GL preferences as special cases.
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in relation to the benchmark portfolio m:

E(xi) = β+
i E(xm), β+

i =
E(xmxi

E(x2
m)

(1)

E(xi) = β−i E(xm), β−i =
E(xmxi

E(x2
m)

, (2)

β+
i = β−i = βB

i =
E(xmxi)
E(x2

m)
. (3)

where E(·) denotes mathematical expectation. The β+
i and β−i will be

called the asset’s upper- and lower-market betas, and βB
i the asset’s “best

beta” for its role in minimizing the potential pricing errors in a sense to
be made clear. Equations in (1)-(2) represent two security market lines as
depicted in Figure 1.
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FIG. 1. The dichotomous asset pricing model (DAPM). The DAPM predicts two
security market lines, the upper-market SML+ and the lower-market SML− where
m is any benchmark portfolio that is both mean-variance and gain-loss efficient. The
expected upper-market gain and lower-market loss on every asset are proportional to
the benchmark portfolio’s expected gain E(x+

m) (= E(xm)) and expected loss E(x−m)
(= E(−xm)) respectively. If the DAPM holds exactly, then the asset’s “best beta” βB

is equal to the CAPM beta β.
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It can be verified that if m is interpreted as the market portfolio, then
(1)-(3) imply the CAPM prediction

E(xi) = βiE(xm), βi =
Cov(xm, xi)
V ar(xm)

(4)

where Cov(·; ·) and V ar(·) denote covariance and variance. The reverse,
however, is not necessarily true. Equations (1)-(3) separately predict the
assets’ upper- and lower-market expected return - beta relations and thus
are strictly stronger than the CAPM prediction in (4). In relation to the
traditional normal-distribution assumption made to justify the CAPM, the
stronger predictions in (1)-(3) are also more significant in that they are
derived from weaker distributional assumptions, e.g., two-fund separability.

Another new result is related to the cross-market (CM) derivative securi-
ties that are defined and analyzed in this paper. Although these derivative
securities are not yet popularly traded in todays marketplace, they are easy
to construct. Call ci the uppermarket call and pi the lower-market put of
asset i whose payoffs are defined by

ci :
{

ri − r0 if rm > r0

0 if rm ≤ r0
, pi :

{
0 if rm > r0

r0 − ri if rm ≤ r0
. (5)

Thus the payoffs of ci (= xi) and pi (= xi) depend on the joint performance
of m as well as the underlying asset i. In particular, cm and pm are the call
and put options on one dollar of the benchmark portfolio with strike price
equal to the gross risk-free rate r0. In general, however, since for some
assets the payoffs defined in (5) can be negative, ci and pi are not options
in the traditional sense. Yet, to prevent arbitrage the prices of ci and pi

must be equal for all i. This property follows from a general cross-asset
put-call parity that will be derived in the next section.

From the DAPM and the cross-asset put-call parity it is easy to show
that4

ci = β+
i cm, pi = β−i pm for all i (6)

Note an important difference between (6) and (1)-(3): the prices ci and
pi are directly observable by trading these derivative securities, while the
expectations E(xi) and E(xi) are not. Consequently, if CM derivatives
are tradable and hence priced, then akin to the implied volatility of the
Black-Scholes (1973) option-pricing model, the assets’ implied betas, β+

i

and β−i , will be observable from the CM derivative prices according to (6).
No-arbitrage will ensure that ci = pi, thus if the DAPM holds then for all

4Without ambiguity ci and pi denote both the CM derivatives as well as the prices
of such derivatives.
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asset i,5

β+
i = β−i = βi = βB

i = ci/cm = pi/pm (7)

In light of the empirical difficulties in estimating the CAPM betas accu-
rately (e.g., Fama and French, 1997; Pástor and Stambaugh, 1999), the
theoretical relations established in (7) are significant. A potential market
for the CM-type of derivative securities could be anticipated. For instance,
such derivatives could be traded like futures contracts and be settled daily
or marked to market. The implied betas from the observed CM derivatives’
prices would then reveal the investors’ aggregate beliefs about assets’ betas
and help reduce the beta uncertainty.

Indeed, the DAPM offers a theoretical foundation for separately inves-
tigating the average returns conditional on the market being up or down.
Empirical tests of the DAPM predictions in (1)-(3) requires one to partition
or dichotomize the space of assets’ excess returns into the upper-market
(xm > 0) and lower-market (xm ≤ 0) subspaces. Such dichotomization
could lead to new insights in the cross-sectional differences in average re-
turns and help explain the empirical regularities that seem to violate the
CAPM. The focus of the present paper is on the theoretical development
of the DAPM, empirical applications of the model are investigated in a
subsequent paper (Zou, 2004).

The next section introduces the cross-asset derivative securities and proves
a general put-call parity relation for these securities. Section 3 is devoted to
the derivation and analysis of the DAPM. Section 4 summarizes the main
findings of the paper. The Appendix contains the proofs of the lemmas
and theorems.

2. THE CROSS-ASSET DERIVATIVE SECURITIES

Let an investment opportunity set Λt be given that includes n(≥ 2)
primary assets i = 1, . . . , n with prices Si,t at time t. Assume that the
capital market is perfectly competitive, there is no tax and transaction
costs, and that the market allows free portfolio formation in that if p, q ∈ Λt

then the portfolio θp + (1 − θ)q ∈ Λt for all θ ∈ R. Over any period

5“Upside” and “downside” betas have been defined differently in various empirical
papers. For instance, Ang and Chen (2002) define upside (downside) beta as the ratio of
covariance over variance conditional on that both the asset and the benchmark portfolio
make higher (lower) returns than their means. They reject the hypothesis that their
downside beta, and cannot reject that their upside beta, is equal to what would be
implied by jointly normal distributions. An important feature of the upper- and lower-
market betas in this paper is that they are theoretically derived, rather than empirically
motivated. Furthermore, the market here is partitioned according to the benchmark
returns only, and with reference to the risk-free rate. No assumption is made throughout
the paper that asset return distributions are jointly normal.
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[t, t + τ ], τ > 0, let ri,t+τ denote the gross return (including dividends) on
assets i. Let rm,t+τ denote the gross return on some benchmark portfolio
m ∈ Λt (e.g., an equal- or value-weighted average of all primary assets in
Λt used as a market proxy). Let r0,t+τ denote the gross risk-free interest
rate (if exists) or the return on a “zero-beta” portfolio whose return is
stochastically uncorrelated with rm,t+τ . Assume that Et(rm,t+τ−r0,t+τ ) >
0 where Et(·) is the expectation operator conditional on the information
at time t. To ease exposition, assume that all dividends are reinvested in
the same assets so that ri,t+τ = Si,t+τ/Si,t.

Let Xt+τ denote the set of (random) payoffs of all zero-price, or self-
financed, portfolios that can be formed with assets in Λt. For example,
ri,t+τ−rj,t+τ ∈ Xt+τ is the payoff of a portfolio formed by a one-dollar long
position in asset i and one-dollar short position in asset j. In particular,
define xi,t+τ = ri,t+τ−r0,t+τ ∈ Xt+τ to be the excess return, and Et(xi,t+τ )
the risk premium, on asset i. As a technical condition, assume that the
returns ri,t+τ , i = 1, . . . , n, are continuously distributed on a subset of Rn

(even though their observed returns are discrete). This helps avoid possible
corner solutions that may not be characterized by the first-order condition
in portfolio optimization. Define x+ = max(x, 0) and x− = min(x, 0).
Throughout the paper, assume that the first two moments of all returns
exist and that the no-arbitrage principle holds in that for all t, τ , there exists
no zero-price payoff xt+τ ∈ Xt+τ such that Et(x+

t+τ ) > 0 and x−t+τ ≡ 0.
For all xt+τ ∈ Xt+τ define

xt+τ =
{

xt+τ if xm,t+τ > 0
0 if xm,t+τ ≤ 0 ; xt+τ =

{
0 if xm,t+τ > 0
−xt+τ if xm,t+τ ≤ 0 . (8)

Note that xt+τ = xt+τ − xt+τ . Call xt+τ the upper-market gain and xt+τ

the lower-market loss (neither need be positive) of xt+τ with respect to the
given benchmark portfolio m. For notational convenience, I often drop the
subscripts t and/or t + τ unless they are needed for clarity.

Consider now a general class of cross-asset call Cij and cross-asset put
Pij whose payoffs are defined by the asset prices Si,t+τ , Sj,t+τ , as well as
some “threshold prices” Ki,Kj , as follows:6

Cij :
{

Si,t+τ −Ki if Sj,t+τ > Kj

0 if Sj,t+τ ≤ Kj
, Pij :

{
0 if Sj,t+τ > Kj

Ki − Si,t+τ if Sj,t+τ ≤ Kj
.

(9)
When i = j and Ki = Kj , Cij and Pij reduce to the usual call and put
options. For a more general example, suppose i is IBM and j is Microsoft.

6These cross-asset derivative contracts resemble forward contracts more than options,
because their payoffs can be negative and the holder of such contracts has not only the
right to receive but also the obligation to pay the contingent cash difference.



DICHOTOMOUS ASSET PRICING MODEL 191

Then the cross-asset call Cij gives the security holder the right and oblig-
ation to receive, at time t + τ , the difference (which may be negative)
between IBM’s share price Si,t+τ and the threshold price Ki if Microsoft’s
share price Sj,t+τ > Kj ; otherwise the security holder receives nothing.
The no-arbitrage principle then implies a cross-asset put-call parity rela-
tion as stated in the following lemma.

Lemma 1. Assume that the risk-free asset exists and Cij , Pij ∈ Λt. Then
no-arbitrage implies

Cij +
Ki

r0,t+τ
= Pij + Si (10)

Obviously, (9) embeds the usual put-call parity as a special case. Un-
aware of any earlier work on this simple yet important cross-asset put-call
parity, I offer a proof here by no-arbitrage. Consider the cash flows of a
portfolio formed at time t with a long call Cij , a short put Pij , a short
stock Si and cash deposit Ki/r0,t+τ :

Position time t time t + τ

(Sj,t+τ > Kj) (Sj,t+τ ≤ Kj)
Long call −Cij Si,t+τ −Ki 0
Short put Pij 0 −(Ki − Si,t+τ )

Short stock Si −Si,t+τ −Si,t+τ

Cash deposit −Ki/r0,t+τ Ki Ki

Total Cash Flow Pij + Si − Cij −Ki/r0,t+τ 0 0

Since the payooff this portfolio at time t + τ is always zero, it must
have a price of zero at time t to avoid arbitrage. Consequently, the parity
relation in (9) must hold. It is easily seen that as a special case where
j = m,Si = Sj = 1, and Ki = Kj = r0,t+τ , (9) reduces to

ci = pi for all i (11)

where ci and pi are the cross-market call and put defined in (5). Since
cm = pm > 0, equation (10) implies that for all i

ci

cm
=

pi

pm
= ϕi for some ϕi

Consequently, no-arbitrage implies that for all ci,t and pi,t ∈ Λt, and all t,
there exists a ϕi,t ∈ R such that

ci,t = ϕi,tcm,t and pi,t = ϕi,tpm,t (12)
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where the subscript t is added back for clarity.
I do not assume that all cross-asset derivative securities are tradable.

Instead, I only assume that Λt includes the primary assets and their cross-
market calls and/or puts defined in (5), as well as all portfolios that can
be formed by these securities. From the parity relation in (9) it is clear
that as long as ci,t is tradable, so is the payoff of pi,t C and vice versa. The
cross-market derivative securities and their price relations in (11) will play
an important role in motivating the derivation of the DAPM.

3. THE DICHOTOMOUS ASSET PRICING MODEL

Following the modern approach to asset pricing I begin with a general
pricing relation whereby the prices of all assets St ∈ Λt at time t are
expressed as the expectation of their stochastically discounted time t + τ
prices, St+τ (including dividends). The stochastic discount factor (SDF)
δt+τ , common to all assets, is strictly greater than zero if and only if Λt

permits no-arbitrage:

St = Et(δt+τSt+τ ) (13)

Recall that xt+τ denotes the payoff of a zero-price portfolio (St = 0), thus
(12) is equivalent to

1 = Et(δt+τrt+τ ) for all St 6= 0
0 = Et(δt+τxt+τ ) for all St = 0

When the market is incomplete, as is assumed in this paper, it is well
known that the SDF approach to asset pricing is generally valid but the
set of admissible SDFs that satisfy (12) is typically large (see, e.g., Hansen
and Jagannathan, 1997). Among the admissible SDFs, we naturally prefer
the simple ones provided that they make good economic sense.

3.1. Mean-Variance Efficiency
By MV efficiency I broadly mean that there is a uniform upper (and

lower) bound for the Sharpe ratio Sh(xπ) (= E(xπ)/
√

V ar(xπ)) of all
portfolios π ∈ Λ. An extremely high Sharpe ratio indicates a “good deal”
in the terminology of Cochrane and Saa-Requejo (2000). Provided that
there are sufficiently many investors who prefer such good deals, it is con-
ceivable that prices would adjust whenever a good deal is available and that
the dynamic price processes would maintain a MV efficient investment op-
portunity set.

There is an important difference between MV efficiency and the “no good
deal” approach of Cochrane and Saa-Requejo (2000), however. Here, the
Sharpe ratio is assumed to be bounded endogenously so that we can talk
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about an unconstrained MV ecient portfolio. In contrast, Cochrane and
Saa-Requejo study the effect of bounds on the Sharpe ratio (or on the
second moment of the SDF) that are imposed exogenously by the mod-
eler. By comparison, MV efficiency implies a unique SDF with respect to
the benchmark portfolio while the no-good-deal bounds produce a class of
admissible SDFs.

More generally, the Sharpe ratio can be defined for any zero-price payoffs
x ∈ X. I introduce a “modified Sharpe ratio” and show its relation to the
traditional MV efficiency.

Definition 3.1. Λt is MV efficient (over period [t, t + τ ]) iff there
exists m ∈ Λt such that Et(xm,t+τ ) = Et(rm,t+τ − r0,t+τ ) > 0 and that for
all xt+τ ∈ Xt+τ .

η2
t (xt+τ ) ≤ η2

t (xm,t+τ ) < 1, where ηt(x) =
Et(x)√
Et(x2)

. (14)

The portfolio m satisfying (13) is called a mean-variance efficient portfolio
(over period [t, t + τ ]), and ηt(xt+τ ) is called the time-t “modified Sharpe
ratio” of the zero-price payoff xt+τ .

In the remainder of the paper I assume that the investment opportunity
set Λt is MV efficient for all t. Although the modified Sharpe ratio differs
from the Sharpe ratio in penalizing deviations from zero rather than from
the mean, the squares of the two ratios give the same ranking for all zero-
price payoffs. This follows from the fact that η and Sh are related by

η2(x) =
[E(x)]2

[E(x)]2 + V ar(x)
=

[E(x)]2/V ar(x)
[E(x)]2/V ar(x) + 1

=
[Sh(x)]2

[Sh(x)]2 + 1
(15)

so that η2(x) < 1 if and only if [Sh(x)]2 < ∞, and that for any two zero-
price payoffs x1 and x2

η2(x1) ≥ η2
2(x2) if and only if [Sh(x1)]2 ≥ [Sh(x2)]2.

An advantage of using the modified Sharpe ratio, however, is to derive a
modified CAPM that relates the MV efficiency with the GL efficiency in a
more transparent manner.

Theorem 1. Over period [t, t + τ ], portfolio m ∈ Λt is MV efficient iff
for all xt+τ ∈ Xt+τ (including the special case xi,t+τ = ri,t+τ − r0,t+τ )

Et(xt+τ ) = βB
t (xt+τ )Et(xm,t+τ ) (16)
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where βB
t (xt+τ ) is called the “best beta” of xt+τ given by

βB
t (xt+τ ) =

Et(xt+τxm,t+τ )
Et(x2

m,t+τ )
(17)

The modified CAPM (15)-(16) is equivalent to the CAPM in (4) if either
model holds exactly. To see this, note that

βB
i E(xm) =

E(xmxi)
E(x2

m)
E(xm)

=
V ar(xm)
E(x2

m)
× [E(xm)]2E(xi) + Cov(xm, xi)E(xm)

V ar(xm)

=
[E(xm)]2

E(x2
m)

E(xi) +
V ar(xm)
E(x2

m)
βiE(xm)

= η2E(xi) + (1− η2)[βiE(xm)].

Therefore

E(xi) = βB
i E(xm) ⇐⇒ E(xi) = βiE(xm)

The reason for βB
i to be called the “best beta”, however, comes from the

fact that it minimizes the potential pricing errors of the model. More
specifically, note that there is no loss of generality to write

xi = bixm + εi for all i

Define the pricing error by

E(ε2i ) = E(xi − bixm)2

Then minimizing the pricing error yields

min
bi

E(xi − bixm)2 ⇒ bi = βB
i

The next theorem shows an equivalent expression of the modified CAPM
in terms of the SDF.

Theorem 2. Over period [t, t + τ ], portfolio m ∈ Λt is MV efficient iff
there exists an SDF, δt+τ , satisfying

δt+τ = Am,t(1− λm,txm,t+τ ) (18)

where λm,t and Am,t are time-t constants given by

λm,t =
E(xm,t+τ )
E(x2

m,t+τ )
, Am,t =

1
r0,t+τ (1− η2

m,t)
(19)
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In particular, the cross-market calls and puts are priced under MV effi-
ciency by

ci = Am[E(xi)− λmE(xixm)] = Am[E(xi)− λmE(xixm)] (20)
pi = Am[E(xi)− λmE(xixm)] = Am[E(xi) + λmE(xixm)] (21)

A limitation of the SDF in (17)-(18), as Dybvig and Ingersoll (1982) first
recognized, is that it may be negative for large xm,t+τ and therefore may
permit arbitrage under complete markets. On the other hand, Ingersoll
(1987, p.99) shows that if the asset returns are jointly normal then there
exists no arbitrage opportunity under the CAPM (hence under the mod-
ified CAPM). The MV pricing model in (17)-(18) can also be defended
by restricting its scope to the pricing of primary assets only (Dybvig and
Ingersoll, 1982).

3.2. Gain-Loss Efficiency
The definition of GL efficiency is similar to MV efficiency except that

the expected loss is penalized instead of the second moment. The same
symbol m is used for notational convenience; it does not suggest that m is
MV efficient in this subsection.

Definition 3.2. Λt is GL efficient (over period [t, t+τ ]) iff there exists
m ∈ Λt such that Et(xm,t+τ ) = Et(rm,t+τ − r0,t+τ ) > 0 and that for all
xt+τ ∈ Xt+τ , either Et(x+

t+τ ) = Et(x−t+τ ) = 0 or

Zt(xt+τ ) ≤ Zt(xm,t+τ ) < ∞, where Zt(x) =
Et(x+)

Et(−x−)
(22)

The portfolio m satisfying (21) is called a gain-loss efficient portfolio (over
period [t, t + τ ]), and Zt(xt+τ ) is called the time-t “gain-loss ratio” of the
zero-price payoff xt+τ .

In the remainder of the paper I assume that the investment opportunity
set Λt is also GL efficient for all t. It is easily seen that if Λ is gain-loss
efficient then the investment opportunity set permits no arbitrage. Should
there exist a zero-price portfolio with x ∈ X such that E(x+) > 0 and
x− ≡ 0, then Z(x) = ∞. But since the reverse is not necessarily true (e.g.,
E(x+) > 0 and E(x−) = 0 imply Z(x) = ∞ but do not imply x− ≡ 0),
GL efficiency is a somewhat stronger condition than no-arbitrage. Using
the term of Bernardo and Ledoit (2000), we may say that violation of GL
efficiency means the presence of some sort of “approximate arbitrage” in
that there are investment strategies that could generate arbitrarily high ex-
pected gains with arbitrarily low expected losses. Therefore, provided that
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there are sufficiently many investors who are willing to allocate (even just
a fraction of) their capital to higher gain-loss ratio assets it is reasonable
that the investment opportunity set would be GL efficient.

The gain-loss ratio Z is related to the “mean-loss” ratio E(x)/E(−x−)
(e.g., Bawa and Lindenberg, 1977) by Z(x) − 1 = E(x)/E(−x−). Thus
the two ratios rank zero-price payoffs in exactly the same way. A small
advantage of the GL ratio, although inessential, is that its sign is always
positive whereas the mean-loss ratio may change signs. Note also a sym-
metric property of the GL ratio: Z(x) = 1/Z(−x), which implies that the
set of zero price payoffs are symmetric around the 45◦ line passing through
the origin in a gain-loss diagram. Since the gain-loss and mean-loss ratios
are one-to-one, however, in discussing the implications of the model I shall
refer to the one that is more convenient.

The notion of GL efficiency is more related to Bawa and Lindenberg’s
(1977), while diering from Bernardo and Ledoit’s (2000) gain-loss approach
in two respects. First, Bernardo and Ledoit define gain and loss by tak-
ing expectation under the benchmark risk-adjusted probability measures;
whereas these are defined here in (21) by way of the true (either objective or
subjective) probability measures. Second, Bernardo and Ledoit do not as-
sume GL efficiency in the sense of Definition 2; instead, similar to Cochrane
and Saa-Requejo (2000) they study effects of exogenously imposed bounds
on the GL ratios of zero-price payoffs under the benchmark risk-adjusted
probability measures. These bounds are shown to restrict the deviations
of admissible SDFs from the benchmark SDF in a similar fashion. Here I
focus on the unique SDF that characterizes a GL efficient benchmark port-
folio. With such a benchmark, the risk-adjusted GL ratio of all zero-price
payoffs must be equal to one. The following theorem provides an enriched
version of Bawa and Lindenberg’s (1977) pricing model under mean-loss
efficiency.

Theorem 3. Over period [t, t + τ ] portfolio m ∈ Λt is GL efficient iff
for all xt+τ ∈ Xt+τ

Et(xt+τ ) = ϕt(xt+τ )Et(xm,t+τ ) (23)
Et(xt+τ ) = ϕt(xt+τ )Et(xm,t+τ ) (24)

for some ϕt(xt+τ ) ∈ R. In particular, ϕt(xi,t+τ ) = ϕi,t for all i ∈ Λt,
as given in (11). An equivalent expression of (22)-(23) is that either
Et(xt+τ ) = Et(xt+τ ) = 0 or

ZR
t (xt+τ ) =

Et(xt+τ )
Et(xt+τ )

=
Et((x)m,t+τ )
Et(xm,t+τ )

= Zm,t (25)
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where ZR
t (xt+τ ) is called the “relative gain-loss ratio” of xt+τ (i.e., relative

to the benchmark m).

The next theorem presents the SDF under GL efficiency.7

Theorem 4. Over period [t, t + τ ] portfolio m ∈ Λt is GL efficient iff
there exists an SDF satisfying

δt+τ = δ+
t+τ + δ−t+τ (26)

where

δ+
t+τ =

{
Bm,t if xm,t+τ > 0
0 if xm,t+τ ≤ 0 , δ−t+τ =

{
0 if xm,t+τ > 0
Bm,tZm,t if xm,t+τ ≤ 0 (27)

and Bm,t is a time-t constant given by

Bm,t =
1

r0,t+τ [Pr(xm,t+τ > 0) + Zm,tPr(xm,t+τ ≤ 0)]
(28)

Comparing the pricing model (25)-(27) with the general formula in (12),
we find that under GL efficiency the SDF δt+τ can be dichotomized into
two “conditionally constant discount factors” an upper-market discount
factor δ+

t+τ and a lower-market discount factor δ−t+τ . These two discount
factors have their own meaning as well: Et(δ+

t+τ ) is the price of a “binary
call option” that pays 1 dollar if xm,t+τ > 0 and 0 otherwise, and Et(δ−t+τ )
is the price of a “binary put option” that pays 1 dollar if xm,t+τ ≤ 0 and 0
otherwise. In the derivation of the upper- and lower-market discount factors
no assumption is made that such binary options are tradable, however. For
the record, the time-t price of a zerocoupon risk-free bond that pays 1 dollar
at time t + τ is the sum of the binary call and put, and is correctly priced
at

Et(δ+
t+τ ) + Et(δ−t+τ ) =

1
r0,t+τ

(29)

Under GL efficiency the cross-market options are priced by

ci,t = Et(δ+
t+τxi,t+τ ) = Bm,tEt(xi,t+τ ) (30)

pi,t = Et(δ−t+τxi,t+τ ) = Bm,tZm,tEt(xi,t+τ ). (31)

7The SDF under GL efficiency has a number of attractive features that are explored
in Zou (2000).
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3.3. MV and GL efficiency
A thrust of the CAPM is its prediction that the market portfolio is

MV efficient. It is well-known that this prediction follows either from the
assumption that the investors have MV preferences, or from the assumption
that asset returns are normally distributed. The normal distributions of
asset returns would guarantee that the market portfolio is also GL efficient.
In general, however, asset return distributions need not be normal (e.g.,
Longin and Solnik, 2001, Ang and Chen, 2002) and there is no guarantee
that a MV efficient portfolio will be also GL efficient. We wish to know
under what conditions this is the case.

Ross (1978) shows that the multivariate normal distributions belong to
a more general class of separating distributions. Instead of restricting the
investor preferences, separating distributions ensure portfolio separation
for all risk averse investors who maximize (von Neumann-Morgenstern)
expected utility. Ross’ two-fund separation turns out to imply that there
exists a portfolio (e.g., the market portfolio in equilibrium) that is both
MV and GL efficient, as depicted in Figure 2.
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FIG. 2. Two-fund separation implies that the market portfolio is both mean-
variance and gain-loss efficient. Measuring risk (a) by standard deviation (equivalently,

by
p

E(x2)) or (b) by expected loss E(−x−) yields the same optimal risky portfolio m.

Definition 3.3. Over period [t, t + τ ] the primary asset returns
ri,t+τ , i = 1, . . . , n, exhibit two-fund separability under Λt iff there ex-
ists two mutual funds m1,m2 ∈ Λt such that for any portfolio π ∈ Λt, any
invested capital w, and any increasing and concave utility function U , there
exists a portfolio θm1 + (1− θ)m2 with

EtU(wθrm1,t+τ + (1− theta)wrm2,t+τ ) ≥ EtU(wrπ,t+τ )

(if the expectations exist).
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The above definition is the weak form of two-fund separability adapted
from Ross (1978).

Lemma 2. The primary asset returns ri,t+τ , i = 1, . . . , n, exhibit two-
fund separability under Λt (over period [t, t + τ ]) if and only if there exist
random variables y1,t+τ and y2,t+τ , and two mutual funds m1,m2 ∈ Λt

such that for all i

ri,t+τ = y1,t+τ + bi,ty2,t+τ + εi,t+τ

Et(ri,t+τ ) = Et(y1,t+τ ) + bi,tEt(y2,t+τ )
0 = E(εi,t+τ |y1,t+τ + ξy2,t+τ )a.e.for all ξ ∈ A

0 ≡ εm1,t+τ ≡ εm2,t+τ

where A is some properly define interval (for a proof see Ross, 1978 The-
orem 2).

Definition 3.4. Assume that two-fund separability holds for ri,t+τ , i =
1, . . . , n, under Λt (over period [t, t + τ ]). Then a portfolio m ∈ Λt is “well
diversified” if and only if εm,t+τ ≡ 0, i.e., m has no specific or ε risk.

The next lemma shows an important implication of two-fund separability.

Lemma 3. Assume that the primary asset returns ri,t+τ , i = 1, . . . , n,
exhibit two-fund separability under Λt (over period [t, t + τ ]), then any
well-diversified portfolio m ∈ Λt with Et(xm,t+τ ) > 0 is both MV and GL
efficient.

The next theorem shows the main result of the paper.

Theorem 5. Portfolio m ∈ Λt satisfying Et(xm,t+τ ) > 0 is both MV
and GL efficient over period [t, t + τ ] iff the dichotomous asset pricing
model (DAPM) holds with respect to m. That is, for all asset i ∈ Λt,

Et(xi,t+τ ) = β+
i,tEt(xm,t+τ ) (32)

Et(xi,t+τ ) = β−i,tEt(xm,t+τ ) (33)

where

β+
i,t =

Et(xm,t+τxi,t+τ )
Et(x2

m,t+τ )
, β−i,t =

Et(xm,t+τxi,t+τ )
Et(x2

m,t+τ )
, and β+

i,t = β−i,t = βB
i,t = ϕi,t

(34)
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By Lemma 3, the DAPM holds whenever the primary asset returns sat-
isfy twofund separability and the benchmark portfolio is well diversified. It
is worth remarking, however, that two-fund separability is only a sufficient,
and not necessary, condition for the DAPM. Ross’ two-fund separability is
of particular interest, however, because it has least restrictions on investor
preferences.

Remarks:
a) The standard textbook interpretation of the CAPM is “high (system-

atic) risk high (expected) return”, where systematic risk is measured by
beta. The DAPM could be interpreted as saying “high beta high (expected)
gain when the market goes up and high (expected) loss when the market
goes down.” In this interpretation, however, beta takes on a somewhat
different meaning. It seems more appropriate in the DAPM to interpret
the upper-market beta as a measure of the asset’s upper-market potential,
and the lowermarket beta the asset’s lower-market risk. The model pre-
dicts that these two betas are equal if and only if a MV and GL efficient
benchmark portfolio is correctly specified.

b) It is important to note that Theorem 5 is pure deductive theory. Un-
der certain assumptions, the theorem shows the equivalence between two
formal statements: (i) a benchmark portfolio m is both MV and GL ecient
within a given opportunity set Λ and (ii) the prices and excess returns
of all assets in Λ are related to m according to the DAPM. Unlike the
CAPM which predicts that the unobservable market portfolio is MV effi-
cient (e.g., Roll’s critique, 1977), a test of the DAPM can be confined to
any given opportunity set. The test would mainly concern the hypothesis
that the specified benchmark portfolio is both MV and GL efficient within
the opportunity set.

c) Since in general investors prefer greater upper-market potential and
smaller lowermarket risk, the DAPM could be applied to performance eval-
uation with more fine-tuned measures. For instance, the upper-to-lower-
market beta ratio (β+/β−) could be used as a (or an additional) measure
of market-timing ability. The benchmark case where all assets are fairly
priced according to the DAPM is that this ratio equals 1 for all assets and
portfolios. If a fund manager persistently achieves a ratio β+/β− that is
greater than one, then the fund is likely to be attractive. Other measures
such as the gain-loss ratio (Z) and the relative gain-loss ratio (ZR) could
be useful as well.

4. SUMMARY AND CONCLUSION

This paper derives a number of new and potentially useful results that
are summarized as follows.
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• If the asset-return distributions satisfy two-fund separability, which in-
cludes the multivariate normality as a special case, then any well-diversified
portfolio is both mean-variance (MV) and gain-loss (GL) efficient.
• A general cross-asset put-call parity is derived. In particular, it is

shown that the cross-market (CM) call and put derivative securities (inter-
preting the benchmark portfolio as a market proxy) must have the same
price in order to prevent arbitrage. The price of the CM call or put is di-
rectly related to the asset’s beta and the price of the (at the forward-money)
call or put option on the benchmark portfolio.
• If the cross-market calls or puts belong to the investment opportunity

set, then the necessary and sufficient condition for a benchmark portfolio
to be MV and GL efficient is that the dichotomous asset pricing model
(DAPM) holds. According to the DAPM, the expected excess return -
beta relations hold separately in the upperand lower-market regimes and
can be characterized by two security market lines as depicted in Figure 1.
This observation enriches the single security market line prediction of the
CAPM.
• Provided that the DAPM holds, the price of a CM call (or put) is

the product of the underlying asset’s beta and the call (or put) option on
one-dollar of the benchmark portfolio with strike price equal to the gross
risk-free rate. As a result, akin to the implied volatility of the Black-
Scholes (1973) option-pricing model, trading of CM derivatives can reveal
the assets’ implied betas and help reduce the beta uncertainty.

The extent to which the dichotomous approach may help improve our
current understanding about the cross-section of average returns is an im-
portant issue that remains to be investigated. Since the theoretical model
(DAPM) derives from economically sensible and meaningful assumptions
(e.g., MV and GL efficiency or no-approximate arbitrage), and since the
DAPM is also an implication of two-fund separability which is frequently
assumed to motivate the CAPM, it can be concluded that any future em-
pirical research adopting the dichotomous approach presented in this paper
is theoretically justified.

APPENDIX

Proof of Theorem 1:
(The necessity part of the proof is standard and the sufficiency part is

somewhat new.) Let any benchmark portfolio m be given with E(xm) > 0
and consider any zero-price payoff x ∈ X. Let π denote a portfolio that
is formed by one dollar of m and θ amount of exposure in x in that the
return and excess return on π are

rπ = rm + θx and xπ = xm + θx
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Maximizing the square of the modified Sharpe ratio η2
π = [E(xπ)]2/E(x2

π)
implies a first-order condition:

max
θ

η2
π (A.1)

⇒ ∂η2
π

∂θ
=

2E(xπ)
[E(x2

π)]2
[E(x)E(x2

π)− E(xπ)E(xπx)] = 0. (A.2)

Define

Ψ(θ) = E(x)E(x2
π)− E(xπ)E(xπx)

For xπ to have the highest modified Sharpe ratio we must have E(xπ) > 0,
thus

∂η2
π

∂θ
= 0 ⇐⇒ Ψ(θ) = 0

We also need to consider the second-order condition

∂2η2
π

∂θ2
=

∂

∂θ

[
2E(xπ)
[E(x2

π)]2

]
Ψ(θ) +

2E(xπ)
[E(x2

π)]2
Ψ′(θ) ≤ 0 (A.3)

where

Ψ′(θ) = 2E(x)E(xπx)− E(x)E(xπx)− E(xπ)E(x2) (A.4)
= E(x)E(xπx)− E(xπ)E(x2)

With the above preparation we are now ready to prove the theorem.
Necessity: Assume that mis MV efficient so that xm has the highest

modified Sharpe ratio ηm. Then θ = 0 is a solution for the program in
(A.1). It follows that for all x ∈ X

Ψ(0) = E(x)E(x2
m)− E(xm)E(xmx) = 0 (A.5)

⇐⇒ E(x) =
E(xxm)
E(x2

m)
E(xm) = βBE(xm)

Sufficiency: Assume that m satisfies the first order condition (A.5) for
all x ∈ X. Note from (A.3) that ∂2η2

π/∂θ2 and Ψ′ have the same sign when
Ψ(0) = 0. Therefor substituting θ = 0 in (A.4) and using (A.5) we obtain

Ψ′(0) = E(x)E(xmx)− E(xm)E(x2)

=
[
[E(x)]2

E(x2)
− [E(xm)]2

E(x2
m)

]
E(x2)
E(xm)

≤ 0 ⇐⇒ [E(x)]2

E(x2)
≤ [E(xm)]2

E(x2
m)

In other words, all local extrema with strictly positive risk premiums are
the local maxima. To show that the local maximum is also the global
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maximum, assume that some other x is also a local extremum satisfying
(A.2) with E(x) > 0. Then exchanging places between x and xm yields a
first-order condition

E(xm)E(x2)− E(x)E(xxm) = 0 (A.6)

It follows by comparing (A.6) with (A.5) that

η(x) =
E(x)√
E(x2)

=
E(xm)√
E(x2

m)
= ηm

Proof of Theorem 2: By Theorem 1, for xi = ri − r0 we have

0 = E(xi)E(x2
m)− E(xm)E(xmxi) (A.7)

Defining λm = E(xm)/E(x2
m) yields an equivalent expression

E(ri − r0) = E(xm(ri − r0))
E(xm)
E(x2

m)
= E(xm(ri − r0))λm

⇐⇒ E(ri)− E(xmri)λm = r0(1− E(xm)λm)
⇐⇒ E(ri(1− xmλm)) = r0(1− E(xm)λm)

Note that

E(xm)λm =
[E(xm)]2

E(x2
m)

=
[E(xm)]2

[E(xm)]2 + V ar(xm)
< 1

Thus (1− E(xm)λm) = 1− η2
m > 0. Define

δ = Am(1− λmxm), Am =
1

r0(1− η2
m)

It is easily seen that δ is a SDF: for all i,

1 = Et(δri), 0 = Et(δxi) (A.8)

The equivalence between (A.7) and (A.8) is thus established.
Proof of Theorem 3: (Again the necessity part of the proof is standard

and the sufficiency part is somewhat new.) Let a benchmark portfolio m be
given such that E(xm) > 0. Consider any zero-price portfolio with payoff
x ∈ X (including the special case xi = ri − r0). Let π denote a portfolio
that is formed by one dollar of m and θ amount of exposure in x so that
the upper-market gain and lower-market loss of π are

xπ = xm + θx, xm + θx
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The GL ratio of π is Zπ = E(x+
π )/E(−x−π ).

Necessity: Assume that m is GL efficient. If E(x) = E(x) = 0, then
Zπ = Zm for all θ. Otherwise (e.g., Bawa and Lindenberg, 1977), under
our assumption that the asset returns are continuously distributed, the
maximum Zπ necessarily satisfies the first-order condition evaluated at θ =
0 (so that xπ = xm):1

max
θ

Zπ ⇒ ∂Zπ

∂θ
|θ=0 = 0

⇒ E(x)E(xm)− E(xm)E(x) = 0

⇐⇒ E(x)
E(xm)

=
E(x)

E(xm)
≡ ϕ for some ϕ hence (22)-(23)

⇐⇒ ZR ≡ E(x)
E(x)

= Zm hence (24)

Sufficiency: Assume that (24) holds for m. Define E(·, xm ≤ 0) =
E(·|xm ≤ 0)Pr(xm ≤ 0) where E(·|xm ≤ 0) is the expectation condi-
tional on event xm ≤ 0 (likewise, with event xm > 0). Suppose on the
contrary that m is not GL efficient. Then there exists m̂ with E(xm̂) > 0
such that

Zm − 1 ≡ E(xm)
E(−xm;xm ≤ 0)

< Zm̂ − 1 =
E(xm̂)

E(−xm̂;xm̂ ≤ 0)
(A.9)

However, noting E(xm̂;xm̂≤0) ≤ E(xm̂;xm ≤ 0) and from (24) we have

Zm̂ − 1 =
E(xm̂)

E(−xm̂;xm̂ ≤ 0)
≤ E(xm̂)

E(−xm̂;xm ≤ 0)
= Zm − 1

which contradicts (A.9). The contradiction shows that m is GL efficient.
Proof of Theorem 4: From Theorem 3, m is GL efficient if and only

if for all i ∈ Λ

E(ri − r0;xm > 0) = ZmE(r0 − ri;xm ≤ 0) (A.10)

or equivalently

E(ri;xm > 0) + ZmE(ri;xm ≤ 0) = r0[Pr(xm > 0) + ZmPr(xm ≤ 0)]

1If returns are discretely distributed, a GL efficient portfolio may be found, e.g., using
Bernardo and Ledoit’s (2000) technique. The first-order condition, however, may not be
satisfied if the GL efficient portfolio m exhibits Pr(xm = 0) > 0. In such cases, more
assumptions would be needed to ensure the characterizations in (22)-(24). This line of
technical generalization is not pursued here.
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It is easy to verify that for the SDF δ defined in (25)-(27), E(δri) = 1 and
E(δxi) = 0 if and only if (A.10) hold for all i.

Proof of Lemma 3: Assume the two-fund separability holds. Let
r0 denote the risk-free rate or return on any “zero-beta” portfolio that is
uncorrelated with m. By definition of two-fund separability we can derive
ri− r0 = biy + εi with E(εi|y) = 0 for all i. Suppose m is a well diversified
portfolio so that xm = bmy and E(xm) = bmE(y) > 0. Consider any
arbitrary portfolio π with xπ = bπy + επ and we are ready to prove the
lemma.

MV efficiency of m: We have

E(xπ) = bπE(y), E(x2
π) = b2

πE(y2) + E(ε2
π)

η2
π =

b2
π[E(y)]2

b2
πE(y2) + E(ε2

π)
≤ [E(y)]2

E(y2)
= η2

m

GL efficiency of m: Assume bπ ≥ 0 (for bπ ≤ 0 the proof is analogous).
Since min(bπy + επ, 0) is a concave function of επ conditional on all y, by
Jensen’s inequality

E(min(bπy + επ, 0)|y) ≤ min(E(bπy + επ|y), 0) = min(bπy, 0)

Taking expectation over y yields

E(min(bπy + επ, 0)) ≤ E(min(bπy, 0))

It follows that for all portfolio π = bπy + επ

−E(min(xπ, 0)) = −E(min(bπy + επ, 0)) ≥ −E(min(bπy, 0))

⇒ Zπ − 1 =
E(xπ)
−E(x−π )

≤ E(bπy)
−E(bπy−)

=
E(xm)
−E(x−m)

= Zm − 1

Proof of Theorem 5: Necessity: Suppose m is both MV and GL
efficient so that (19) and (29) hold. By comparison we have

ci = Am[E(xi)− λmE(xixm)] = BmE(xi)
⇒ (Am −Bm)E(xi) = λmE(xixm) (A.11)
⇒ (Am −Bm)E(xm) = λmE(x2

m) (A.12)

Since λm > 0, from (A.12) Am−Bm > 0. Thus dividing (A.11) by (A.12)
yields (31):

E(xi) =
E(xixm)
E(x2

m)
E(xm) = β+

i E(xm)



206 LIANG ZOU

For the downside, (20) and (30) imply

pi = Am[E(xi) + λmE(xixm)] = BmZmE(xi)
⇒ (BmZm −Am)E(xi) = λmE(xixm) (A.13)
⇒ (BmZm −Am)E(xm) = λmE(x2

m) (A.14)

From (A.14) and λm > 0, BmZm −Am > 0. Thus (32):

E(xi) =
E(xixm)
E(x2

m)
E(xm) = β−i E(xm)

Finally, (22) and (23) imply that ϕi = β+
i = β−i = βB

i , where the last
equation derives from the mathematical property that for real numbers
a, b, c, d, if a/b = c/d and b, d > 0 then a/b = c/d = (a + c)/(b + d).

Sufficiency: Assume that (31)-(33) hold for m. Then subtracting (32)
from (31) and using (33) yields the modified CAPM conditions (15)-(16);
hence by Theorem 1 m is MV efficient. Now dividing (31) by (32) and using
(33) yields (24), which is equivalent to conditions (22)-(23). By Theorem
3) m is GL efficient.
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