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In this paper the realized daily variance is obtained from intraday trans-
action prices of the S&P 500 cash index over the period from January 1993
to December 2004. When constructing realized daily variance, market mi-
crostructure noise is taken into account using a technique proposed by Zhang,
Mykland and Aı̈t-Sahalia (2005). The time series properties of realized daily
variance are compared with those of variance estimates obtained from para-
metric GARCH and stochastic volatility models. Unconditional and dynamic
properties concerning the realized daily variance are examined, the relation-
ship between realized variance and returns is investigated, and the stylized
facts concerning realized daily variance are reevaluated with this long dataset.
While many properties are similar to what have been reported based on ar-
tificially constructed five-minute returns, three distinct results stand out in
our empirical analysis. First, we find evidence that both the realized stan-
dard deviation and the realized log variance are not covariance stationary, but
nonetheless have memory parameter less than unity. Second, we document
a positive and statistically significant risk-return trade-off. Finally, we find a
monotonically decreasing news impact function.
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1. INTRODUCTION

With the availability of ultra high frequency data, there has been growing
interest in constructing daily variance using intraday high frequency data.
Important contributions in this rapidly expanding literature include An-
dersen, Bollerslev, Diebold, and Labys (2001, ABDL hereafter), Andersen,
Bollerslev, Diebold, Ebens (2001, ABDE hereafter), Barndorff-Nielsen and
Shephard (2002), and the survey paper by Andersen, Bollerslev, Diebold
(2005) and Bandi and Russell (2006). The main idea is to sum squared
intraday returns over a day (the so-called realized volatility or empirical
quadratic variation) as an estimate of the integrated daily variance (or the-
oretical quadratic variation). Compared with parametric approaches based
on daily data using GARCH or stochastic volatility models, one major ad-
vantage of this approach is that it is model-free.

A common practice suggested in the earlier literature is to use five- or
thirty-minute returns even though data may be available at much shorter
intervals such as seconds. The longer sampling frequency is chosen in prac-
tice because of the tradeoff between the signal and the noise. In particular,
it is well known that the observations of efficient price are contaminated by
market microstructure noise. The effect of market microstructure noise on
variance is well illustrated by volatility signature plots, which depict vari-
ance as a function of the sampling interval (see for example, Fang, 1996
and ABDE, 2001). Assuming that the market microstructure noise pro-
cess is independent and identically distributed (i.i.d.) over time and also
independent of the efficient price process, Zhang, Mykland and Aı̈t-Sahalia
(2005, ZMA hereafter) and Bandi and Russell (2005) showed that the re-
alized volatility of observed prices goes to infinity as the sampling interval
goes to zero. As a result, the noise dominates the signal and market mi-
crostructure noise swamps the variance of observed prices at the highest
frequency. On the other hand, as the sampling interval increases, the sig-
nal/noise ratio goes up. But if the sampling interval is too big, a large
amount of data is discarded, leading to inefficient estimation of realized
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variance. By sampling at five- or thirty-minute horizons, it is hoped that
a compromise is attained whereby information loss is controlled and the
observed price is a good approximation to the underlying (unobserved) ef-
ficient price. This approach, suggested in ABDL (2001), ABDE (2001)
and Ebens (1999), has produced fruitful empirical results. For example, by
calculating realized daily variance from five-minute returns, ABDE (2001)
examined the statistical properties of realized daily variance for 30 Dow
Jones stocks from January 1993 to May 1998, while Ebens (1999) exam-
ined the statistical properties of realized daily variance for the Dow Jones
index over the same sample period. Both papers documented important
empirical regularities concerning realized variance.

More recent work along this line of research approaches the problem
by modeling microstructure noise explicitly and hence aims to understand
how noise affects the realized variance estimate in a more systematic way.
For example, Bandi and Russell (2005), Hansen and Lunde (2006), ZMA
(2005), Barndorff-Nielsen, Hansen, Lunde and Shephard (2005) have adopted
the assumption of pure noise (i.e., noise is i.i.d and independent with the
efficient price). Based on the pure noise assumption, various estimation
methods, including nonparametric kernel and sub-sampling techniques,
have been developed for reducing the effects of the microstructure noise
bias. For example, Bandi and Russell (2005) have found an optimal sam-
pling frequency based on the mean square error criterion. ZMA (2005)
suggested using all available data to compute realized volatility. More re-
cently, Ait-Sahalia, Mykland and Zhang (2005a) relaxed the i.i.d. assump-
tion by allowing for stationary temporal dependence in the noise process
while maintaining the assumption of independence between the noise and
the efficient price.

In this paper we compute the realized daily variance in the S&P 500
cash index using a method of ZMA and analyze the statistical properties
of realized daily variance and the risk-return relationship. We make three
contributions. First, we revisit the empirical regularities concerning real-
ized daily variance obtained in the earlier literature. We document three
new empirical results, namely nonstationarity in realized standard devia-
tion, a significant and positive risk-return tradeoff, and monotonicity in the
news impact function. Second, we compare the realized variance obtained
from the intraday data with the variance estimated by parametric GARCH
and stochastic volatility models. Such a comparison is important to gauge
the informational gain in intraday data for the purpose of volatility esti-
mation. Finally, as an important index of the US stock market, the S&P
500 is a dataset to which many parametric volatility models have been
fitted (see, for example, Bollerslev et al, 1994 and Jacquier et al, 1994).
However, studies on estimating and analyzing daily variance of S&P 500
using intraday data are much less extensive in the literature. Using a long
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span of S&P 500 intraday data, we document the time series properties of
realized daily variance.

The paper is organized as follows. Section 2 reviews the approach of
ZMA. Section 3 describes the data. Section 4 compares the realized daily
variance obtained from the intraday data with the estimated variance from
parametric models. Section 5 examines the unconditional and the dynamic
properties of realized variance while the risk-return relations are investi-
gated in Section 6. Section 7 concludes.

2. ZMA ESTIMATORS WITH MICROSTRUCTURE NOISE

Suppose the efficient log-price in high frequency data is p∗(t) and (0 =
t0, · · · , tn = 1) is a grid of discrete points in a unit interval (say, a day). The
asymptotic theory is derived in the literature by requiring sup{ti+1− ti} →
0. In the case of equidistant sampling, we have ti+1 − ti = 1/n ≡ h,∀i and
hence sup{ti+1 − ti} → 0 is equivalent to n → +∞ or h → 0.

Typically p∗(t) is assumed to follow a continuous time stochastic volatil-
ity model,

dX(t) = µ(t)dt + σ(t)dB(t), (1)

where B(t) is the standard Brownian motion, µ(t) is a stochastic process
which is predictable and has a locally bounded sample path, and σ(t) is
another stochastic process with a càdlàg sample path. This assumption
contains many important models as special cases. The quantity of interest
is

∫ 1

0
σ2(s)ds which is termed the integrated variance (IV) in the option

pricing literature.
If p∗(t) is observed, the theory of quadratic variation implies that, under

(1)
n∑

i=1

(p∗(ti+1)− p∗(ti))2
a.s.→

∫ 1

0

σ2(s)ds. (2)

That is, the realized variance (RV) based on an empirical grid of observa-
tions where the maximum grid size tends to zero will produce a strongly
consistent estimator of IV. Due to the importance of IV in many financial
decisions and the availability of ultra-high frequency data, it is not sur-
prising that this nonparametric approach to estimating the IV has recently
received a great deal of attention in the literature. For example, ABDL
(2001), ABDE (2001) and Ebens (1999) used it to document the properties
of daily exchange rate variance, stock variance and stock index variance, re-
spectively. Jacod (1994) and Barndorff-Nielsen and Shephard (2002) have
derived the limiting distribution of the RV.

In spite of the appealing theoretical foundations and the mild assump-
tions that the RV approach is based on, many researchers tend to caution



REALIZED DAILY VARIANCE 37

against using all the available data (i.e. all the transaction prices or quote
prices) to compute the realized variance. This is because the presence
of market microstructure noise such as non-synchronous trading, bid-ask
spread and price discreteness, precludes a direct observation of the efficient
price, p∗(t). To have a nearly continuous record of price on the one hand,
and to mitigate the microstructure problems on the other, ABDL (2001),
ABDE (2001) and Ebens (1999) used sparsely sampled (such as 5-minute)
returns to estimate the IV. More recently, researchers have started exam-
ining the impact of market microstructure noise on realized variance and
the statistical properties of estimators which use more information from
data. Examples include ZMA (2005) and Aı̈t-Sahalia, Mykland and Zhang
(2005a, b), Hansen and Lunde (2006), Barndorff-Nielsen, Hansen, Lunde
and Shephard (2005), and Bandi and Russell (2005), to name a few.

In this paper we will use one of the approaches suggested by ZMA (2005)
to compute realized daily variance. Let p(t) be the logarithmic transactions
price, observed at 0 = t0, · · · , tn = 1. ZMA assume that the observed price
and the efficient price p∗(t) are related as

p(ti) = p∗(ti) + ε(ti) (3)

They further make the following assumptions about the noise

ε(ti) ∼ iid(0, σ2
ε ) and ε(ti) ⊥ p∗(ti). (4)

Define RV full =
∑n−1

i=1 (p(ti+1) − p(ti))2. As a direct consequence of as-
sumptions (4), we have

E(RV full|p∗(t) process) = IV + 2nσ2
ε . (5)

When n → ∞, the realized variance is of order O(n) and hence diverges
instead of converging, invalidating the approach of using the RV calcu-
lated from tick-by-tick data to estimate IV. Correspondingly, the volatility
signature plot should asymptote as h → 0.

Define the full grid that contains all the transactions prices by G =
{t0, · · · , tn}. Partition G into K mutually exclusive sub-grids, called G(k)

with k = 1, ...,K, so that the kth sub-grid G(k) starts at tk−1 and then select
every Kth sample point after that, until tn. Typically G(k) is much more
sparse than G. For example, the average frequency in G(k) is 5 minutes
while the average frequency in G is 15 seconds. Denote the average size of
the sub-samples by n̄.

The most frequently used estimator in the literature is the one based
on a subgrid at a modest frequency such as 5-minute, say G(1) (ABDE,
2001). Another estimate is based on a subgrid at the frequency which
minimizes the mean square error of RV (see also Bandi and Russell, 2005).
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By sampling sparsely, both these two estimators discard some datapoint
in the original sample. One estimator which uses all available information
calculates the RV based on all K subgrids (call them RV G(k)

with k =
1, · · · ,K) and then computes the average of these K RV estimates, that is

RV (K) =
1
K

K∑
k=1

RV G(k)
(6)

The bias in RV (K) is of order O(n) which is smaller than that based on
the full grid (ie O(n)), as shown in ZMA. To further reduce the bias, ZMA
employ the bias property in (5) and propose an estimator obtained by
constructing a linear combination of the estimates at two different time
scales, defined as

RV (K) − n̄

n
RV full (7)

This two-time-scale method is constructed in the same spirit as the jack-
knife method of Quenouille (1956). The jackknife estimator is basically
a weighted average of the full sample estimator and the sub-sample esti-
mators, just as (7) above. Phillips and Yu (2005) provide another useful
application of the jackknife method in the context of asset pricing. The
ability of the jackknife estimator to reduce bias can be explained intuitively.
Under assumptions (4), the bias in RV full is of order O(n) while the bias
in RV (K) is of order O(n). Therefore, the biases are canceled out in the
weighted average (7). It should be emphasized that assumptions in (4)
are critical for obtaining the precise weight in equation (7). When (4) is
violated, the estimator defined in equation (7) may perform worse than the
other estimators.

Although the assumptions about ε(ti) in (4) substantially simplify econo-
metric treatment, including identification, estimation, and implementation,
(7) may not be a realistic representation of microstructure noise. Aı̈t-
Sahalia, Mykland and Zhang (2005a) provide a useful generalization of the
two-time-scale estimator to the case with dependent noise, but the possible
dependence between noise and the efficient price imposes further challenge
to identification and estimation of IV. These issues are discussed in Hansen
and Lunde (2006) and Phillips and Yu (2006).

3. DATA AND STYLIZED FACTS

In our empirical analysis, we use high frequency data on the S&P 500 cash
index for the period January 4, 1993 to December 31, 2004, obtained from
the Chicago Mercantile Exchange (CME). Within each day, we consider
the transaction record between 8:30am to 15:00pm central standard time
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TABLE 1.

Number of trading days in each year from 1993 to 2004

Year 1993 1994 1995 1996 1997 1998

# of days 253 252 251 254 253 252

Year 1999 2000 2001 2002 2003 2004

# of days 252 252 248 251 250 252

(CST). In total, there are 3020 trading days in the sampling period.1 Table
1 shows the number of trading days in each year. Being an important index
of US stock market behavior, the S&P 500 has been modeled with a large
number of parametric volatility specifications. On the other hand, few
studies have focused on the estimation and analysis of the variance of S&P
500 using intraday data.

The S&P 500 is a value-weighted index of 500 prominent common stocks
listed on the New York Stock Exchange (NYSE), American Stock Ex-
change (AMEX), and the National Association of Security Dealers Auto-
mated Quotation system (NASDAQ). Whenever there is a new transaction
recorded in any one of the 500 stocks, the S&P 500 cash index is updated.
Since the S&P 500 stocks are the most actively traded equities, the S&P 500
cash index should be highly liquid. Naturally the aggregation would miti-
gate some microstructure effects such as the bid ask spread and the price
discreteness. However, the effect of non-synchronous trading is retained in
the S&P 500 index. While in theory one should expect one update for the
S&P 500 at each time stamp, the data provided by CME is much sparser.
Indeed, the first, second and third quartiles of inter-price durations are all
15 seconds in the S&P 500 cash index. This observation seems to suggest
that CME only update the cash index every 15 seconds. The total number
of transaction prices is around 1800 in a typical trading day.

Since we deal with a large amount of empirical data with several million
time series observations, there are some obvious data errors on the price
and mis-recording of time stamps. We therefore first removed these data
entry errors in a cleaning operation. We then remove price bouncebacks,
defined by Aı̈t-Sahalia, Mykland and Zhang (2005a) as a price jump of
size greater than a cutoff of 1%, immediately followed by a jump of similar
magnitude but opposite sign.

To decide on which method to use for estimating realized daily variance,
we first inspect the volatility signature plots for the “cleaned” data. To do
so, we construct RVs based on 15, 18, · · · , 1800 seconds using the method

1June 27, 1995 S&P 500 cash index data is missing in the CME data files. In addition,
April 1, 1994 and September 11, 2001 are removed from the sample due to insufficient
transactions prices recorded for the day.
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Figure 1: Volatility signature plots. The vertical axis is the RV estimator (×10000), averaged
over all trading days in each year. The horizontal axis is the sampling interval, taking the
values of 15, 16, 18, ..., 1000, 1800 seconds. Each curve corresponds to each year in the
sample.
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FIG. 1. Volatility signature plots. The vertical axis is the RV estimator (×10000),
averaged over all trading days in each year. The horizontal axis is the sampling interval,
taking the values of 15, 16, 18, . . . , 1000, 1800 seconds. Each curve corresponds to each
year in the sample.

of Andersen et al (2001). In Figure 1 we plot the RV estimator, averag-
ing over all trading days within each year, as a function of the sampling
interval. When the price at particular time stamp is not available, we use
the previous tick method to approximate it (see Hansen and Lunde (2006)
for further details about the previous tick method). In contrast to signa-
ture plots that are typically found in the literature, such as Aı̈t-Sahalia,
Mykland and Zhang (2005a) and Bandi and Russell (2005), none of the
signature plots for S&P 500 blows up as the sampling interval gets smaller.
Indeed all the signature plots slope downward at the highest frequencies.
According to Hansen and Lunde (2006), this is evidence of negative cor-
relation between the microstructure noise and the efficient price, violating
the two assumptions in (4). As a result, the two-time-scale RV estimator
of ZMA may not be the best estimator.

However, all the signature plots seem to stabilize around h = 600 sec-
onds. This observation suggests that one way to estimate the IV is to
construct RV based on a subgrid of 10-minute returns. By doing so, of
course, only 39 out of about 1800 observations are used in each day and
hence a large amount of data is discarded. In this paper, we use RV (K),
defined by Equation (7), to estimate the IV. In particular, we first apply
the logarithmic transformation to the transactions prices, which defines
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p(ti). Equation (6) with K = 600 is then used to obtain the realized daily
variance over the sample period. The time series sequence of realized daily
variance is defined by {RVt}3020

t=1 . Due to the averaging effect, this esti-
mator has much smaller variance than one based on a single grid (ZMA,
2005).

It would be interesting to know if there is any difference between the
nonparametric estimate of variance and parametric counterparts, and if
the properties of realized daily variance found in ABDE (2001) and Ebens
(1999) remain qualitatively unchanged. It is worthwhile, therefore, to first
review the following stylized facts about realized daily variance that have
been documented in the literature:

1. Volatilities are time varying and clustering.
2. Although the return distribution is non-Gaussian and leptokurtic, the

standardized return (the ratio of return to realized standard deviation)
distribution conforms well with the normal distribution.

3. While neither realized daily variance nor realized daily standard de-
viation follow the normal distribution, the distribution of realized daily
log-variance is closer to the normal distribution.

4. Long range dependence and covariance stationarity are found in re-
alized daily variance, featured by an estimate of the memory parameter
significantly larger than 0 but generally less than 0.5.

5. Standard unit root tests often reject the presence of a unit root in
realized daily variance.

6. The news impact function (NIF) defined by Engle and Ng (1993) is
asymmetrically and V-shaped.

7. The evidence about the risk-return tradeoff is mixed and often statis-
tically insignificant.

4. COMPARING PARAMETRIC AND NONPARAMETRIC
VARIANCE ESTIMATES

Two extensive literatures, seeking to estimate daily variance, have devel-
oped since the introduction of the ARCH model by Engle (1982) and the
introduction of the stochastic volatility (SV) model by Taylor (1982). See
Bollerslev et al (1994) and Shephard (2005) for the review of the GARCH
literature and the SV literature, respectively. Andersen et al (2005) pro-
vide an interesting discussion on the relationship between the conditional
variance of GARCH and SV models and the RV implied by intraday data.
In this section, based on the same dataset, we examine the relationship of
the three sequences of variance estimates, obtained, respectively, from the
intraday data, the GARCH(1,1) model fitted to the open-to-close returns,
and the basic SV model fitted to the open-to-close returns.
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The GARCH(1,1) model of Bollerslev (1982) takes the form of

yt = µy + σtεt = µy + exp(ht/2)εt, εt ∼ i.i.d. N(0, 1) (8)

and

σ2
t+1 = α0 + α1σ

2
t + βy2

t , (9)

where yt represents the open-to-close return on day t. The model is esti-
mated by the maximum likelihood (ML) method. The normality assump-
tion of εt can be relaxed, in which case ML estimation becomes quasi
maximum likelihood. From the ML estimates of α0, α1 and β, the variance
can be easily estimated by

σ̂2
t+1 = α̂0 + α̂1σ

2
t + β̂y2

t ,

with appropriate initializations on σ2
0 and y2

0 .
The basic SV model of Taylor (1982) takes the form of

yt = µy + σtεt = µy + exp(ht/2)εt, εt ∼ i.i.d. N(0, 1) (10)

and

ht+1 = α + φht + σηt, ηt ∼ i.i.d. N(0, 1). (11)

where yt represents the open-to-close return on day t. The model was
estimated by various techniques in Mahieu and Schotman (1998). In the
present paper, we estimate the model using a Bayesian Markov chain Monte
Carlo (MCMC) method of Meyer and Yu (2000).

To estimate the variance from an SV model, two quantities have been
used in the literature, namely, the smoothed variance (E(σ2

t+1|IT )) and
the filtered variance (E(σ2

t |It)), where It = σ(y1, · · · , yt) . The smoothed
estimate of variance is a by-product of the MCMC algorithm as σ2

t+1 is in
the augmented parameter space (Jacquier et al, 1994) and hence readily
available once the MCMC output is obtained (Tsay, 2005). The filtered
estimate is generally more difficult to calculate in the context and may be
obtained by means of the particle filter (Pitt and Shephard, 1999 and Kiti-
gawa, 1996). Berg et al (2004) discuss how to use Kitagawa’s algorithm to
obtain the filtered variance of the SV model given by (10) and (11). While
the Kalman filter works for linear Gaussian state-space models, particle
filter is applicable to nonlinear non-Gaussian state models. The basic idea
of particle filter is to draw “particles” from the filtered density (F (σ2

t |It)),
advance the particles by drawing from F (σ2

t+1|σ2
t , It), and then do resam-

pling to take the new information implied by yt+1 into account. Although
the smoothed variance is easy to compute in a SV model, the filtered vari-
ance is a more reasonable quantity to use in the context because it has the
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same information set as the GARCH model. Hence it is used in the present
paper and the number of particles is chosen to be 10,000.

Figure 2 shows the time series plots for the three sequences of variance
estimates. Several results are evident from Fig. 2. First, all the three
sequences have a very similar pattern. For example, both at the beginning
of the sample and at the end of the sample, variance is low while in the
middle variance is high. Second, while October 28, 1997 (corresponding
to the Asian financial crisis) has the highest realized daily variance in the
sample, the variance estimated from the two parametric models suggests
that it reached a peak in July 2002. Thirdly, both the GARCH and the
SV models produce much smoother estimates of the variance than real-
ized variance. Underestimation of variance is especially serious during the
volatile period. These results remain qualitatively unchanged when more
flexible GARCH and SV models are used.

To quantify the underestimation problem in the parametric volatility
models, we fit the following empirical regression

RVt − σ̂2,parametric
t = β̂0 + β̂1RVt + êt,

where RVt is the RV at day t and σ̂2,parametric
t is the estimate of variance

from the GARCH(1,1) model or the basic SV model at day t. The OLS
estimates, the associated t statistics based on Newey-West standard errors,
and R2 are reported in Table 2. Figures 3-4 depict the scatter plots of
RVt − σ̂2,parametric

t against RVt. Superimposed is a nonparametric curve
obtained by locally weighted least square regression of Cleveland and Devlin
(1988). The underestimation is evident in both cases and appears to be
statistically significant. Relative to the GARCH(1,1) model, however, the
variance estimates implied by the basic SV model are closer to the RVs,
featured by a much smaller value for R2 and a smaller value for the t
statistic for β1 in the regression model.

5. UNCONDITIONAL AND DYNAMIC PROPERTIES
5.1. Unconditional Properties

Table 3 reports some basic summary statistics for RV. The feature of
variance clustering is manifest in the first autocorrelation function (ACF)
(see also Panel 3 of Figure 2), confirming the first stylized fact.

Figures 5-6 plot the unconditional distribution of the open-to-close re-
turns (yt), and the unconditional distribution of the standardized returns
(defined as yt/RVt). We also report some summary statistics of the two se-
ries, including the skewness, the kurtosis, and the Jarque-Bera test statistic
and the associated p-value. It is clear that the return distribution has fat-
ter tails than the normal distribution, featured by the high kurtosis (6.87).
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TABLE 2.

Variance estimation by parametric volatility models

GARCH

Parameter β0 β1 R2

Estimate -7.15E-05 0.502712 0.331454

t-statistic -14.02493 7.841215

SV

Parameter β0 β1 R2

Estimate -8.86E-05 0.12768 0.128089

t-statistic -13.97981 3.940623

Note: This table reports the OLS estimates, associ-
ated t statistics based on the Newey-West standard
errors, and R2 in the following empirical model,

RVt − σ̂2,parametric
t = bβ0 + bβ1RVt + bet,

where RVt is the RV at day t and σ̂2,parametric
t is the

estimate of variance from the GARCH(1,1) model or
the basic SV model at day t.

GARCH Variance
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0

0.
00

04

SV Variance
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Realized Variance
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Figure 2: Time series plots of the conditional variance estimate for the GARCH(1,1) model,
the filtered variance of the basic SV model, and the realized daily variance from January 4,
1993 to December 31, 2004.

scatter plots of RVt − σ̂2,parametric
t against RVt. Superimposed is a nonparametric curve

obtained by locally weighted least square regression of Cleveland and Devlin (1988). The
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to the GARCH(1,1) model, however, the variance estimates implied by the basic SV model

are closer to the RVs, featured by a much smaller value for R2 and a smaller value for the

t statistic for β1 in the regression model.

5 Unconditional and Dynamic Properties

5.1 Unconditional Properties

Table 3 reports some basic summary statistics for RV. The feature of variance clustering is

manifest in the first autocorrelation function (ACF) (see also Panel 3 of Figure 2), confirming

11

FIG. 2. Time series plots of the conditional variance estimate for the GARCH(1,1)
model, the filtered variance of the basic SV model, and the realized daily variance from
January 4, 1993 to December 31, 2004.
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TABLE 3.

Summary statistics of realized variance

Mean St. dev. Skewness Kurtosis ACF1 ACF100 ACF200

RV 7.74e-6 1.15e-4 6.80 77.60 0.594 0.100 0.113

Note: This table reports summary statistics for the realized daily variance of S&P 500
cash index. ACF1, ACF100, ACF200 represent the ACF of orders 1, 100, 200, respec-
tively.

-.0008

-.0004

.0000

.0004

.0008

.0012

.0016

.0020

.0000 .0005 .0010 .0015 .0020 .0025

RV

R
V

 m
in

us
 G

A
R

C
H

 v
ar

ia
nc

e

LOESS Fit (degree = 1, span = 0.3000)

Figure 3: Empirical relationship between realized variance and the variance estimate from
GARCH(1,1). The solid curve is a nonparametric regression smoother.

the first stylized fact.

Figures 5-6 plot the unconditional distribution of the open-to-close returns (yt), and the

unconditional distribution of the standardized returns (defined as yt/RVt). We also report

some summary statistics of the two series, including the skewness, the kurtosis, and the

Jarque-Bera test statistic and the associated p-value. It is clear that the return distribution

has fatter tails than the normal distribution, featured by the high kurtosis (6.87). Moreover,

it is skewed to the left (-0.151). The Jarque-Bera test is 1895.85 and has a p-value of 0,

rejecting the null hypothesis of normality. However, the unconditional distributions of the

standardized return series conform better with the normal distribution. While the Jarque-

Bera test still rejects normality, the statistic reduces to 34.33 from 1895.85. Hence the

second stylized fact is partially confirmed. Interestingly, the skewness becomes positive in

the standardized return.

Figure 7 plots the unconditional distributions of the realized variance, realized standard

deviation, and logarithmic realized variance. For comparison, we also depict the normal

density function with the same mean and the same variance. Neither the variance nor

the standard deviation is normally distributed. Compared with the variance and standard

12

FIG. 3. Empirical relationship between realized variance and the variance estimate
from GARCH(1,1). The solid curve is a nonparametric regression smoother.

Moreover, it is skewed to the left (-0.151). The Jarque-Bera test is 1895.85
and has a p-value of 0, rejecting the null hypothesis of normality. However,
the unconditional distributions of the standardized return series conform
better with the normal distribution. While the Jarque-Bera test still rejects
normality, the statistic reduces to 34.33 from 1895.85. Hence the second
stylized fact is partially confirmed. Interestingly, the skewness becomes
positive in the standardized return.

Figure 7 plots the unconditional distributions of the realized variance,
realized standard deviation, and logarithmic realized variance. For com-
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Figure 4: Empirical relationship between realized variance and the variance estimate from
the basic SV model. The solid curve is a nonparametric regression smoother.
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Figure 5: Density estimate of unconditional distribution and summary statistics of daily
returns. The figure shows the unconditional distribution of the daily open-to-close returns.
The numbers are the summary statistics of the same data. The sample period is from
January 4, 1993 to December 31, 2004.
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FIG. 4. Empirical relationship between realized variance and the variance estimate
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FIG. 5. Density estimate of unconditional distribution and summary statistics of
daily returns. The figure shows the unconditional distribution of the daily open-to-close
returns. The numbers are the summary statistics of the same data. The sample period
is from January 4, 1993 to December 31, 2004.
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Figure 6: Density estimate of unconditional distribution and summary statistics of stan-
dardized returns, measured by rt/RVt. The figure shows the unconditional distribution of
the daily open-to-close returns. The numbers are the summary statistics of the same data.
The sample period is from January 4, 1993 to December 31, 2004.

deviation, however, the log-variance has a better normal approximation. In Table 4 we

report the summary statistics for the standard deviation and log-variance. Comparing

Table 4 with Table 3, the better normal approximation is manifest in the smaller value of

the skewness, kurtosis, and Jarque-Bera statistic in the log-variances although normality is

still rejected by the Jarque-Bera test. Consequently, we confirm the third stylized fact.

5.2 Dynamic Properties

Figure 8 plots the autocorrelation function (ACF) for the variance, standard deviation and

log variance. In all cases, the ACF decays very slowly, suggesting evidence of long range

dependence.

Motivated by these plots, we fit the following fractionally integrated model to each series,

(1− L)dXt = μ+ �t,

where Xt is one of the three series, and �t ∼ I(0). See Baillie (1996) for the review of

fractionally integrated processes. As we do not assume a particular range for the memory
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FIG. 6. Density estimate of unconditional distribution and summary statistics of
standardized returns, measured by rt/RVt. The figure shows the unconditional distri-
bution of the daily open-to-close returns. The numbers are the summary statistics of
the same data. The sample period is from January 4, 1993 to December 31, 2004.

parison, we also depict the normal density function with the same mean
and the same variance. Neither the variance nor the standard deviation is
normally distributed. Compared with the variance and standard deviation,
however, the log-variance has a better normal approximation. In Table 4 we
report the summary statistics for the standard deviation and log-variance.
Comparing Table 4 with Table 3, the better normal approximation is mani-
fest in the smaller value of the skewness, kurtosis, and Jarque-Bera statistic
in the log-variances although normality is still rejected by the Jarque-Bera
test. Consequently, we confirm the third stylized fact.

TABLE 4.

Summary statistics of realized standard deviation and logarithmic realized variance

Mean St. dev. Skewness Kurtosis ACF1 ACF100 ACF200

SD 7.69e-3 4.29e-3 2.147 12.00 0.740 0.297 0.278

log −RV -10.00 1.012 0.103 2.917 0.772 0.463 0.405

Note: This table reports summary statistics for the realized standard deviation and logarithmic
realized variance of the S&P 500 cash index. ACF1, ACF100, ACF200 represent the ACF of
orders 1, 100, 200, respectively.

5.2. Dynamic Properties
Figure 8 plots the autocorrelation function (ACF) for the variance, stan-

dard deviation and log variance. In all cases, the ACF decays very slowly,
suggesting evidence of long range dependence.

Motivated by these plots, we fit the following fractionally integrated
model to each series,

(1− L)dXt = µ + εt,
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Figure 7: Density estimate of unconditional distribution of the realized variance (left),
realized standard deviation (middle), and logarithmic realized variance (right). The dotted
line refers to the normal distribution with the same mean and the same standard error. The
sample period is from January 4, 1993 to December 31, 2004.
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FIG. 7. Density estimate of unconditional distribution of the realized variance (left),
realized standard deviation (middle), and logarithmic realized variance (right). The
dotted line refers to the normal distribution with the same mean and the same standard
error. The sample period is from January 4, 1993 to December 31, 2004.

where Xt is one of the three series, and εt ∼ I(0). See Baillie (1996) for
the review of fractionally integrated processes. As we do not assume a
particular range for the memory parameter d, we make use of a feasible
exact local whittle method developed recently by Shimotsu and Phillips
(2005) and Shimotsu (2006) to estimate d. This method allows d to take
a much wider range of possible values than many alternative methods and
produces valid confidence intervals and asymptotic standard errors for both
stationary and nonstationary values of d. These advantages are practically
important because apriori one normally does not know the range of possible
values of d. In Table 5 we report these estimates of d together with the
corresponding asymptotic standard errors in each of the three cases. In all
cases, we find strong evidence of fractional integration. The point estimates
of d range between 0.43 and 0.63, all significantly larger than zero. This
confirms the stylized fact concerning the long range dependence in realized
variance. However, in no case can we reject the null hypothesis of d = 0.5 in
favor of d < 0.5. In two cases the point estimate of d is even larger than 0.5.
In one case we reject the null hypothesis of d = 0.5 in favor of d > 0.5. As a
result, we find evidence of non-stationarity in all three realized quantities,
especially in the standard deviation and the log variance. This result is
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Figure 8: The autocorrelation functions (ACF). The graphs shown the first 200 ACF of the
variance (left), standard deviation (middle), and log variance (right). The dotted line refers
to the upper limit of the 95% confidence interval. The sample period is from January 4,
1993 to December 31, 2004.
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FIG. 8. The autocorrelation functions (ACF). The graphs shown the first 200 ACF
of the variance (left), standard deviation (middle), and log variance (right). The dotted
line refers to the upper limit of the 95% confidence interval. The sample period is from
January 4, 1993 to December 31, 2004.

in sharp contrast to those obtained in ABDE and Ebens (1999) where
estimates of d are all significantly less than 0.5 and suggest stationarity.

TABLE 5.

Estimates of the memory parameter for the realized variance, realized
standard deviation and logarithmic realized variance

RV SD log −RV

d 0.432 0.574 0.625

asy. std. err. 0.045 0.045 0.045

Note: This table reports the feasible exact lo-
cal whittle estimate of d and the correspond-
ing asymptotic standard error for the realized
variance, realized standard deviation and log
realized variance of the S&P 500 cash index.
The model fitted is (1−L)dXt = µ + εt, where
εt ∼ I(0).

Furthermore, since the estimates of d are always significantly less than
1, we find strong evidence against the unit root (or I(1)) hypothesis. Al-
ternatively, one can test for the presence of a unit root in each of the three
series using a unit root test. Table 6 contains the results of ADF unit root
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test, again suggesting evidence against the I(1) hypothesis. Therefore, we
confirm the fifth stylized fact.

TABLE 6.

Unit root test statistics for the realized variance, realized standard deviation
and logarithmic realized variance

RV SD log −RV

ADF -8.82 -6.77 -5.08

p-value 0.0 0.0 0.0

Note: This table reports the augmented
Dickey-Fuller test and its p-value for the
realized variance, realized standard de-
viation and log realized variance of the
S&P 500 cash index.

6. RISK-RETURN RELATIONS

In this section we are concerned with two kinds of relationships between
variance and returns, namely, the intertemporal relation between returns
and variance (i.e., inter-temporal capital asset pricing model or ICAPM),
and the news impact relation between variance and lagged returns. Un-
covering these two relations has been a topic that has received extensive
investigation in the empirical literature.

Regarding the ICAPM intertemporal relation between returns and vari-
ance, while Merton (1973) demonstrated a positive risk-return relation from
a theoretical perspective, the empirical literature has been unable to docu-
ment strong statistical evidence to support it. (However, see Ghysels et al
(2005) for a counterexample). Following much of the literature, we estimate
the following linear regression model,

yt = α + βEt−1(RVt) + εt,

where yt represents the open-to-close return on day t and Et−1(RVt) is
measured by the lagged realized daily variance RVt−1. β is the so-called
risk aversion parameter.

Figure 9 displays the scatter plot for yt against RVt−1. Superimposed is
the estimated linear regression line which clearly slopes upwards. Table 7
reports the OLS estimates, standard errors, and t-statistics of α and β. The
estimated risk aversion parameter is 4.209 which is statistically significant
at the 5% level.

Regarding the relation between variance and lagged returns, which is
also termed the news impact function (NIF) in the volatility literature,
two hypotheses coexist in the literature, namely, the leverage effect and
the volatility feedback effect. Although both effects predict a negative
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TABLE 7.

Regression of daily return on lagged daily realized variance

α β

estimate -0.00024 4.209

std error 0.00023 1.635

t-statistic -1.06 2.57

Note: This table reports the OLS
regression results from the follow-
ing model

yt = α + βRVt−1 + εt,

where yt represents the open-to-
close return on day t.

correlation between the current variance and the lagged return, the leverage
hypothesis predicts a monotonically decreasing and hence asymmetric NIF
while the other hypothesis predicts a more flexible asymmetry in NIF. Most
studies in the GARCH literature have documented an asymmetrically V-
shaped NIF.

Figure 10 displays the scatter plot for logarithmic realized variance against
yt−1/

√
RVt−1. Superimposed is a nonparametric regression curve (namely

NIF) obtained by a Gaussian kernel and the optimal bandwidth. Compar-
ing our Fig. 10 with Fig. 10 in ABDE (2001), we draw two conclusions.
First, there is an important difference between the two NIFs. In ABDE,
the NIF is asymmetrically V-shaped when two regression lines are fitted. In
our Fig. 10, however, we find new empirical evidence in the high frequency
S&P 500 cash index that NIF monotonically decreases. An implication
of asymmetrically V-shaped NIF is that variance tends to rise when news
(either good or bad) arrives, consistent with the implication of the asym-
metric ARCH models. An implication of a monotonic NIF is that variance
tends to increase (decrease) when bad (good) news arrives, consistent with
the leverage hypothesis of Black (1976), as shown in Yu (2005). Second,
there is an important similarity between our Fig. 10 and Fig. 10 in ABDE,
that is, the NIFs are all very flat and rather poorly determined.

7. CONCLUSIONS

Following ABDE (2001) and Ebens (1999), this paper examines the prop-
erties of realized daily volatilities and return-variance relationships, differ-
ing from existing work in two aspects. First, unlike ABDE (2001) which
focused on individual stocks and Ebens (1999) which focused on the DJIA
index, we use a new dataset, the S&P 500 cash index, provided by CME.
Noting that the TAQ database only includes intraday observations on in-
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Figure 9: Risk aversion. The figure shows the scatter plot of the current return against the
lagged realized daily variance for S&P500. The solid curve is the estimated regression line.
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Figure 10: News impact function. The figure shows the scatter plot of the realized daily
variance against the lagged standardized return shock for S&P500. The solid curve is a
kernel regression smoother.
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FIG. 9. Risk aversion. The figure shows the scatter plot of the current return
against the lagged realized daily variance for S&P500. The solid curve is the estimated
regression line.
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Figure 9: Risk aversion. The figure shows the scatter plot of the current return against the
lagged realized daily variance for S&P500. The solid curve is the estimated regression line.
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Figure 10: News impact function. The figure shows the scatter plot of the realized daily
variance against the lagged standardized return shock for S&P500. The solid curve is a
kernel regression smoother.
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FIG. 10. News impact function. The figure shows the scatter plot of the realized
daily variance against the lagged standardized return shock for S&P500. The solid curve
is a kernel regression smoother.
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dividual stocks, one advantage with the S&P 500 cash index is that all the
intraday observations are available directly from this dataset. However,
CME only updates the price every 15 seconds or so, although transactions
in the underlying stocks are much more active. Second, instead of using
artificially constructed 5-minute returns which discard a lot of observations
in the high frequency data, we make use of all the available observations to
estimate the realized daily variance. In particular, we employ the method
proposed by Zhang, Mykland and Aı̈t-Sahalia (2005) to deal with the mi-
crostructure noise problem. Based on the new estimation methodology,
we re-examined the stylized facts about realized daily variance reported in
ABDE (2001) and Ebens (1999). We found that most of the stylized facts
documented in the literature continued to hold, with the exception that
the standard deviation and the log variance are no longer stationary. We
also compared the realized variance with the variance estimates from the
GARCH(1,1) model and the basic SV models. We found that all the three
variance series have the same pattern, but the variance estimates implied
by the parametric volatility models based on the daily data are too smooth.
Moreover, we found evidence of superiority of the SV model relative to the
GARCH model in terms of approximating the RV. Finally, based on the
realized variance, we examined two relations about returns and volatility.
While the literature has found difficult to document a significant ICAPM
relation, we find a positive and statistically significant relation. We also
found evidence of a monotonically decreasing NIF.
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