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This brief paper introduces a flexible three parameter utility function, the
FTP, which has a reasonably simple mathematical expression. It can be seen
as a generalisation of the PRA utility function of Xie (2000), but it is more
flexible. It encompasses other systems of utility functions including the HARA
family and it can incorporate properties such as subsistence and saturation.
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1. INTRODUCTION

Many mathematical forms of utility functions have been considered in
the economics and finance literature, although, as Xie (2000) has said, by
far the most widely employed are those displaying constant relative risk
aversion (CRRA). Xie pointed out the dangers implicit in an inappropriate
assumption of CRRA and the desirability of more flexible utility functions
permitting a greater range of risk aversion properties. He argued that the
power risk aversion (PRA) utility function.1

u(x) =
1
γ

{
1− exp

[
−γ

(
x1−σ − 1

1− σ

)]}
, σ ≥ 0, γ ≥ 0, (1)

where x denotes income or wealth, was remarkably flexible as regards its
capacity to represent constant or decreasing absolute risk aversion (CARA
and DARA) as well as increasing, constant or decreasing relative risk aver-
sion (IRRA, CRRA and DRRA).

1A closely related function to (1) has appeared previously in the agricultural economics
literature, commencing with Saha (1993).
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While Xie’s assessment is certainly valid, it is quite feasible to find a
still more flexible function, which also has a reasonably simple mathemat-
ical expression, which can represent an even wider range of risk aversion
behaviour. While it can be seen as a natural generalisation of the PRA
function, it can incorporate properties, such as subsistence and saturation,
that (1) can not. It also encompasses other systems of utility functions
including the hyperbolic absolute risk aversion (HARA) family. I call this
new function the flexible three parameter (FTP) utility function and its
form and properties constitute the content of this short paper.

2. THE FLEXIBLE THREE PARAMETER (FTP) UTILITY
FUNCTION

The flexible three parameter (FTP) utility function is

u(x) =
1
γ

{
1−

[
1− kγ

(
x1−σ − 1

1− σ

)] 1
k

}
. (2)

The special case k = 0 is worth immediate attention since it gives the PRA.
Remembering

lim
n→∞

(
1− y

n

)n

= e−y

shows that (2) then becomes (1). The permissible ranges of parameters
will be discussed later, but it should be immediately noted that to avoid
imaginary numbers for non integer values of 1/k,

1− kγ

(
x1−σ − 1

1− σ

)
> 0. (3)

As will be seen, for some combinations of parameter values this will imply
that x is bounded either below or above. This will not be a limitation on the
model; rather, it will be shown to permit the representation of subsistence
or saturation levels of income or wealth.

The derivative of (2) is

u′(x) = x−σ

[
1− kγ

(
x1−σ − 1

1− σ

)] 1
k−1

,

which is real if (3) holds and is positive as required for a utility function.
The second derivative is

u′′(x) = −x−σ

[
1− kγ

(
x1−σ − 1

1− σ

)] 1
k−1

 (1− k)γx−σ

1− kγ
(

x1−σ−1
1−σ

) +
σ

x

 , (4)
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and must be negative if the utility function is to represent risk aversion.
This will certainly be the case if we impose the additional conditions of
k ≤ 1 and γ and σ positive, but can also be true for some x outside these
parameter ranges. For example, if σ is negative (4) is still negative provided

x|σ|+1 >
|σ|(1 + |σ|+ kγ)
γ(1 + |σ| − k)

. (5)

However, unless explicitly stated otherwise, γ and σ will be taken as pos-
itive in subsequent developments, although k may be either positive or
negative. Note too that although the utility functions (1) and (2) are zero
for x = 1 and negative for x < 1, u′(x) and u′′(x) are still positive and
negative respectively, so that the functions retain validity for 0 < x < 1.

The Arrow-Pratt coefficient of absolute risk aversion −u′′(x)/u′(x) is

RA =
(1− k)γx−σ

1− kγ
(

x1−σ−1
1−σ

) +
σ

x
(6)

and the coefficient of relative risk aversion is RR = xRA. As will become
evident, the FTP can cater for IARA, CARA, DARA as well as IRRA,
CRRA and DRRA.

3. ENCOMPASSED TWO PARAMETER UTILITY FAMILIES

As already mentioned, the case k = 0 gives the PRA system, which
includes some of the frequently employed elementary utility functions such
as logarithmic or power utilities that give CRRA (and DARA) and the
negative exponential utility that gives CARA (and IRRA). In addition, of
course, the PRA can represent IRRA (if σ < 1) or DRRA (if σ > 1). Since
Xie (2000) demonstrated these properties, there is little point lingering
with the PRA except to note that, with k = 0, (5) shows that negative σ
is feasible provided

x|σ|+1 >
|σ|
γ

and (6) becomes

RA = γx|σ| − |σ|
x

,

which increases with x. So the PRA could exhibit IARA under these
circumstances. However, x might need to be very large if γ is small and
we will see that IARA can be more generally represented with non-zero k.

The HARA family is characterised by the property that its risk toler-
ance (the inverse of the Arrow-Pratt coefficient of absolute risk aversion)
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is a linear function of wealth. This can lead to convenient simplifications
in various applications, for example, linearity of the savings-consumption
relationship in some economic growth models. Clearly the inverse of (6) is
a linear function of x if either σ = 1 and k = 0, or σ = 0. The former case
again leads to PRA utilities with the CRRA property, which are common
to both the PRA and HARA families. The latter case covers the remaining
HARA utilities that are not PRA utilities2. The coefficient of absolute risk
aversion is

RA =
(1− k)γ

1 + kγ − kγx
.

If k is positive the denominator decreases as x increases, implying IARA.
Clearly, x < 1+1/(kγ) is required and in fact this is the upper bound for x
obtained by putting σ = 0 in (3). The corresponding upper bound on the
utility is 1/γ, the same as that for the PRA utility as x →∞. This bound
for x can be interpreted as a saturation level where RA goes to infinity. For
the case k = 1/2 it is easily seen that (2) becomes

u(x) = −(1 +
γ

4
) + (1 +

γ

4
)x− γ

4
x2,

the familiar quadratic utility function. Obviously, any other value of k
between zero and one will also produce a utility function with a saturation
level. Taking k = 1 would give the risk neutral linear form.

If k is negative RA may be written

RA =
(1 + |k|)γ

|k|γx + (1− |k|γ)

where x > 1− 1/(|k|γ) and this lower bound can be interpreted as a sub-
sistence level of income or wealth. This branch of the HARA family is
commonly called the Stone-Geary class by analogy with the subsistence
quantities incorporated in the famous linear expenditure commodity de-
mand system. Since the denominator of RA increases with x, DARA holds
as x increases from the subsistence level. The branch can be further clas-
sified in terms of relative risk aversion behaviour. Since

RR =
(1 + |k|)γ

|k|γ + (1− |k|γ)/x

the denominator decreases as x increases if |k|γ < 1, so that IRRA results.
If |k|γ > 1 the denominator increases as x increases, so DRRA results.

2However, the special case k = 0 and σ = 0, which gives CARA, is also a PRA case.
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Many other two parameter special cases of the FTP are possible. For
example, taking σ = 1 in (2) gives

u(x) =
1
γ

[
1− (1− kγ log x)

1
k

]
,

where, from (3),

x < e
1

kγ

if k is positive. For small γ this need not restrict the range of x greatly.
For this case (6) gives

RA =
(1− k)γ

x(1− kγ log x)
+

1
x

and since there is an upper bound (for positive k) IARA must eventually
hold as x increases. But initially decreases as x increases3 so that DARA
will hold through some interval at first. Since

RR =
(1− k)γ

1− kγ log x
+ 1

and the denominator decreases as x increases, IRRA holds over the full
range of x. For k negative it is easily verified that both DARA and DRRA
hold. So the relative risk aversion properties of (7) are similar to those of
(1) with the sign of k playing the same role as that of 1− σ.

However, the evolving absolute risk aversion behaviour exhibited by (7)
for positive k might sometimes be a relevant property.

Another two-parameter utility is obtained by setting k = 1 − σ in (2)
giving

u(x) =
1
γ

{
1− [1− γ(x1−σ − 1)]

1
1−σ

}
.

This has a saturation level of income and IRRA if σ < 1, a subsistence
level and DRRA if σ > 1, and some potential for non-monotonic absolute
risk aversion properties.

4. THE THREE PARAMETER UTILITY AGAIN

The previous section comprised special two parameter cases of (2). For
the full three parameter form, the situations of lower and upper bounds

3The derivative of RA evaluated at x = 1 is easily seen to be k(1−k)γ2− (1−k)γ−1,
which must be negative unless γ is large.
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corresponding to subsistence and saturation levels can again occur. But
the unbounded situation can also arise without having to set k = 0. For
k > 0, (3) implies that

x1−σ < 1 +
1− σ

kγ
.

For σ < 1, this is a finite upper bound as long as neither k nor γ go to
zero. But for σ > 1,

x1−σ > 1− σ − 1
kγ

and if (σ − 1)/(kγ) ≥ 1, this places no restriction on x other than that it
be positive, as it certainly is. If k is negative and σ < 1

x1−σ > 1− 1− σ

|k|γ
,

which again places no bound on x if (σ− 1)/(|k|γ) ≥ 1 and otherwise gives
a lower bound. For k negative and σ > 1

xσ−1 >

(
1 +

σ − 1
|k|γ

)−1

,

giving a lower bound for x between 0 and 1.
Not surprisingly, the absolute risk aversion properties depend on func-

tions of parameters closely related to those determining bounds. The RA

formula (6) may be rewritten

RA =
1
x

 (1− k)γ

xσ−1
(
1 + kγ

1−σ

)
− kγ

1−σ

+ σ

 .

The first term in the product, the reciprocal of x, always decreases with
x. The behaviour of the second term depends on the sign and size of k
and size of σ. For σ > 1 and kγ/(1− σ) > −1 this term also decreases so
DARA holds for all x. But IARA can hold at other parameter values and
if there is a saturation level IARA must hold as it is approached, even if
DARA holds at lower x.

Relative risk aversion properties are more easily summarised. It is easy
to show that

∂RR

∂x
=

(1− k)γxσ−2(1 + kγ − σ)[
xσ−1

(
1 + kγ

1−σ

)
− kγ

1−σ

]2 .

So IRRA holds for all x if i+kγ > σ and DRRA holds for all x if i+kγ < σ.
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5. CONCLUDING REMARKS

The FTP utility function has been shown to encompass not only the
PRA function, but also other forms including utilities embodying lower or
upper bounds on x. Is this really a useful property? The considerable
employment in the economic literature of forms of HARA implying lower
or upper bounds, suggests that in at least some applied problems the con-
cepts of subsistence or saturation levels are considered useful. The FTP
caters for them in more general forms than does HARA. Perhaps more
importantly, estimating the three parameters of the utility function from
actual data will fit the model most compatible with the data and permit
tests of the reality of hypothesised bounds through observing whether the
inequalities of the previous section are satisfied or not. It is beyond the
scope of this paper to discuss the actual econometrics of estimation and
testing. However, there are well known approaches for other situations that
seem econometrically quite similar. A particularly relevant case is that of
estimating the three parameters of the generalised extreme value distribu-
tion4(GEV). One parameter plays a corresponding role to k in (2). If it is
zero the distribution reduces to a two parameter distribution, the Gumbel,
without bounds on x. If it is positive the three parameter distribution is
reversed Weibull with an upper bound on x and if negative it is Frechet
with a lower bound5.

As mentioned in the previous section, x can be unbounded without k
necessarily being zero in the FPT. So even in cases where there might be
a priori knowledge that subsistence or saturation levels do not exist, the
extra parameter in the FTP does give it some greater flexibility than two
parameter rivals.

Ultimately, of course, the value of a new utility function is best assessed
by how useful and informative it proves to be in empirical studies. Perhaps
this short note will stimulate such investigation.
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can itself provide a valid utility function, but it is much less flexible than the FTP.
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