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This paper presents a new approach to decision-making under risk. Pref-
erence over risky prospects is defined as a triadic reference-dependent rela-
tion in a sense similar to Sugden (2003). Characterized by a set of von
Neumann-Morgenstern-style axioms, a new reference-dependent representa-
tion theory – called compound utility theory (CUT) – is obtained which
accommodates nonlinear preferences (in probabilities) without invoking the
probability-transformation assumption of cumulative prospect theory. Given
any opportunity set, a unique reference level can be identified which is consis-
tent with CUT and which enables one to study preferences over both relative
changes and absolute levels of wealth simultaneously. c© 2006 Peking University Press
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1. INTRODUCTION

Consider a choice between three mutually exclusive investment oppor-
tunities (or gambles) A, B, and C, as shown in Figure 1. On $10,000
investment capital, A pays off $12,000 or $8,000, and B pays off $15,000 or
$6,000, with equal chances. Investment C is a 50-50 probability mixture of
A and B, so it has all four possible payoffs with equal chances. Which of
these gambles do you prefer?

When the question was posed to five classes of finance students at the
University of Amsterdam in 2002 and 2003, the majority preferred C as
shown in the following table:
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Class 1 2 3 4 5 Total
Number of students preferring C 15 25 16 19 30 105
Number of students in the class 25 50 33 26 33 167
Percentage 60% 50% 48% 73% 91% 63%

The revealed preference for C (henceforth quasiconcave preference in a
sense to be made clear) obviously violates expected utility theory or EUT
(e.g., von Neumann and Morgenstern, 1947; Savage, 1954) and betweenness
theories (e.g., Chew, 1983; Dekel, 1986; Gul, 1991), which predict that if
A (B) is preferred to B (A), then A (B) is preferred to any probability
mixture of A and B. Thus according to these theories gamble C could
never be one’s top preference unless all three gambles are equally preferred.
Indeed, this casual experiment merely adds a new observation to the long
list of empirical anomalies for EUT (e.g., Allais, 1953, 1979; Ellsberg, 1961;
Kahneman and Tversky, 1979; and Camerer, 1998, Table 1) and to the more
recent evidence against betweenness theories (e.g., Tversky and Kahneman,
1992; Lattimore et al., 1992; Gonzalez and Wu, 1999; Tversky and Fox,
1995; Abdellaoui, 2000; Bleichrodt and Pinto, 2000).
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Figure 1: Three investment opportunities A, B, and C with depicted payo¤s (1 = $10, 000) and

probabilities. Many people seem to consider C the best choice.

Bleichrodt and Pinto, 2000).

A popular explanation for quasiconcave or more generally nonlinear preferences2 (in

probabilities) is that individuals may have di¤erent attitudes toward probabilities. They may

behave as if their own (nonadditive) subjective probabilities, called decision weights, were

used instead of true probabilities while computing expected utility. As Abdellaoui (2002)

shows, for instance, the shape of the probability weighting function that transforms true

FIG. 1. Three investment opportunities A, B, and C with depicted payoffs (1 =
$10, 000) and probabilities. Many people seem to consider C the best choice.

A popular explanation for quasiconcave or more generally nonlinear
preferences2 (in probabilities) is that individuals may have different at-
titudes toward probabilities. They may behave as if their own (nonaddi-
tive) subjective probabilities, called decision weights, were used instead of
true probabilities while computing expected utility. As Abdellaoui (2002)
shows, for instance, the shape of the probability weighting function that
transforms true cumulative probabilities into decision weights characterizes
attitude toward “probability risk” in much the same way that the shape
of the utility function characterizes attitude toward risk in EUT. On the
whole, experimental studies find that people appear to overweight small
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probabilities and underweight moderate to high probabilities (e.g., Tver-
sky and Wakker, 1995 and their references). Among the descriptively more
successful theories that address attitudes toward probabilities is cumula-
tive prospect theory or CPT (Tversky and Kahneman,1992), which allows
individuals to have two different probability weighting functions on “gains”
and “losses” respectively (see, e.g., Camerer, 1998).

In the present state of knowledge, however, the reason why people seem
to distort true probabilities in such a systematic manner remains unclear
(e.g., Luce, 1996a,b; Safra and Segal, 1998). The human mind may be
inclined to attend more to important events (such as large gains or losses);
or decision weights may be a deliberate allocation of degree of importance
to different outcomes. But these thoughts do not seem to go much beyond
EUT. According to EUT, the “weight” for a more important outcome is
reflected in a higher (or lower) utility; the “weight” for a more impor-
tant change of outcome is reflected in a higher (or lower) marginal utility.
Therefore, it remains an important open issue as to what causes people to
have an attitude toward probabilities.

The aim of this paper is to propose an alternative theoretical framework
in which nonlinear preferences can be intuitively analyzed and explained
without having resort to probability transformations. The theory to be
developed is called compound utility theory (CUT) for its numerical rep-
resentation of two sequential relations: (1) more rewarding and more risky
relations, and (2) preference relations over reward and risk. In order to
lay a solid foundation for the new theory, I first justify CUT by a set of
von Neumann-Morgenstern-style axioms. I then show how attitude toward
utility-reward and disutility-risk – a new dimension of reward-risk attitude
in CUT – can accommodate and explain nonlinear preferences in natural
terms.

CUT is closely related to cumulative prospect theory (CPT) for its entail-
ment of a reference point (called reference level) and its emphasis on gains
and losses (called better and worse outcomes). Even though the terms used
are different and often interpreted differently, the psychological foundation
of CUT is similar to that of CPT – namely, that people’s perceptions of
gains and losses, or pleasure and pain, fundamentally affect their behavior
in the face of uncertainty. Decision making under risk typically involves
(or ought to involve) planning, judgment, or evaluation before any action
or sequence of actions is taken. Therefore, we could conceive a two-stage
decision process whereby the decision maker first evaluates the potential
gains (u) and losses (d) of each gamble and then chooses one with the most
preferred u− d combination.

An important difference between CUT and CPT, however, is that CUT
does not assume probability transformations. Instead, CUT enlarges the
scope of expected utility theory by allowing people to have different atti-
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tudes toward u and d – characterized by their degrees of disutility aversion.
This new dimension of risk attitude can be conveniently studied through
the shapes of indifference curves in the u−d domain of a compound utility
function.

Another important difference between CUT and CPT is in the modelling
of the reference point. Adopting a very useful idea from Sugden (2003), I
define preference as a “triadic” relation so that the traditional binary rela-
tion “A is preferred to B” is extended to a triadic relation “A is preferred to
B under reference r”. Consequently, in the axiomatic development of CUT
the reference level is treated more flexibly as a primitive concept without
being given any formal interpretation. This “triadic” approach has the
advantage of modeling preferences over both relative changes and absolute
levels of wealth simultaneously. In this sense CUT improves upon the “sta-
tus quo” interpretation of CPT and enlarges its scope of applications.3 In
applying CUT to the special cases where outcomes are monetary payoffs, I
also show how a unique reference level can be exogenously identified given
any opportunity set.

The rest of the paper is organized as follows. Section 2 is devoted to es-
tablishing a mathematical foundation of CUT, where four axioms are shown
to be equivalent to the compound-utility (CU) representation of reference-
dependent preferences. Preferences are reference-dependent in that they
may vary with the reference level as the opportunity set varies. Section
3 discusses in more detail the reference level and attitudes toward utility-
reward and disutility-risk. A simple way to determine a unique reference
level that may vary with the opportunity set is developed. In order to mo-
tivate the new theory, the section also gives a more detailed illustration as
to how CUT differs from CPT in explaining nonlinear preferences. Section
4 concludes the paper with some further remarks. The appendix contains
the proofs of the representation theorem.

2. AXIOMATIC FOUNDATION OF CUT
2.1. Basic concepts and notation

Denote by X the set of (pure) outcomes, and by P the set of all simple
probability measures on X (i.e., P : X → [0, 1] such that P (x) > 0 for
only finitely many x ∈ X and

∑
x∈X P (x) = 1). Each element P ∈ P

is a choice object, henceforth called a gamble. Given any P,Q ∈ P, and
any θ ∈ [0, 1], the convex combination θP ⊕ (1− θ)Q means a probability
mixture of P and Q. Note that P is closed under finite convex combinations
( P,Q ∈ P ⇒ θP⊕(1−θ)Q ∈ P for all θ ∈ [0, 1]) and contains all degenerate
probability measures, δx, that assigns probability 1 to the outcome x ∈ X4.

Sugden (2003) defines preference as a triadic relation � that is a subset
of P3 in our context. A typical element of this subset is a triplet (P,Q,Z) ∈
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P3 satisfying P � Q|Z, read as “P is weakly preferred to Q, viewed from
Z .” The present paper restricts the reference level to be an element of
X rather than an element of P. Thus reference-dependent preference is
defined as a triadic relation � in that for all P,Q ∈ P and r ∈ X, P � Q|r
is read as “P is weakly preferred to Q under reference r.” Notations ∼,
�,≺, � and � are defined as usual, i.e., P ∼ Q|r if P � Q|r and Q � P |r,
P � Q|r if P � Q|r and not Q � P |r, P � Q|r if either P � Q|r or
Q � P |r, etc. For pure outcomes x1 and x2 in X, define x1 � x2|r if and
only if δx1 � δx2 |r.

Clearly, if for all P,Q ∈ P and r, r̂ ∈ X, P � Q|r ⇔ P � Q|r̂, then our
triadic preference relation reduces to the usual binary preference relation.
Note also that if we restrict attention to a given choice context where the
reference level is (exogenously) given and fixed, then � can also be seen as
a binary relation with a tacit understanding that it describes a preference
relation under the given reference r.

We say that � is a (reference-dependent) preference relation if it is (i)
complete: for all P,Q ∈ P and r ∈ X, either P � Q|r or Q � P |r, and (ii)
transitive: for all P,Q,Z ∈ P and r ∈ X, (P � Q|r and Q � Z|r) implies
P � Z|r.

Assuming that � is a preference relation, for any r ∈ X define X+
r =

{x ∈ X : x � r|r} and X−
r = {x ∈ X : x � r|r}. These sets have the

natural interpretation of being the sets of better and worse outcomes with
respect to r.

We say that P (first-order) stochastically dominates Q under r, written
P �SD Q|r, if P 6= Q and ∀y ∈ X, P ({x ∈ X : x � y|r}) ≥ Q({x ∈ X : x �
y|r}) (e.g., Hadar and Russell, 1969). The preference relation � satisfies
stochastic dominance under r ∈ X if for all P,Q ∈ P, P � Q|r whenever
P �SD Q|r.

For every P ∈ P, its “reward-side equivalence is defined as P+
r that

substitutes r for all worse outcomes of P . Dually, define P−r as the proba-
bility measure of the “risk-side equivalence” that substitutes r for all bet-
ter outcomes of P . These definitions can be formally expressed as (the
term

∑
x�r|r P (x) is defined as the summation over all x � r|r such that

P (x) > 0, etc.)

P+
r =

⊕
x�r|r

P (x)δx ⊕ [1−
∑

x�r|r

P (x)]δr and

P−r =
⊕

x�r|r

P (x)δx ⊕ [1−
∑

x�r|r

P (x)]δr

For example, P+
r can be seen as a lottery that assigns probability P (x)

for all x � r|r and 1−
∑

x�r|r P (x) for r.



6 LIANG ZOU

The definitions of the “reward-side” and “risk-side” subsets of P (relative
to r under �) follow naturally as:

PU (r,�) = {P ∈ P :
∑

x�r|r

P (x) = 1} and

PD(r,�) = {P ∈ P :
∑

x�r|r

P (x) = 1}.

It is clear that PU (r,�) and PD(r,�) are both subsets of P, and each of
them is closed under finite convex combinations.

For all P , then, we have P+
r ∈ PU (r,�) and P−r ∈ PD(r,�); and the

mapping P → (P+
r , P

−
r ) is one-to-one. This is because

P =
⊕

x�r|r

P+
r (x)δx ⊕

⊕
x≺r|r

P−r (x)δx =
⊕
x∈X

P (x)δx.

For any given r ∈ X, a nonnegative real-valued function Ur(·) defined on
X is called a utility function for better outcomes relative to r if Ur(x) =
0 for all x � r|r and Ur(x1) ≥ Ur(x2) ⇔ x1 � x2|r for all x1, x2 �
r|r. A nonnegative real-valued function Dr(·) defined on X is called a
disutility function for worse outcomes relative to r if Dr(x) = 0 for all
x � r|r and Dr(x1) ≤ Dr(x2) ⇔ x1 � x2|r for all x1, x2 � r|r. Likewise,
a nonnegative real-valued function Ur(·) defined on PU (r,�) is called a
utility-reward measure if P � Q|r ⇔ Ur(P ) ≥ Ur(Q) for all P,Q ∈ PU (r,�
); and a nonnegative real-valued function Dr(·) defined on PD(r,�) is
called a disutility-risk measure if P � Q|r ⇔ Dr(P ) ≤ Dr(Q) for all
P,Q ∈ PD(r,�). Note that for all P ∈ P, the expected values of Ur and
Dr are given by

E(Ur;P ) def.=
∑

x�r|r

Ur(x)P (x) = E(Ur;P+
r );

E(Dr;P ) def.=
∑

x≺r|r

Dr(x)P (x) = E(Dr;P−r )

We say that � has an expected utility-reward and disutility-risk represen-
tation if

G 1. (i) For some r ∈ X, there exist Ur and Dr from X to R+, satisfying
Ur(x) = 0 for all x � r|r and Dr(x) = 0 for all x � r|r, such that for all
P,Q ∈ P

P+
r � Q+

r |r ⇔ E(Ur; P ) ≥ E(Ur; Q) and P−r � Q−r |r ⇔ E(Dr; P ) ≤ E(Dr; Q).
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(ii) Fixing r of (i), Ur and Dr are unique in that any other U0
r and D0

r

having the same stated property in (i) must be positive ratio scales of Ur

and Dr, i.e., satisfying U0
r = aUr and D0

r = bDr for some a, b > 0, and
that all positive ratio scales of Ur and Dr satisfy the properties in (i).

For any r, Ur, and Dr satisfying G1, define the induced reward-risk set
by

Φr = {(u, d) ∈ R2
+ : (u, d) = (Ur(P ), Dr(P )) for some P ∈ P}, (1)

where (Ur(P ), Dr(P )) ≡ (E(Ur;P ), E(Dr;P )).
Assume that r, Ur, andDr of G1 exist, then� is said to have a compound

utility (CU) representation if

G 2. (i) There exists a continuous function Vr : Φr → R, strictly
increasing in u and strictly decreasing in d, such that

P � Q|r ⇔ V̂r(P ) ≥ V̂r(Q) for all P,Q ∈ P. (2)

where V̂r(P ) ≡ Vr(Ur(P ), Dr(P )) for all P ∈ P.
(ii) Vr is unique up to a strictly increasing transformation in that for

all V 0
r having the same property as Vr, there exists an increasing function

f : R → R such that V 0
r = f ◦ Vr (i.e., V 0

r (u, d) = f(Vr(u, d)) on Φr)
and f is strictly increasing on {v : v = Vr(u, d) for some (u, d) ∈ Φr}.
Conversely, for any strictly increasing function g : R → R, g ◦ Vr has the
same property as Vr.

We say that compound utility theory holds if both G1 and G2 hold.

2.2. Axioms
Now consider the following four axioms. For notational convenience, we

write P � Q � Z|r instead of (P � Q|r and Q � Z|r), etc.

A 1 (preference relation). � is complete and transitive.

A 2 (continuity). For all P,Q,Z ∈ P and r ∈ X, if P � Q � Z|r,
then there exists ψ ∈ (0, 1) and ξ ∈ (0, 1) such that ψP ⊕ (1− ψ)Z � Q �
ξP ⊕ (1− ξ)Z|r.

B 1 (partial independence). For some r ∈ X, for all P,Q,Z ∈ PU (r,�
) (dually, P,Q,Z ∈ PD(r,�)), and for all θ ∈ (0, 1], if P � Q|r then
θP ⊕ (1− θ)Z � θQ⊕ (1− θ)Z|r.
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B 2 (monotonicity). For all r ∈ X satisfying B1, and for all P,Q ∈ P,
if P+

r � Q+
r |r and P−r � Q−r |r, or if P+

r � Q+
r |r and P−r � Q−r |r, then

P � Q|r.

Axioms A1, A2 and B1 are adapted from Jensen (1967). Under each
reference level r, these axioms are essentially the same as Jensen’s except
that B1, being assumed only on the subsets PU (r,�) and PD(r,�) of
P, is weaker than the traditional von Neumann-Morgenstern independence
axiom. Axiom B2 has the intuitive interpretation that if a gamble is deemed
by the decision-maker to be more rewarding as well as less risky than
another gamble, the former should be preferred to the latter. B2 helps
ensure stochastic dominance and serves as a “link” between the reward-
side P+

r and the risk-side P−r of gambles P . Note that B2 alone postulates
only a sufficient condition for P � Q|r; it is also possible that P+

r ≺ Q+
r |r

or P−r ≺ Q−r |r yet P � Q|r. But if P �SD Q|r, then we must have
P+

r � Q+
r |r and P−r � Q−r |r with strict preference in at least one of the

two cases; hence P � Q|r by B2.
In light of evidences against the independence axiom of EUT, axiom B1

may need some defence. Since the behavioral significance of reference levels
has been well established in cognitive science and behavioral economics, the
existence of some outcome level that has the special role of a reference seems
quite acceptable. At the axiomatization stage, it seems also desirable to
keep B1 general with respect to the reference level. This would give the
theory more flexibility in application, as individuals may have different
tendencies in forming their aspiration levels. “Reasonable” reference levels
could be postulated in subsequent stages when the theory is applied to
more specific choice contexts.

When a reference level is identified, by one way or another, the intuitive
ground of B1 could be defended by interpreting the preference relation �,
when restricted to be on PU (r,�) and PD(r,�), as the “more reward-
ing” (i.e., having more utility-reward) and “less risky” (i.e., having less
disutility-risk) relations that reflect one’s “judgment” rather than “choice”.
The distinction between judgment and choice becomes meaningful in CUT
when elements of PU (r,�) or PD(r,�) are interpreted as the attributes
(see, e.g., the lower-partial moment measure of risk, Bawa, 1975; Fish-
burn, 1977; see also Schmidt, 2003) of the gambles rather than gambles
themselves. In judging or evaluating the attributes – risk and reward – of
the alternative gambles, it might be in one’s interest to seek advice from
specialists and to obey some “normative” principles such as stated in B1.
Even though some people may not obey the “behavioral” assumption of the
traditional independence axiom when making an actual choice (e.g., when
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they have a nonlinear attitude toward utility-reward and disutility-risk; see
Section 3.3).

2.3. Compound representation theorem
The next theorem establishes an axiomatic foundation of CUT.

Theorem 1. The set of Axioms {A1, A2, B1, B2} is equivalent to the
set of statements {G1,G2}.

Figure 2 shows a compound utility function that is quasiconcave on Φr.

13
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V(u,d)

Figure 2: An example of compound utility function Vr(u, d), where the preference is quasiconcave

in utility-reward u (= U r) and disutility-risk d (= Dr).

2.3 Compound representation theorem

The next theorem establishes an axiomatic foundation of CUT.

Theorem 1 The set of Axioms {A1, A2, B1, B2} is equivalent to the set of statements

{G1,G2}.

Figure 2 shows a compound utility function that is quasiconcave on ©r.

Remarks:

FIG. 2. An example of compound utility function Vr(u, d), where the preference is
quasiconcave in utility-reward u(= Ur) and disutility-risk d(= Dr).

Remarks:
(i) In the proof of Theorem 1, the existence of a CU function is shown

by constructing a function Vr(u, d) on Φr which satisfies a “border linear
condition” that Vr(u, 0) = u, Vr(0, d) = −d, and Vr(0, 0) = 0. Being linear
on the two borders of Φr, however, Vr is not necessarily quasilinear on the
entire set of Φr. Moreover, unlike EUT which is single dimensional in EU
maximization, it is not always convenient to impose these linear conditions
on the border of Φr for the preference function Vr.

It suffices to note that any Vr(u, d) is equivalent, in the sense of Theorem
1, to a function V 0

r (u, d) which satisfies this border linear condition. To
see this, define two continuous and strictly increasing functions f and g by
f−1(u) = Vr(u, 0) and g−1(−d) = Vr(0, d)), and without loss of generality
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assume that Vr(0, 0) = 0. Then it is easy to verify that

V 0
r (u, d) def.=

{
f(Vr(u, d)) if Vr(u, d) > 0
g(Vr(u, d)) if Vr(u, d) ≤ 0

is a well defined CU function satisfying Theorem 1 as well as V 0
r (u, 0) = u,

V 0
r (0, d) = −d, and V 0

r (0, 0) = 0. But V 0
r is not necessarily a piece-wise

linear function of u and d because Vr(u, d) > 0 does not imply d = 0, nor
does Vr(u, d) ≤ 0 imply u = 0. And V 0

r need not have a simpler form than
Vr.

(ii) Extension of Theorem 1 to cases where the gambles may be non-
simple probability measures mainly concerns statement G1, and can be
done by straightforward applications of standard results in the literature
(e.g., Fishburn, 1982, Chapter 3). Thus the proof of G2, the main new
result in Theorem 1, does not rely on the assumption that gambles are
simple probability measures. For instance, in application of the theory it
is safe to assume that CUT holds for continuously distributed payoffs and
that Ur and Dr are continuous functions of x. Furthermore, thanks to the
similarity between CUT and EUT, the CU functions can be empirically
elicited using standard procedures once the reference is identified.

(iii) It is worth remarking that Theorem 1 is purely deductive theory
which establishes a mathematical equivalence between two sets of formal
statements {A1, A2, B1, B2} and {G1,G2}. The theory in itself has no
empirical content unless primitive concepts are given empirical meanings.
In particular, r is stated as an uninterpreted element of the outcome set
where the derived utility, disutility, and compound utility functions are
parameterized on its value. The advantage of such flexibility is to give the
theory more applicability, and it marks an important departure of CUT
from prospect theory. For one thing, CUT could be applied to investigate
how people differ in forming their aspiration levels and how such differences
may affect their behavior under risky situations.

3. ANALYSIS AND APPLICATION

The CU function has four major components: the reference level r, the
utility and disutility functions Ur and Dr, and the preference function Vr

for utility-reward and disutility-risk. The shapes of Ur and Dr are related
to one’s attitudes toward “better-outcome risk” as well as “worse-outcome
risk” under reference r. These attitudes could be characterized in much
the same way the shape of a von Neumann-Morgenstern utility function
characterizes risk attitude in EUT. For instance, with attention restricted
to X+

r and X−
r , respectively, the Arrow-Pratt measures (Pratt, 1964, Arrow,
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1965) of risk aversion can be adapted straightforwardly to the analysis of
these risk attitudes in CUT.

When outcomes x are interpreted as gains or losses (hence r ≡ 0), the
difference Ur −Dr reduces to the CPT value function v of gains and losses
defined on R; with Ur typically found to be concave on X+

r and −Dr convex
on X−

r (e.g., Kahneman and Tversky, 1979).
The manner in which Vr links Ur and Dr in CUT, however, also permits

a discontinuous change in risk attitudes across the reward-risk subspaces
of P such as “loss-averse” type of behavior (e.g., Tversky and Kahnemann,
1991). Thus the CU function can have the property of second-order risk
aversion when the function Ur, Dr, and Vr are smooth, as well as the prop-
erty of first-order risk aversion when some of these functions have kinks
(see Segal and Spivak, 1990). Owing to space limit, I focus here on the
new elements: the reference level and the degree of disutility aversion.

3.1. Determination of context-dependent reference levels
Theories involving the notion of “reference” might be classified into two

categories. In the first category reference is a “status quo” concept, which
is typically treated as a natural zero. This is the approach of CPT (Kah-
neman and Tversky, 1979; Tversky and Kahneman, 1992; Wakker and
Tversky, 1993; Chateauneuf and Wakker, 1999) and ranked-weighted util-
ity theory (Luce and Fishburn, 1991; Marley and Luce, 2001). The sec-
ond category views reference as a “forward looking” concept that depends
somehow on the opportunity set of gambles. Among others, in regret the-
ory (Bell, 1982; Loomes and Sugden, 1986; Sugden, 1993) potential regret
and rejoicing from a gamble are measured relative to another gamble. Sim-
ilarly, Gul (1991) assumes that every lottery ticket P has its own reference
level(s), r(P ), defined in terms of its certainty equivalent (when it exists).
After a choice P has been made, outcomes that are higher than r(P ) pro-
duce elation and those lower than r(P ) produce disappointment. Luce et
al. (1993) suggest an approach that takes the certainty equivalent of each
gamble as the basic primitive concept, and postulate conditions for a pref-
erence interval to contain the reference level. Machina (2000) compares the
implications of payoff kinks for various existing models. Koszegi and Rabin
(2002) model reference as an endogenously determined choice (or gamble)
that gives a “personal equilibrium.” Since the reference level in CUT is
modelled as a primitive parameter, its interpretation is a modeler’s choice
and may fall in both categories (as in Sugden, 2003).

In what follows, I define a context-dependent reference level that can be
uniquely identified by any investigator using only exogenous information.
Although the subsequent analysis can be extended to more general situa-
tions, for simplicity assume from now on that X = R. The pure outcomes in
X, interpreted as monetary payoffs, are thus ordered by ≥ and independent
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of the reference – that is, for all x, y ∈ X, x ≥ y if and only if δx � δy|r for
some (and thus for all) r ∈ X. In this context, stochastic dominance (SD)
can also be defined without a reference: P �SD Q if and only if P �SD Q|r
for some (and thus for all) r ∈ X.

Now let any subset Λ ⊆ P be given and define the SD-efficient subset of
Λ by

Λe = {P ∈ Λ : @Q ∈ Λ such that Q �SD P}

Note that Λe 6= ∅ whenever Λ 6= ∅, and that Λe contains at most one
degenerate gamble.

A decision problem can be described by a non-empty opportunity set Λ
(⊆ P) that includes all feasible gambles. If “no choice” is feasible, then
Λ contains also one’s current wealth or status quo. Since stochastic domi-
nance is a basic criterion for rational choice under risk, there is little loss of
generality to restrict attention to feasible gambles that are stochastically
undominated. Let I(P ) be the smallest interval containing the support of
P , and define subset XΛ ⊆ X by

XΛ =
⋂

P∈Λe

I(P )

It is clear that XΛ contains a single element x whenever Λe contains a
degenerate gamble δx, or else XΛ is an interval.

Assumption 1. For any subset Λ ⊆ P, the reference level

r = (inf{x|x ∈ XΛ}+ sup{x|x ∈ XΛ})/2 (3)

satisfies axioms B1 and B2.

We may interpret r defined in (3) as an “indicative price” of the oppor-
tunity set Λ. This price is exogenously given by the opportunity set in
that it is independent of one’s preference �. A precise meaning of such a
price depends on how the opportunity set is specified. For example, the
opportunity set Λ = {A,B,C} in Figure 1 has a price of $10, 000 because
one must pay this price in order to obtain one of the payoffs of A, B, or
C. If outcomes are defined as gross (resp. net) investment returns, then
the price of {A,B,C} is 1 (resp. 0). More generally, the “price” of an
investment opportunity set in a perfectly competitive capital market is the
opportunity cost of capital or the (gross) risk-free interest rate. This is
because arbitrage would prevent the existence of investment opportunities
that stochastically dominate, or are dominated by, the risk-free asset in the
opportunity set (see, e.g., Zou, 2003 for more discussions).
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Assumption 1 may also be motivated by viewing Λ as an “instant en-
dowment” in a similar sense made in the studies of “endowment effect”
(e.g., Tversky and Kahnemann, 1991, p.1041 and their references). Thus
an individual’s “reference wealth r” when “endowed” with opportunity set
Λ is likely to incorporate the price or value (which may be negative, e.g., in
an insurance context) of Λ as well as his current wealth w. The status quo
wealth w is the reference level in CUT whenever maintaining the status
quo is an option and no gambles can be found in the opportunity set that
stochastically dominate or are dominated by w.

In general, we have identified a unique reference level under which all
feasible and stochastically undominated gambles involve potential gains
and losses. The remainder of the paper will assume that an opportunity
set Λ ⊆ P and its associated reference level r defined in (3) are given, and
that � is represented by a compound utility function V̂r = Vr(Ur(·), Dr(·)).

3.2. Disutility aversion
CUT has a nice “separation property.” Namely, the attitude toward risk

- in the traditional sense that is measured by the shape of utility/disutility
functions - is entirely separated from the attitude toward utility-reward
and disutility-risk that is measured by the shape of the preference function
Vr(u, d) on Φr. This latter attitude is related to the slope of the indifference
curves. From now on, assume that Vr is continuously differentiable in u
and d (on the border of Φr the derivatives are understood as the right limit
as u and/or d approaches 0). To ease notation the subscript r is omitted
whenever there is no ambiguity.

Define function ρ : Φr → R+ (or ρ : P → R+) by

ρ(u, d) = −∂Vr(u, d)
∂d

/
∂Vr(u, d)

∂u
(or ρ(P ) = ρ(Ur(P ), Dr(P )))

I shall interpret ρ (or ρ) as a measure of disutility aversion of Vr.
Note that, by the monotonicity property of Vr, 0 < ρ <∞ on Φr. A ρ is

continuous on Φr by the assumption that Vr is continuously differentiable.
Graphically, see Figure 3.3, ρ(u, d) is the slope of the indifference curve at
point (u, d). This ratio tells how much of a marginal increase in u is required
to compensate for a marginal increase in d in order for the individual to
be indifferent at the location (u, d). Thus ρ(u, d) gives a local measure of
the individual’s degree of disutility-risk aversion relative to utility-reward
(henceforth disutility aversion).

Alternatively, the dual measure 1/ρ can be interpreted as one’s marginal
willingness of increasing d in order for a marginal increase in u. These two
measures are one-to-one, and a higher level of ρ indicates either a stronger
aversion to a marginal increase in d or a weaker desire for a marginal
increase in u.
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3.3. CUT as a descriptive model
Behavioral patterns that cannot be explained by the shape of utility

functions are traditionally examined in a three-outcome probability simplex
(e.g., the Marschak-Machina triangle, Machina, 1982, p. 305). Violations
of EUT occur if the revealed indifference curves are not parallel straight
lines in the simplex. The u-d domain Φr of preference function Vr nests
such simplexes as special cases, and offers a more general framework for the
analysis of nonlinear preferences in terms of preferences over utility-reward
and disutility-risk.

21
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FIG. 3. The triangle is the set Φr of u−d combinations of the choice-objects. Indif-
ference curves in Φr represent (a) betweenness preferences, (b) quasiconcave preferences,
(c) quasiconvex preferences, and (d) squiggle preferences. CUT accommodates all these
preferences.

A very special case of CUT is EUT where ρ is everywhere constant
on Φr. The betweenness models are another special case (Figure 3.3(a))
where ρ is constant along each indifference curve on Φr. In general, the
functional form of ρ(u, d) allows us to characterize and accommodate other
preference patterns (e.g., Camera and Ho, 1994). For instance, “increasing
(decreasing) disutility aversion along the indifference curves” explains and
characterizes quasiconcave (quasiconvex) preference as depicted in Figure
3.3(b) (Figure 3.3(c)). The shape of indifference curves depicted in Fig-
ure 3.3(d) is called the squiggle hypothesis (e.g., Bernasconi, 1994) where
disutility aversion first increases and then decreases along the indifference
curves.
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Other phenomena such as simultaneous insurance and gambling can be
accommodated in CUT by interpreting r to be one’s current (context-
dependent) wealth level, and assuming Ur(x) to be convex over some in-
terval of higher wealth levels as suggested by Friedman and Savage (1948,
Fig. II & III). Since CUT allows the utility/disutility functions as well as
their definition domains to move with one’s wealth level r, traditional ob-
jections to Friedman and Savage’s explanations do not arise in CUT (see,
e.g., Machina, 1982, Section 2.3).

3.4. Comparing CUT with CPT: An Illustration
In the context of decision under risk, CPT assumes that preferences can

be represented by the “expectation” of a two-piece value function v defined
on gains and losses respectively, where expectation Eπ is computed with
one’s decision weights π rather than true probabilities p. Let X+ denote
the set of gains and X− the set of losses relative to one’s status quo (or
natural zero), then CPT assumes that one maximizes

Eπ(v) =
∑

xi∈X+

π+
i v(xi) +

∑
xi∈X−

π−i v(xi) (4)

where π+
i and π−i are the decision weights associated with state i. For

consistency with stochastic dominance, CPT assumes that Eπ(v) takes a
rank-dependent form in which π′is are related to the cumulative proba-
bilities through the individual’s probability weighting function (see, e.g.,
Tversky and Kahneman,1992).

The opportunity set {A,B,C} in Figure 1 can be seen as involving four
states i = 1, 2, 3, 4 with equal probability pi = 0.25. Taking into account
the $1 (= $10, 000) investment let us write v1 = v(−0.4) and v2 = v(−0.2)
for losses, and v3 = v(0.2) and v4 = v(0.5) for gains. It can then be shown
that for the three gambles,

Eπ(v;A) = (π−1 + π−2 )v2 + (π+
3 + π+

4 )v3
Eπ(v;B) = (π−1 + π−2 )v1 + (π+

3 + π+
4 )v4

Eπ(v;C) = π−1 v1 + π−2 v2 + π+
3 v3 + π+

4 v4

It follows from preferring C that

(i) Eπ(v;C) > Eπ(v;B) ⇔ π−2 (v2 − v1) > π+
3 (v4 − v3)

(ii) Eπ(v;C) > Eπ(v;A) ⇔ π+
4 (v4 − v3) > π−1 (v2 − v1)

(i) and (ii) hold ⇔ π−2 π
+
4 > π−1 π

+
3 (5)

In other words, πi 6= pi = 0.25 for some i. One explanation for this
revealed preference could be that the individual somehow overweights the
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probability of receiving x4 = $15, 000 or underweights the probability of
receiving x1 = $6, 000.

A limitation of CPT is to assume that preferences depend only on the
changes in wealth and not on the wealth levels. Although this assumption
simplifies the modelling of the reference point or status quo – which can
then be assumed to be a “natural zero” – it may cause ambiguity in ap-
plication. For instance, assume in Figure 1 that the $10, 000 investment
has been made and the subject is now offered the chance to re-evaluate
the risky payoffs of A,B, and C. Then according to CPT, all the payoffs
would now be judged as gains with respect to zero. But the investment
decision has been made treating payoffs below $10, 000 as losses. As a re-
sult, the “natural zero” interpretation of reference point is likely to lead to
inconsistent predictions of behavior.5 Kahneman and Tversky (1979) call
this a reference-shifting problem and admit that the “location of the refer-
ence point, and the manner in which choice problems are coded and edited
emerge as critical factors in the analysis of decisions (p.288).”

Another limitation of CPT (as well as other rank-dependent models) is to
explain nonlinear preferences only through decision weights or probability
weighting functions. To illustrate, suppose we fix the four states and their
probabilities pi (= 0.25) in Figure 1 and let the outcomes vary (without
changing their ranks). Then CPT cannot accommodate the choice patterns
where C is most preferred at some outcome levels yet is least preferred at
some other outcome levels. This is because π′is are fixed by the probability
weighting functions (which depend only on p and the ranks of outcomes),
thus the inequality in (5) cannot change sign. Such a choice pattern, how-
ever, is consistent with CUT when the individual’s preference over u and
d is quasiconcave at some levels of u and d and quasiconvex at some other
levels of u and d (see Figure 3.3(d)).

Assuming that CUT holds, then attitude toward utility-reward u and
disutility-risk d can be directly analyzed by the indifference curves {(u, d) :
Vr(u, d) = constant} on the u-d plane. The preference for C in our exper-
iment now reveals two things. First, the decision maker’s reference level
for the opportunity set {A,B,C} must be lower than the greatest out-
come and higher than the smallest outcome; otherwise CUT reduces to
EUT and gamble C would never be chosen. Second, for reference levels
r ∈ (0.6, 1.5),6 the preference function Vr(u, d) cannot be quasilinear in
(u, d) (i.e., indifference curves are straight lines) on the u-d plane. It is
easy to verify that C lies half-way on the straight line connecting A and B.
Therefore a quasilinear function Vr(u, d) is only consistent with C being
the second choice (unless all gambles are equivalent). Figure 3.4(a) depicts
the indifference curves of a preference function Vr that is quasiconcave in
(u, d) and that is consistent with C being the best choice.
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FIG. 4. Two views of the same effect that C is preferred to B and B is preferred
to A. (a) CUT says that the individual has increasing disutility aversion along the
indifference curves (indicated by the thick convex curves) where utility-reward u and
disutility-risk d are measured by expected utility for better outcomes and expected
disutility for worse outcomes, respectively. Any probability mixture of A and B must
be plotted on the straight line connecting A and B. (b) CPT (and the rank dependent
approach in general) says that the utility-reward uπ and disutility risk dπ are measured
by the individual’s subjective decision weights rather than true probabilities so that C
– the “(nonadditive) subjective probability mixture” of A and B – may be higher than
the (dotted) straight line connecting A and B. Indifference curves on the uπ − dπ plane
are the parallel straight lines.

Quite obviously, all preference functions that take an “expectation” (i.e.,
additive or integrable) form can be written as the difference between two
parts: a “better part” and a “worse part” with respective to some reference
level. In particular, the CPT preference in (4) can be equivalently written
as

Eπ(v) = uπ − dπ (uπ =
∑

xi∈X+

π+
i v(xi), dπ = −

∑
xi∈X−

π−i v(xi)).

Interpreting uπ and dπ as the “rank-dependent” reward and risk measures
and viewing Eπ(v) as a linear function of uπ and dπ, we can plot the
indifference curves {(uπ, dπ) : Eπ(v) = constant} on the plane spanned by
uπ and dπ. These indifference curves are the parallel 45◦ straight lines. In
order to accommodate preference for C, then, the position of C necessarily
deviates from the point half-way on the straight line connecting A and B
(see Figure 3.4(b)).

The two figures (a) and (b) in Figure 3.4 highlight the different views of
CUT and CPT regarding the effects of nonlinear preferences. Whereas both
theories explain the same observed (quasiconcave) behavior at a descrip-
tive level, CUT appears to offer a more transparent explanation for such
effects: “For some people the undesirability of disutility-risk may increase
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more than in proportion to increases in the magnitude of disutility-risk.
Consequently, some people may demand increasingly higher marginal com-
pensations of utility-reward for increases in disutility-risk.”

4. CONCLUDING DISCUSSION

This paper has presented a simple, perhaps novel, approach to decision
making under risk. The main contribution is a general representation the-
ory (called compound utility theory or CUT) that is both normative (in
partly keeping the independence axiom of EUT) and easy to use. The the-
ory unifies – conceptually and to a certain extent structurally – two hith-
erto separate mainstream approaches: one in the tradition of EUT where
preference functions are linearly additive in probabilities, the other in the
tradition of risk and return trade-offs where preference functions depend on
exogenously defined measures of reward and risk (e.g., the mean-variance
model or the downside-risk models).

As an alternative to cumulative prospect theory (CPT), the new the-
ory demonstrates that “anomalies” in the EU paradigm can be explicable
within a simple rational model without having to invoke psychological as-
sumptions about distortion of (true) probabilities in people’s perception of
risk. As long as the decision maker does not perceive all possible outcomes
of choice as better (or as worse) outcomes, CUT is able to explain a broad
range of choice behavior.

A distinctive feature of CUT is its notion of utility-reward and disutility-
risk (or reward and risk for short) measured by the expected utility for
better outcomes and expected disutility for worse outcomes respectively.
Assuming the independence axiom for rational judgment of reward and
risk, the theory preserves the normative appeal and analytical simplicity of
EUT. The descriptive capacity of the theory, however, is greatly enhanced
by allowing the preference over reward and risk to be convex, concave, or
varying as reward and risk change.

For monetary outcomes, a theory of reference level determination is de-
veloped as well, which ensures a unique, context dependent, reference level
for applying CUT. Different from the “natural zero” assumption of refer-
ence point in CPT, this reference level is determined by the opportunity set
and always entails potential gains and losses. Consequently, unlike CPT
where only the relative changes of wealth affect preferences, CUT allows
preferences to be affected by absolute levels as well as relative changes of
wealth.

Attitude toward utility-reward and disutility-risk derives from the intu-
itive premise that potential gains and losses, or pleasure and pain, that
any gamble entails are more fundamental attributes than the gamble itself.
They affect our choice, but they can also be evaluated independently of
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our choice. CUT suggests that judgment and choice are decisions of two
kinds. Judgment is likely to benefit from a normative theory that helps
ensure consistency in our evaluation of reward and risk, whereas choice
may be affected by the feeling or psychology of individuals. This intu-
ition enables CUT to achieve a nice balance between specificity (expected
utility/disutility representation of reward and risk) and generality (varying
degree of disutility aversion or shapes of the indifference curves).

Worth remarking is the fact that CUT is not always more general than
CPT. Conceivably, behaviors under some complex situations may still call
for attitude toward probabilities to explain. A true generalization of CPT
(as well as CUT) could be one that incorporates decision weights of rank-
dependent models into the evaluation of utility-reward and disutility-risk.
A “rank-dependent compound utility” could then take the form of, say,

Vr(uπ, dπ) = Vr(Eπ(Ur), Eπ(Dr))

where the “expectation” Eπ is computed using decision weights π instead
of true probabilities (cf. eq. (4)).

Generalizing CUT to dynamic decision problems where commitment to
a sequential strategy cannot be made at the start may be more promising,
however. Important issues such as dynamic consistency, path dependence,
changing preferences or tastes, etc., could then be addressed (e.g., Kreps
and Porteus, 1979; Epstein and Zin, 1989). It is my hope that the reader
concurs that the strong intuitive ground of CUT promises more interesting
findings down the road.

NOTES

1. This paper grew substantially from a discussion paper entitled “Propos-
ing a Compound Utility Approach to Decision Making under Risk” which
I presented at the 2003 meetings of the Econometric Society and the Euro-
pean Economic Association in Stockholm. I wish to thank several partici-
pants there, as well as Rod Aya, Sugato Bhattacharyya, Eddie Dekel, Au-
drey Hu, David de Meza, Laixiang Sun, Kin Lam, Florian Wagener, Peter
Wakker, Zaifu Yang and colleagues and seminar participants at the Uni-
versity of Amsterdam, Hong Kong Baptist University, University of Hong
Kong, and the Tinbergen Institute for helpful discussions, comments, and
suggestions.

2. Nonlinear preferences figure in, e.g., rank-dependent theories (e.g.,
Quiggin, 1982; Yaari, 1987), subjective probability theories (e.g., Gilboa,
1987; Schmeidler, 1989), mixture symmetry and quadratic utility theory
(Chew et al., 1991), ranked-weighted theories (Luce and Fishburn, 1991;
Marley and Luce, 2001), cumulative prospect theory (Tversky and Kahne-
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man, 1992; Wakker and Tversky, 1993; Chateauneuf and Wakker, 1999),
and multiple-priors theories (Jaffray, 1989; Gilboa and Schmeidler, 1989).
For more recent contributions, see, e.g., reviews by Starmer (2000), Sugden
(2000), Schmidt (2000), and Bell and Fishburn (2000). See also Harless and
Camerer (1994) and Hey and Orme (1994) on comparing theories of choice
under risk and uncertainty.

3. Empirical evidence supporting the view that the reference (or target)
levels may be affected by the choice context is abundant (e.g., Luce et
al., 1993 and their references). These levels may be influenced by the
opportunity set, social norms, market sentiment, one’s past experience and
current wealth, and so on (e.g., Tversky and Kahnemann, 1991). Note that
Sugden’s concept of reference is more general in scope than the reference
level in CUT because he allows the reference to be either a deterministic
outcome or an act (gamble) with uncertain consequences (outcomes). On
the other hand, as Sugden acknowledges, his model is linear in probabilities
and therefore cannot accommodate nonlinear preferences such as the Allais
paradoxes.

4. A distinct benefit of focusing on the set of simple probability measures,
apart from its simplicity, is that the outcome set X is general. We shall as-
sume that X consists of at least three distinct elements. The choice-objects
P ∈ P may in fact be interpreted as either objective or subjective, pro-
vided they are probability measures in the usual sense (e.g., Arrow, 1951,
pp. 405-6). Note that by assuming that P includes all simple probability
measures on X we force ourselves (as in EUT) to be concerned with both
feasible and unfeasible (purely hypothetical) gambles. Even though actual
decisions are made under specific choice contexts, inclusion of hypothetical
gambles allows us to imagine – and therefore assume – a richer set P.

5. Sagi (2002) outlines similar potential choice “inconsistencies” in a
large class of reference dependent theories including CPT.

6. Indeed, the investment capital 1 sets a natural target level (assuming
the risk-free rate is zero) in this context. Note that one may add the
decision maker’s current wealth to every number in the gambles without
affecting the subsequent analysis.

APPENDIX A

Proof of Theorem 1: The necessity part of Theorem 1, {G1,G2} ⇒
{A1,A2,B1,B2}, is straightforward hence is omitted. The sufficiency part,
{A1,A2,B1,B2} ⇒ {G1,G2}, is proved here by way of lemmas when clarity
is enhanced. Since for any r ∈ X given and fixed, there is no ambiguity
writing P � Q instead of P � Q|r, {A1,A2,B1} ⇒ {G1(i)} is standard
when gambles are restricted to PU (r,�) and PD(r,�) respectively (e.g., see
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Kreps, 1988, Theorem (5.15) for an easier reference). We assume therefore
that G1(i) holds and start with the proof of G1(ii).

Assume {A1,A2,B1}. For any r ∈ X satisfying B1, let another utility
function U0

r having the same property as Ur as stated in G1(i) be given. For
all x1 � x2 � r|r it can then be shown that there exists a unique θ ∈ (0, 1]
such that x2 ∼ θx1 ⊕ (1 − θ)r|r (e.g., Kreps, 1988, Lemma (5.6)). Thus,
from G1(i), Ur(x2) = θUr(x1) > 0 and U0

r (x2) = θU0
r (x1) > 0. Dividing

the latter by the former on both sides of the two equations yields

U0
r (x2)
Ur(x2)

=
U0

r (x1)
Ur(x1)

= a > 0 independent of x1, x2,

which implies the uniqueness property U0
r (x) = aUr(x) for all x � r|r.

Clearly, U0
r (r) = aUr(r) = 0 is also true. The remaining proof concerning

Dr is similar hence omitted. This completes the proof of G1.
Now we show {A1,A2,B1,B2}⇒ {G1,G2}: Assume {A1,A2,B1,B2} holds.

Fix (Ur, Dr) and define (Ur, Dr) : P → R2
+ by

(Ur(P ), Dr(P )) = (E(Ur;P ), E(Dr;P )).

Lemma 1. For all P,Q ∈ P and r ∈ X, (i) if P ∼ Q|r, then Ur(P ) >
Ur(Q) ⇔ Dr(P ) > Dr(Q). (ii) If Ur(P ) = Ur(Q) and Dr(P ) = Dr(Q)
then P ∼ Q|r.

Proof: Let P,Q ∈ P and r ∈ X be given.
(i) If Ur(P ) > Ur(Q) and Dr(P ) ≤ Dr(Q) then by G1 and B2 P � Q|r.

Similarly, if Ur(P ) ≤ Ur(Q) and Dr(P ) > Dr(Q) then P ≺ Q|r. (ii)
Suppose Ur(P ) = Ur(Q) and Dr(P ) = Dr(Q) but P � Q|r. Define Z for
any θ ∈ (0, 1) as follows

Z = θ[
⊕
x�r

P (x)δx]⊕ [
⊕
x≺r

P (x)δx]⊕ [1− θ
∑
x�r

P (x)−
∑
x≺r

P (x)]δr

It is easy to verify that Z ∈ P, and that Z+
r ∼ θP+

r ⊕ (1 − θ)δr|r and
Z−r ∼ P−r |r.

Consequently, Ur(Z) = θUr(P ) < Ur(Q) andDr(Z) = Dr(P ) = Dr(Q),
which implies P � Q � Z|r. By A2, then, there exists ψ ∈ (0, 1) such that
ψP ⊕ (1 − ψ)Z � Q|r. However, since Ur(ψP ⊕ (1 − ψ)Z) = ψUr(P ) +
(1 − ψ)Ur(Z) < Ur(Q) and Dr(ψP ⊕ (1 − ψ)Z) = Dr(Q), B2 implies
ψP⊕(1−ψ)Z ≺ Q|r. This contradiction shows that we must have P ∼ Q|r.
�

In light of Lemma 1 it is meaningful to define a triadic relation �ud (and
analogously, ∼ud and �ud) on Φr such that for all r ∈ X and (ui, di) =
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(Ur(Pi), Dr(Pi)) ∈ Φr where Pi ∈ P, i = 1, 2,

(u1, d1) �ud (u2, d2)|r if and only if P1 � P2|r. (A.1)

Define next the indifference sets in P and indifference sets in Φr, respec-
tively, as

Ir(P ) = {Q ∈ P : Q ∼ P |r} and Ir(u, d) = {(eu, ed) ∈ Φr : (eu, ed) ∼ud (u, d)|r}

It is easily seen that fixing any r ∈ X, the collection of distinct Ir(P )’s
(respectively, Ir(u, d)’s) form a partition of P (respectively, Φr). Under
B2, the indifference sets in Φr are upward sloping (see Figure 3.3) and may
take various shapes.

Let Ir(P) denote the set of all Ir(P ) ⊂ P and Ir(Φr) the set of all
Ir(u, d) ⊂ Φr. Define f : Ir(P) → Ir(Φr) such that for all Ir(P ) ∈ Ir(P),
f(Ir(P )) = Ir(Ur(P ), Dr(P )). Then f is an order-isomorphism from Ir(P)
onto Ir(Φr). That is, f is a one-to-one correspondence between Ir(P) and
Ir(Φr), and satisfies further that for all Ir(P ), Ir(Q) ∈ Ir(P), f(Ir(P )) �ud

f(Ir(Q))|r holds if and only if Ir(P ) � Ir(Q)|r. The meaning of these
relations are self-evident. (The inverse function is given by f−1(Ir(u, d)) =
{P ∈ P : ((Ur(P ), Dr(P )) ∼ud (u, d)|r} for all Ir(u, d) ⊂ Φr.)

Since Φr is a convex subset of R2
+ (indeed, a triangle if Ur and Dr are

bounded) and since two isomorphic completely ordered sets are essentially
identical, A1-A2 must hold for �ud on Φr as well.

Lemma 2. For any P � δr|r, there exists a unique αr(P ) ∈ (0, 1] such
that

P ∼ αr(P )P+
r ⊕ (1− αr(P ))δr|r. (A.2)

Dually, for any P ≺ δr|r, there exists a unique αr(P ) ∈ (0, 1] such that

P ∼ αr(P )P−r ⊕ (1− αr(P ))δr. (A.3)

Proof: Suppose P � δr|r (the case with P ≺ δr|r is analogous). If
P ∼ P+

r |r, then by G1 (A.2) holds if and only if αr(P ) = 1. If P � P+
r ,

then P+
r � P by B2 and we define sets Y1(r) and Y2(r) as follows.

Y1(r) = {θ|θP+
r ⊕ (1− θ)δr � P |r; θ ∈ [0, 1]}

Y2(r) = {θ|θP+
r ⊕ (1− θ)δr ≺ P |r; θ ∈ [0, 1]}

A2 implies that these sets are not empty. For all ψ ∈ Y1 and φ ∈ Y2, we
must have ψ > φ, which follows from A1 (transitivity) and G1. Thus there
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exists αr such that inf{θ|θ ∈ Y1(r)} ≥ αr ≥ sup{θ|θ ∈ Y2(r)}. By A2, this
αr does not belong to either Y1(r) or Y2(r), thus P ∼ αrP

+
r ⊕ (1−αr)δr|r.

G1 and transitivity of ∼ further imply that this αr is unique, which defines
αr(P ). �

By order-isomorphism, Lemma 2 has an equivalent statement that for
all (u, d) ∈ Φr there exists a unique αr(u, d) ∈ (0, 1] such that Ir(u, d) ∼ud

Ir(αr(u, d)u, 0)|r if (u, d) �ud (0, 0)|r and Ir(u, d) ∼ud I(0, αr(u, d)d)|r if
(u, d) ≺ud (0, 0)|r. This suggests a simple way to define Vr : Φr → R as
follows (cf. the differentiable-path approach in Mehta, 1998).

Vr(u, d) =

 αr(u, d)u if (u, d) �ud (0, 0)|r
0 if (u, d) ∼ud (0, 0)|r
−αr(u, d)d if (u, d) ≺ud (0, 0)|r

That Vr represents �ud in that for all (u1, d1), (u2, d2) ∈ Φr, (u1, d1) �ud

(u2, d2)|r if and only if Vr(u1, d1) ≥ Vr(u2, d2) is now obvious by our con-
struction of αr in Lemma 2. That is, for all P,Q ∈ P,

P � Q|r ⇔ (Ur(P ), Dr(P )) �ud (Ur(Q), Dr(Q))|r (A.4)
⇔ Vr(Ur(P ), Dr(P )) ≥ Vr(Ur(Q), Dr(Q)). (A.5)

which is condition (2) of G2. The monotonicity properties for Vr follow
readily from G1 and B2.

Since Φr is a subset of R2
+, continuity of Vr is easy to establish (see

Figure ??). Let any (u, d) ∈ Φr and ε > 0 be given. For concreteness,
assume that (u, d) ∼ud (v, 0) �ud (0, 0)|r where v = Vr(u, d) (the other
cases are similar, hence omitted). Define

Y +
r = {(eu, ed) ∈ Φr : (eu, ed) �ud (v + ε, 0)|r} = {(eu, ed) ∈ Φr : Vr(eu, ed) ≥ v + ε}

Y −r = {(eu, ed) ∈ Φr : (eu, ed) �ud (v − ε, 0)|r} = {(eu, ed) ∈ Φr : Vr(eu, ed) ≤ v − ε}

where the second equality of each equation follows from (A.4)-(A.5).
If v is the maximum u in Φr, Y +

r is empty and we only need to consider
Y −

r . More generally, assume that (u, d) is an interior point of Φr and ε is
small enough so that both Y +

r or Y −
r are non-empty. Then, (A.4)-(A.5)

ensure that the distance of (u, d) from Y +
r (and from Y −

r ) is strictly positive
for all ε > 0; for else there would be (ũ, d̃) in Y +

r or in Y −
r with (ũ, d̃) =

(u, d), implying the contradiction (v, 0) �ud (v + ε, 0)|r or (v, 0) �ud (v −
ε, 0)|r. In other words, there exists sufficiently small γ > 0 such that the
set

Bγ(u, d) = {(ũ, d̃) ∈ Φr :
√

(ũ− u)2 + (d̃− d)2 < γ}

does not belong to either Y +
r or Y −

r . Consequently, Bγ(u, d) ⊂ V −1
r (Bv

ε )
where Bv

ε = (v − ε, v + ε) ⊂ R and V −1
r (Bv

ε ) is the inverse image of Bv
ε
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36

Vr(u,d)+ε

Vr(u,d)-ε
Vr(u,d)

·

u

d0

(u,d)

Figure 5: Continuity of Vr: Given any (u,d) 2 ©, for all ε > 0 there exists a neibourhood of (u,d)

(the shaded “disc”) such that for all (eu, ed) in the “disc”, jjVr(u, d) ¡ Vr(eu, ed)jj < ε.

FIG. 5. Continuity of Vr: Given any (u, d) ∈ Φ, for all ε > 0 there exists a

neibourhood of (u, d) (the shaded “disc”) such that for all (eu, ed) in the “disc”, ||Vr(u, d)−
Vr(eu, ed)|| < ε.

(i.e., the set of all (ũ, d̃) ∈ Φr with Vr(ũ, d̃) ∈ Bv
ε ). This establishes the

continuity of Vr.
Finally, for any strictly increasing function g : R → R, g ◦ Vr ob-

viously satisfies (A.4)-(A.5). Conversely, let any V 0
r be given that has

the same property as Vr. We have V 0
r (u, d) = V 0

r (0, 0) if (u, d) ∼ud

(0, 0)|r, V 0
r (u, d) = V 0

r (αr(u, d)u, 0) if (u, d) �ud (0, 0)|r and V 0
r (u, d) =

V 0
r (0, αr(u, d)d) if (u, d) ≺ud (0, 0)|r. Defining f(v) = V 0

r (v, 0) on {v ≥ 0 :
v = Vr(u, d) for some (u, d) ∈ Φr} and f(v) = V 0

r (0,−v) on {v ≤ 0 : v =
Vr(u, d) for some (u, d) ∈ Φr} yields

f(Vr(u, d)) =

8><
>:

f(αr(u, d)u) = V 0
r (αr(u, d)u, 0) = V 0

r (u, d) if (u, d) �ud (0, 0)|r
V 0

r (0, 0) if (u, d) ∼ud (0, 0)|r
f(−αr(u, d)d) = V 0

r (0, αr(u, d)d) = V 0
r (u, d) if (u, d) ≺ud (0, 0)|r

Thus f : R → R satisfies f(Vr(u, d)) = V 0
r (u, d) and f is strictly increasing

on {v : v = Vr(u, d) for some (u, d) ∈ Φr}. �
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