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jian and Prucha (1998)’s S2SLSE. In this paper, we show that one more step
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1. INTRODUCTION

Recently, topics concerning spatial dependence have received increas-
ing attention in analyzing economic problems using cross sectional data or
panel data. Economic models underpinning empirical work in urban, en-
vironmental, development, industrial organization and growth convergence
often suggest that outcome variables of subjects under investigation are not
independent of each other. One form of such dependence arises when the
value of the dependent variable corresponding to each cross-sectional unit
is assumed, in part, to depend on a weighted average of that dependent
variable corresponding to neighboring cross-sectional units. This weighted
average is often described in the literature as a spatial lag of the dependent
variable, and the resulting model,

yn = λ0Wnyn +Xnβ0 + un, un = α0ln + σ0εn (1)

is then referred to as the spatial autoregressive (SAR) model (Anselin
1988). In model (1), yn = (yn1, · · · , ynn)′ is an n-dimensional vector of
dependent variables, Wn, a spatial weights matrix of known constants,
captures the structure of spatial correlations between cross sectional units
scaled by a single parameter λ0,1 Xn is an n × k matrix composed of
k columns of spatial-varying regressors, β0 is a k × 1 regression slopes,
εn = (εn1, · · · , εnn)′ are i.i.d. random variables independent of Xn with
zero mean and unit variance, ln is an n-dimensional vector of ones. α0 and
σ0 are location and scale measure of un, respectively.

A number of estimation procedures have been developed for model (1).
Among them, Kelejian and Prucha (1998) proposed a spatial two-stage
least squares estimator (S2SLSE) and their estimation procedure is then
improved by Lee (2003)’s best S2SLSE (BS2SLSE) via choosing asymptot-
ically optimal instruments. The asymptotic properties of QMLE for SAR
models were investigated by Lee (2004). Lee (2007a) and Liu et al. (2006)
developed for SAR models a computationally simple GMM estimator and
show that some distribution-free best GMME using a set of carefully cho-
sen moment conditions can be as efficient as QMLE under normality and
will be more efficient relative to QMLE otherwise.

In this paper, an alternative computationally feasible procedure is taken
towards efficient estimation of SAR models. The main work of this paper
includes that, (a) we show that the asymptotic efficiency of Lee (2003)’s
BS2SLSE can be further improved by one more step iteration. The sug-
gested one step iterative estimator, named S3SLSE, is essentially the spatial
counterpart of the three-stage least squares estimation procedure of a sys-
tem of J equations. S3SLSE can also be interpreted in a GMM framework

1Throughout this paper, any parameter with subscript zero represents the true one
that generates the data.
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where the number of moments J is equal to the number of equations in the
system and J is assumed to increase with the sample size n very slowly.
(b) We give the general feature the spatial weights matrix should have such
that the suggested best S3SLSE (BS3SLSE) will be asymptotically equiva-
lent to MLE (Lee 2004) and GMME (Lee 2007a, Liu et al. 2006) and more
efficient otherwise.

The paper is organized as follows: S3SLSE is motivated and described
in Section 2. Section 3 presents the large sample properties of the sug-
gested estimators and discusses its asymptotic efficiency relative to other
estimates such as MLE and GMME. Section 4 reports some Monte Carlo
results and Section 5 provides an example where the environmental ”race-
to-the-bottom” hypothesis in competition for FDI among China municipal
governments is re-examined in a newly formulated empirical setting that
accounts for both unobservability in the environmental stringency and pos-
sible strategic interactions among local policymaking. In contrast to the
previous studies, this new framework proposes to test the hypothesis by si-
multaneously examining whether local government responds actively to the
environmental policymaking of its neighboring municipalities and whether
lenient environmental regulation is attractive to foreign capitals indeed.
Section 6 concludes and all the technical proofs are relegated to the Ap-
pendix.

2. A SPATIAL THREE STAGE LEAST SQUARES
ESTIMATOR

Lee (2007a) revealed that the S2SLSE, proposed by Kelejian and Prucha
(1998), can be interpreted in the GMM framework using the linear moments
in the generic form as

gn(θ, α) = n−1Q′n (un(θ)− αln) (2)

where θ = (λ, β′)′, un(θ) = yn − Znθ, Zn = (Wnyn, Xn), Qn is an n × kx

IV matrix with a column of ones and is constructed from Wn and Xn.
Noting that at the true parameters θ0 and α0, E (gn(θ0, α0)) = 0, then the
resulting S2SLSE is the solution to the following minimization problem,

min
(θ,α)∈Θ×A

g′n(θ, α)a′nangn(θ, α) (3)

where Θ and A are some compact subsets of Rk+1 and R containing θ0 and
α0 as the interior respectively. an is a matrix with the full row rank greater
than or equal to k + 2. The an is assumed to converge to a constant full
rank matrix a0. This corresponds to the Hansen (1982)’s GMM setting,
which illustrates the optimal weighting issue. For a given instrumental
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matrix Qn, S2SLSE has a closed form as, by setting the optimal weights
a′nan = (Q′nQn)−1,

θ̂s2sls,n =
(
Z ′nQn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′nZn

)−1

× Z ′nQn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′nyn (4)

where Γn = In − lnl
′
n/n.

Now observe that when the error terms and the regressors are inde-
pendent, any function of the error term will be uncorrelated with the
instruments constructed from any combination of the regressors and the
spatial weights. Let m(·) be an arbitrary differentiable function and µ =
E(m(un1)). Given the Qn constructed from Xn and Wn, there holds the
moment condition,

1
n

E [Q′n(m(un)− µln)] = 0, (5)

where m(un) = (m(un1), · · · ,m(unn))′, representing one of the infinite
number of moment restrictions that can be used for estimation. One un-
desirable consequence on GMM estimates using the moments such as (5)
is that the resulting estimators will not be location and scale equivalent.
Newey (1988) suggested that this unfortunate property could be fixed by
replacing m(·) with the functions that had been location and scale ad-
justed with preliminary estimates of location and scale parameters, namely,
m̃(u) = m

(
(u−α̃)/σ̃

)
, where α̃ and σ̃ are estimated location and scale mea-

sure, respectively. Let θ̃ be any initial estimator of θ0 such as S2SLSE.2

Then α̃ and σ̃ may be the sample mean and sample standard deviation of
uni(θ̃)’s, i = 1, · · · , n, respectively. It can be shown in the next section
that the asymptotic properties of the resulting estimators using m̃(·) will
be identical to that obtained using m(·) = m

(
(· − α0)/σ0

)
.

Now carefully choose a sequence of J differentiable functions
mJ1(·), · · · ,mJJ(·). Then θ can be estimated using the following J mo-
ments,

g̃J,n(δJ) =
1
n


Q′n

(
m̃J1(un(θ))− µJ1ln

)
· · ·

Q′n

(
m̃JJ(un(θ))− µJJ ln

)
 (6)

where δJ = (θ′, µ′J)′, µJ = (µJ1, · · · , µJJ)′, µJj = E
(
mJj(un1)

)
. Qn =

(ln, qn) is an IV matrix containing a column of ones. The function se-
ries mJj(·)’s, j = 1, 2, · · · , J are composed of differentiable functions that

2Throughout this paper, all parameters with symbol e indicate some consistent initial
estimates.
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should meet some regular assumptions specified in the next section. The
number of the functions in the series, J = J(n) is some positive integer
slowly increasing with sample size n. Further, the GMM setting described
above indicates that the suggested estimator can be understood as a spatial
generalization of the adaptive GMM estimator developed in Newey (1988).

Likewise, a GMM estimator of δJ using the moments (6) can be computed
by solving the following minimization problem,

min
δJ

g̃′J,n(δJ)a′nang̃J,n(δJ). (7)

As m̃Jj(un(θ)) may be highly nonlinear in θ, a first order Taylor expansion
around some initial estimator θ̃ is useful, which gives

m̃Jj(un(θ)) = m̃Jj(un(θ̃))− M̃Jj(un(θ̄))Zn(θ − θ̃), j = 1, · · · , J, (8)

where θ̄ lies between θ0 and θ̃,

M̃Jj(un(θ)) = diag
{

˙̃mJj(un1(θ)), · · · , ˙̃mJj(unn(θ))
}
,

˙̃mJj(u) = σ̃−1ṁJj((u − α̃)/σ̃) for j = 1, · · · , J . Further approximate

M̃Jj(un(θ̃)) by the scalar matrix M̃JjIn, where M̃Jj = n−1
∑n

i=1
˙̃mJj(uni(θ̃)).

Let M̃J = (M̃J1, · · · , M̃JJ)′,

ỸJ,n =

 m̃J1(un(θ̃)) + M̃J1Znθ̃
...

m̃JJ(un(θ̃)) + M̃JJZnθ̃

 , (9)

and

Z̃J,n =
[
M̃J ⊗ Zn, IJ ⊗ ln

]
. (10)

in which ⊗ is the Kronecker product. Since now the righthand side of (8)
is linear in θ, substituting (8) into (7) and solving δJ from (7) just like
solving θ, α from (3) gives the resulting three stage least squares estimator,

δ̂s3sls,J,n =
[
Z̃ ′J,n

(
Σ̃−1

J ⊗Qn(Q′nQn)−1Q′n

)
Z̃J,n

]−1

× Z̃ ′J,n

(
Σ̃−1

J ⊗Qn(Q′nQn)−1Q′n

)
ỸJ,n (11)

where Σ̃J is the estimated covariance matrix of (mJ1(u)−µJ1ln, · · · ,mJJ(u)−
µJJ ln)′,
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Σ̃J,ij = n−1
∑n

k=1

(
m̃Ji(unk(θ̃))− µ̃Ji

)(
m̃Jj(unk(θ̃))− µ̃Jj

)
. Finally, we

see from (11) that the representaion of S3SLSE resembles a spatial coun-
terpart of 3SLSE for a system of J equations.

3. ASYMPTOTIC NORMALITY AND BS3SLSE

Let Sn(λ) = In−λWn, Sn = Sn(λ0), Gn = WnS
−1
n . For an n×n matrix

An = [an,ij ]i,j=1,··· ,n, let ‖An‖ = max1≤i≤n,1≤j≤n |an,ij |. Introduce the
following regularity conditions,

Assumption 1. εn1, · · · , εnn are i.i.d. random variables with density
f(ε), zero mean and unit variance. These innovations also possess finite
fourth moments. The density f(ε)of ε is absolutely continuous and has
Radon-Nikodym derivative ḟ(ε) such that

∫
(ḟ2/f)dε <∞.

Assumption 1 says that the density of ε is regular in the sense of Hajek
and Sidak (1967). Existence of moment up to the fourth order implies some
central limit theorem of simple form can be applied.

Assumption 2. Xn is some n× k non-stochastic regressor matrix with
full column rank whose elements are uniformly bounded and the limit
limn→∞

1
nX

′
nXn exists and is nonsingular.

Assumption 3. The spatial weights matrix Wn has zero diagonals. The
matrix Sn = In − λ0Wn is nonsingular. The row and column sums of S−1

n

and Wn are uniformly bounded in absolute value. 3

The non-stochastic Xn and its uniform boundedness of elements are for
analytical tractability. Assumption 3 limits the spatial dependence among
cross sectional units to a permissable degree and is originated by Kelejian
and Prucha (1999). Lee (2004) assumed that the elements of Wn had the
uniform order O(h−1

n ), where {hn} could either be a bounded or a divergent
sequence that depended on n. The relevance of Lee’s assumption arises
when two distinguished spatial scenarios are identified in empirical studies.

3The row and column sums of an n × n matrix Pn are said to be uniformly
bounded if we have for all n, there exists a positive constant c independent of n with
maxi

Pn
j=1 |Pn,ij | < c and maxj

Pn
i=1 |Pn,ij | < c. This notion of uniform boundedness

can be defined in terms of some matrix norms. The maximum column sum matrix norm
‖ · ‖1 of an n × n matrix Pn is defined as ‖Pn‖1 = maxj

P
i |Pn,ij |, and the maximum

row sum matrix norm ‖ · ‖∞ is defined as ‖Pn‖∞ = maxi
P

j |Pn,ij |. Thus the uniform

boundedness of {Pn} in column or row sums is equivalent to the sequence {‖Pn‖1} or
{‖Pn‖∞} being bounded.
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When {hn} is a bounded sequence, it implies a cross sectional unit has only
a small number of neighbors (Kelejian and Prucha 1999), where the spatial
dependence is usually defined based on geographical implications. When
{hn} is divergent, it corresponds to the scenario where each unit has a
large number of neighbors that often emerges in empirical studies of social
interactions and/or cluster sampling data (Case 1991, 1992; Lee 2007b).
For example, in Case (1992)’s study on the spillover effect of new technology
adoption for farmers, the notion “neighbors” refer to the farmers who live
in the same district (in rural Java, Indonesia). This characterization of the
neighbors makes theWn matrix block diagonal. The only non-zero elements
appear as a block of households in the same district. Suppose that there
are R districts and in each district there are mr, r = 1, · · · , R farmers.
Case assumed that each neighbor of a member in a district was given equal
weight, i.e., Wr = (mr−1)−1(lmr l

′
mr
−Imr ), andWn = diag

{
W1, · · · ,WR

}
.

In Case’s example, hn = O(m), where m = n/R is the mean group size,
increasing with the sample size n.

Assumption 4. Qn is some n × kx non-stochastic matrix constructed
from Xn and Wn, with the first column being ones and of full column rank.
The elements of Qn are uniformly bounded and the limit limn→∞

1
nQ

′
nQn

exists and is nonsingular. Additionally, the limit limn→∞
1
nQ

′
nZn exists.

The regularity conditions satisfied by Qn are stated in the most general
manner to motivate a general GMM estimation framework. As will become
evident later, some asymptotically optimally chosen Qn will meet these
regularity conditions automatically.

Assumption 5.
√
n
(
θ̃ − θ0

)
,
√
n (α̃− α0),

√
n
(
σ̃2 − σ2

0

)
are bounded

in probability.

Assumption 6. J(n) is chosen such that J(n) →∞ and J · lnJ/ lnn→
0.

The growth rate for the number of moment functions specified in As-
sumption 6 is quite slow, being slower than the natural log of the sample
size.

Assumption 7. mJj(ε) = mj
J1(ε), for j = 1, · · · , J . The function

mJ1(·) is continuously differentiable. Also, for any σ0 > 0 and α0 there
exists a neighborhood of N of (α0, σ0), measurable functions B1(u) and
B2(u), and τ > 0, such that E[exp(τB1(u))] and E[B4

2(u)(1 + u4)] exists
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and for all u and (α, σ) ∈ N ,

sup
N
|mJ1((u− α)/σ)| ≤ B1(u), sup

N
|ṁJ1((u− α)/σ)| ≤ B2(u)

and

|ṁJ1((u− α)/σ)− ṁJ1((u− α0)/σ0)| ≤ B2(u)‖(α, σ)− (α0, σ0)‖ (12)

The choice of moment functions and Assumption 7 can impose some re-
strictions on the distribution of ε. For example, if mJ1(ε) = ε, then the
above assumption implies existence of the moment generating function of
ε. Of course such a choice of moment function would not be appropri-
ate in general. It is possible to choose mJ1(·) such that Assumption 7
is satisfied for all distributions, e.g., by choosing mJ1(·) to be a bounded
function with sufficiently well-behaved first order derivative. For example,
mJ1(ε) = ε/(1 + ε2)1/2 will satisfy Assumption 7 for any distribution of ε.
The following result gives the limiting distribution of the S3SLSE.

Proposition 1. Suppose that Assumptions 1-7 hold, then

√
n
(
θ̂s3sls,J,n − θ0

)
→d N

(
0, σ2

0(IΩ)−1
)

(13)

where I = E(φ2(ε)), φ(ε) = −ḟ(ε)/f(ε),

Ω = lim
n→∞

1
n

(Gn(Xnβ0 + α0ln), Xn)′Qn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′n

× (Gn(Xnβ0 + α0ln), Xn) (14)

where Gn = WnS
−1
n . Furthermore,

∥∥∥∥(ĨΩ̃
)−1

− (IΩ)−1

∥∥∥∥→p 0, where Ĩ =

σ̃2M̃′
J Σ̃−1

J M̃J , M̃J and Σ̃J being defined below (8) and (11) respectively,
and

Ω̃ =
1
n

(G̃n(Xnβ̃ + α̃ln), Xn)′Qn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′n

× (G̃n(Xnβ̃ + α̃ln), Xn)

where G̃n = Wn(In − λ̃Wn)−1.

As revealed by Lee (2007), under some regularity conditions, S2SLSE (4)
has the limiting distribution

√
n
(
θ̂s2sls,n − θ0

)
→d N

(
0, σ2

0Ω−1
)

(15)



BEST SPATIAL THREE-STAGE LEAST SQUARES ESTIMATOR 163

The efficiency gain can be seen via Cauchy-Schwartz inequality,
E
(
φ2
)
≥ E2 (φε) /E

(
ε2
)

= 1, and the equality holds if and only if φ = cε,
or simply ε is normally distributed.

Lee (2003) pointed out that the generalized two-stage least squares pro-
cedure described in Kelejian and Prucha (1998) for model (1) was, how-
ever, not asymptotically optimal. Hence Lee proposed a best S2SLSE
(BS2SLSE) using the asymptotically optimal IV matrix. For (14), it is
straightforward to extend the asymptotically optimal instruments chosen
by Lee (2003) to this S3SLSE case by choosing Qo,n = (ln, Gn(Xnβ0 +
α0ln), Xn). In practice, with initial consistent estimates β̃, λ̃ and α̃ (e.g.,
their BS2SLSE), the best instruments Qo,n can be replaced by their empir-
ical counterparts, Q̃o,n = (ln, G̃n(Xnβ̃0 + α̃0ln), Xn). Finally, the feasible
BS3SLSE is defined as

δ̂fbs3sls,J,n =
[
Z̃ ′J,n

(
Σ̃−1

J ⊗ Q̃o,n(Q̃′o,nQ̃o,n)−1Q̃′o,n

)
Z̃J,n

]−1

× Z̃ ′J,n

(
Σ̃−1

J ⊗ Q̃o,n(Q̃′o,nQ̃o,n)−1Q̃′o,n

)
ỸJ,n (16)

The following proposition shows that the feasible BS3SLSE has the same
limiting distribution as the true BS3SLSE.

Proposition 2. Suppose that Assumptions 1-7 hold, then

√
n
(
θ̂fbs3sls,J,n − θ0

)
→d N

(
0, σ2

0(IΩb)−1
)

(17)

where

Ωb = lim
n→∞

1
n

(Gn(Xnβ0 + α0ln), Xn)′Γn(Gn(Xnβ0 + α0ln), Xn) (18)

Consider the asymptotic efficiency of BS3SLSE relative to other effi-
cient estimators such as QMLE and GMME. Lee (2007a) revealed that,
the QMLE of model (1) was asymptotically equivalent to the GMME via
moment restrictions E(gn(θ, α)) = 0 with

gn(θ, α) =
1

n

»
(un(θ)− αln)′Qo,n, (un(θ)− αln)′

„
Gn −

tr(Gn)

n
In

«
(un(θ)− αln)

–
,

(19)

where Qo,n is given above. Denote the GMME of (θ′0, α0)′ using the mo-

ments (19) as
(
θ̂′gmm,n, α̂gmm,n

)′
. Then it suffices to compare the efficiency

of BS3SLSE θ̂bs3sls,J,n relative to the GMME θ̂gmm,n. The asymptotic vari-

ance matrix of
(
θ̂′gmm,n, α̂gmm,n

)′
computed in Lee (2007a) is
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AsyVar
(√

nθ̂′gmm,n,
√
nα̂gmm,n

)′
=0BB@

1
n
tr

““
Gn − tr(Gn)

n
In

”s

Gn

”
+ 1

σ2
0n

(Gn(Xnβ0 + α0ln))′ (Gn(Xnβ0 + α0ln))
1

σ2
0n

(Gn(Xnβ0 + α0ln))′ (Xn, ln)

1
σ2
0n

(Xn, ln)′ (Gn(Xnβ0 + α0ln)) 1
σ2
0n

(Xn, ln)′ (Xn, ln)

1CCA
−1

(20)

where As
n = An+A′n. From (20), we see that generally speaking, efficiency

gain is not guaranteed for BS3SLSE relative to GMME as the latter takes
into account the quadratic moments. The efficiency gain is guaranteed
when the quadratic moment is asymptotically dominated by the linear
moments, or simply

1
n
tr

((
Gn −

tr(Gn)
n

In

)s

Gn

)
= o(1). (21)

This is because in the presence of (21), the asymptotic variance of θ̂gmm,n

is identical to that of BS2SLSE θ̂bs2sls,n(see (15)) by the formula of the
inverse of a partitioned matrix. One sufficient condition for (21) to hold is
that hn → ∞. According to the remarks below Assumption 3, it implies
that each unit can be influenced aggregately by a significant portion of
units on the cross section.

4. SOME MONTE CARLO RESULTS

We conduct a small Monte Carlo simulation to evaluate performances
of BS3SLSE and its efficiency relative to other estimators such as QMLE
(Lee 2004) and distribution-free best GMME (Liu et al. 2006) for small or
moderate sample size under various distributions. The data are generated
by model (1) with θ0 = (0.3, 1,−1)′, α0 = 0, σ0 = 1. The spatial-varying
regressors xin, i = 1, 2 are generated by standard normal distribution. The
spatial scenario in Case (1991) is used to specify the spatial weights matrix.
Assume that there are R districts with m members in each district and the
neighbors in the same district are given equal weight, i.e., Wn = IR ⊗Bm,
Bm = (m − 1)−1(lml′m − Im). Experiment with (R,m) = (10, 5), (15, 7),
(20, 10) and (30, 15). εni’s, i = 1, · · · , n are generated by the following
three types of distribution: (a) Normal, εni ∼ N (0, 1); (b) Bimodal mixture
normal, εni = v/

√
10, v ∼ 0.5N (−3, 1) + 0.5N (3, 1); (c) Student t, εni ∼√

3/5 · t(5). All the three distributions are scaled to have unit variance
as required by Assumption 1 and they are commonly used in many Monte
Carlo studies concerning asymptotic efficiency.

For each design, we compute BS3SLSE using mJj(ε) =
(
ε/(1 + ε2)1/2

)j
for four different choices of J(n). As J(n) is supposed to be increasing
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more slowly than lnn, we choose J1 = [lnn]− 2, J2 = [lnn]− 1, J3 = [lnn]
and J4 = [lnn] + 1, where [n] is the largest integer no greater than n. The
commonly used parametric estimators for SAR model (1) include S2SLSE
(Kelejian and Prucha 1998), BS2SLSE (Lee 2003), GMME (Lee 2007a),
QMLE(Lee 2004) and distribution-free BGMME (Liu et al. 2006). A few
remarks concerning their relative asymptotic efficiencies are given below.
S2SLSE and BS2SLSE are generally not as efficient as GMME and QMLE.
Under normality, QMLE, GMME and the distribution-free BGMME are
asymptotically equivalent while the distribution-free BGMME will be more
efficient than QMLE and GMME when the disturbances are not normally
distributed. Here we compute BS2SLSE, QMLE and distribution free BG-
MME for comparison of relative efficiency to B3SLSE. All the BS2SLSE,
BS3SLSE, and BGMME will use QMLE as the initial estimator. For each
case, we do 1000 repetitions and report empirical bias, empirical standard
deviation and root mean square error (RMSE). The simulation results are
summarized in Table 1-3.

The findings from Table 1-3 include that, (a) for different distributions
and different choices of J(n), BS3SLSEs perform quite well for finite sam-
ples. They are slightly biased and the biases become smaller when n goes
larger. As the sample size increases, both empirical standard deviation
and RMSE decline and the magnitude of such decline is generally con-
sistent with the expected

√
n-asymptotics. Furthermore, their biases and

standard deviations do not change much with varying J(n)’s. (b) Under
normality, the BS3SLSEs of the regression slopes in moderate size samples
can be as good as their QMLE or BGMME. For the spatial parameter
λ, there still exists significant advantage of QMLE in terms of empirical
standard error. Intuitively, since a normal distribution can be uniquely
determined by its first and second order moment, the quadratic form mo-
ment of the error terms may contain a great deal of information useful for
estimation. For small or moderate size samples, failure to use the quadratic
moments by S3SLSE may significantly undermine the resulting efficiency
relative to QMLE. (c) Under symmetric mixture normality, an overwhelm-
ing improvement of efficiency is observed in all cases. In contrast to the
family of normal distributions, the family of mixture normality is unlikely
to be determined by the moments up to the second order.4 Fundamentally,
S3SLSE utilizes much useful information contained in the higher order mo-
ments of the underlying distributions that has not yet accounted by either
BGMME or QMLE. For the spatial parameter, one will see as much as 40%
efficiency gain relative to QMLE or BGMME in terms of RMSE and 60%
efficiency gain for the regression slopes. (d) Under Student t distribution,

4A general mixture normal distribution can be described as w1N (µ1, σ2
1) + (1 −

w1)N (µ2, σ2). Hence it will be determined by means of the moments up to the fifth
order.
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the relative performances of BS3SLSEs are intermediate between normal
case and mixture normal case. The regression slopes can be estimated more
precisely by 10% while no improvement has been seen for the spatial pa-
rameter. (e) In almost each case, BS3SLSE always performs as good as or
outperforms B2SLSE, that is quite consistent with our theoretical analysis.

In summary, BS3SLSE will be valuable relative to QMLE and GMME
in improving the precision of regression slopes under nonnormality. And it
will be particularly useful if a great deal of information of the underlying
distribution is characterized by its high order moments.

Finally, a brief discussion of the method of choosing J is needed here.
Although addressing the issue of choosing J for small samples is beyond
the scope of this paper, it is always of practical concern for any semi-
parametric estimates. Choosing J such that the estimated asymptotic
variance matrix from that given by Proposition 1 is minimized will not
work, because the estimated factor M̃′

J Σ̃−1
J M̃J in the asymptotic formula

is a positive-definite quadratic form composed of a sum of J2 terms, whose
value generally increases as J grows. One method would be to choose J to
minimize the standard errors estimated by the bootstrap. In such a boot-
strap re-sampling procedure, the sample distribution of xni’s is taken as
the population distribution, the initial estimates of θ, α and σ are taken as
the true parameters, and the sample distribution of the estimated residuals
is taken as the population distribution of ε. Note that such method would
be particular simple for our S3SLSE since the choice involves only a single
integer-valued variable J .

5. AN EMPIRICAL EXAMPLE

There has been considerable controversy over the empirical significance
of the theoretical prediction that the pressure of economic catching-up in
an open economy may encourage developing countries to relax their en-
vironmental regulations for attracting more foreign capitals. Strong en-
vironmental regulations are viewed to directly drive up production costs
by requiring certain equipment, to decrease waste proposal capacity by re-
stricting areas that can be used for landfills and to prohibit certain factor
inputs or outputs. Given each of these reasons, multinational enterprises,
in order to keep up their international competitiveness, may have the in-
centives to relocate their polluting production facilities from the country
with stronger environmental regulations to the one with weaker regulations.
On the other hand, an alternative view, given by Wheeler (2001), argued
that the cost effects were so small as to be negligible and the resulting
increased environmental cost would be compensated by employees wages.
Antweiler et al. (2001) analyzed the impact of international trade upon
environment using the data from 44 countries. They observed that laxer
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environmental regulations induced emission intensive industries to migrate
from the richer to the poorer countries. However, on a global basis, it is
hard to evaluate whether the net effect is positive or negative. Since the
reform and opening up policy, FDI has been viewed as the fundamental
driving force behind China’s miracle of economic growth. At the same
time, deteriorating eco-environment gives rise to much concerns towards
foreign capital economy. There are a number of studies that are devoted
to empirically examining whether China has become the pollution haven
of foreign enterprises. Based on the province level panel data from 1987
to 1998, Ljungwang and Linde-Rahr (2005) concluded that in China the
poor regions were more likely to attract FDI at the cost of environment.
Dean et al. (2005) collected the data from 2886 foreign funded manufac-
turing companies and observed that it was only for the capitals from Hong
Kong, Taiwan and Macau but not for all the foreign capitals, for example,
those from OECD countries that China’s lenient regulations would be a
sufficient inducement to relocate their production facilities. Furthermore,
they argued that this phenomenon could be explained by the production
technology differentials from different sources. Similar empirical evidence
was recorded in Cole et al. (2007).

Most empirical studies based on China’s data seem to support the hy-
pothesis of “pollution haven”. However, none of the literature so far has
given explanation to the formation of such pollution haven from the per-
spective of China’s special political and fiscal conditions. China is a po-
litically centralized and economically decentralized country. Upper level
governments select and appoint officials at lower levels based on their rela-
tive performances in developing local economy. The aim to get politically
promoted produces sufficient incentives for local officials to court for high
growth rate in their own jurisdictions during the term of office (Zhou 2004,
2007). Owing to the inflexible household registration system that largely
restricts the population migration and the stringent financial supervision
that substantially hampers domestic capital flows, it is not unnatural for
local governments to purposefully relax the environmental regulations and
even race against each other to the bottom so as to attract more mobile
factors such as foreign capitals. On the other hand, China’s pollution con-
trol is a combination of centralized legislation and decentralized provincial
or municipal level implementation and enforcement. Provinces and munic-
ipalities in China retain considerable flexibility to align the environmental
policies with their own interests and long run development objectives de-
spite the presence of weak vertical administration from the state environ-
mental protection agency. The arguments above suggest that it may be
of interest to re-examine the environmental ”race-to-the-bottom” hypoth-
esis from the perspective of a decentralized economy accounting for the
strategic interactions among local governments.
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5.1. A New Empirical Setting
Assume there are n jurisdictions on the cross section, i = 1, · · · , n and

the determination equation of the i-th jurisdiction’s FDI inflow is given by

dni = α0eni + x′1niγ0 + uni, i = 1, · · · , n (22)

where eni represents the environmental stringency and xni includes other
important factors than environmental stringency such as market size, com-
pany income tax rate and the economic openness, that affect FDI inflows.
uni is the unobservable error term that incorporates other FDI determi-
nants that have not been included in xni. Traditionally, the literature
empirically confirms the presence of environmental “race-to the bottom”
effect once the coefficient α0 is significantly negative. Two characteris-
tics distinguish our new testing procedures that follow from the previous
studies. First, since the environmental stringency eni’s are not directly ob-
served, the equation (22) can not be estimated straightforwardly. Secondly,
the issue of interjurisdiction strategic competition is not fully recognized
by the equation (22). Spillover effects of local expenditures on education,
environment, housing, medical services and infra-structural facilities have
been a major focus of theoretical and applied work in public economics.
See Brueckner (2003) for an overview of recent literature on strategic inter-
action among governments and see Murdoch et al. (1997), Fredriksson and
Millimet (2002) for empirical evidence of strategic engagement of local en-
vironmental policymaking. By accounting for both unobservability in the
strictness of environmental regulations and possible strategic interactions
among local policymaking, we introduce the following spatial autoregres-
sive specification of eni’s,

eni = λ0eni + x′2niγ20 + v2ni, i = 1, · · · , n (23)

where eni =
∑n

j=1 wn,ijenj , x2ni contains a set of variables that can be
directly observed and closely related to the environmental stringency at
jurisdiction i. Unlike the previous literature, we re-examine the presence
of “race-to-the-bottom” hypothesis by simultaneously testing α0 < 0 and
λ0 > 0 in (22)-(23). The rationale is as follows: a positive λ0 implies
that, as a response to neighboring jurisdictions’ tightening or relaxing their
environmental regulations, the local government will also actively tighten or
relax its own environmental regulations. By simultaneously examining both
λ0 > 0 and α0 < 0 instead of α0 < 0 only, the implication of “race” in the
“race-to-the-bottom” can be better recognized. To derive the estimation
equation, substitute (23) into (22) and rewrite it in matrix form as

dn = λ0Wndn +X2nα0γ20 +X1nγ10 +WnX1n(−λ0γ10) + vn, (24)
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or more concisely

dn = λ0Wndn +X1nβ10 +WnX1nβ20 +X2nβ30 + vn, (25)

where dn = (dn1, · · · , dnn)′, Wn = [wn,ij ]i,j=1,··· ,n, Xln = (xln1, · · · , xlnn)′,
l = 1, 2, vn = (In − λ0Wn)v1n + α0v2n. Note that in (24)-(25), only λ0

can be identified from the equation while α0 can not because β30 = α0γ20.
Recall from (23) that γ20 represents the slope of X2n. If the variables
in X2n can be carefully chosen so that the slope signs of these variables
can be determined a priori, then we can deduce the sign of α0 from the
sign of β30. For example, if X2n includes a set of representative pollutant
emissions, then γ20 is expected to be negative and we can examine whether
β30 is significantly positive to indirectly test whether α0 is significantly
negative.

We use the data containing 263 cities in 2007 drawn from “China City
Statistical Yearbook” to fit the model (25). For our purpose, the log total
amount of FDI actually utilized is chosen as the dependent variable. A
variety of theoretical studies on FDI have identified many determinants of
FDI including differences in the marginal return to capital, market size of
host countries, exchange rate risk, trade impediments, market power and
these variables may be included in the X1n in (25). See Agarwal (1980)
and Caves (1983) for a comprehensive reviews of theories of FDI deter-
mination. In summary, the following four variables will be included in
X1n, namely, tax rate, market size, internal cash flow and economic open-
ness. Specifically, we use the ratio of company income tax to total profits,
GDP per capita, company total profit in 2006 and the ratio of total im-
ports&exports to GDP to proxy tax rate(TR), market size(MS), adequacy
of internal cash flow (IC) and economic openness (OP) respectively. By
definition, the variables in X2n should be directly observable and closely
associated with the strictness of local environmental regulations such as
pollutant emissions. The pollutant we consider is city-wide sulfur dioxide
emissions (SUL), one of the most significant air pollutants worldwide and
one of the variables most commonly used variables to proxy for environ-
mental quality (OECD,1993). As the pollutant emissions are expected to
be negatively related to the environmental regulation standards, namely,
γ20 < 0 in (23), testing λ0 > 0 and α0 > 0 in (22)-(23) then is equivalent to
testing λ0 > 0 and β30 > 0 in (25). The descriptive statistics of variables
are summarized in Table 4. Finally, we have the following equation for
estimation,

FDIn = λWnFDIn + βconln + βMSMSn + βWMSWnMSn + βTRTRn

+ βWTRWnTRn + βOPOPn + βWOPWnOPn (26)
+ βICICn + βWICWnICn + βSULSULn + un
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5.2. Specify the Spatial Weights Matrix
In applying the spatial autoregressive model, specifying an appropriate

spatial weights matrix is quite important. For the current study, an ob-
vious candidate is geographical proximity. Local governments often view
other cities in the same province or that share a common boundary as
strategic opponents in making environmental policy. Although geography
may be relevant, it is not the only factor that determines the neighbor-
hood. Two geographically remote but economically similar cities may be
more likely to incorporate each other’s environmental policies into their
own decision calculus than two geographically nearby cities but with large
income gap between them do. Denote the spatial weights matrix based on
geographical proximity to be WG

n , that is generated by the follows steps:
(i) wG

n,ij = 1 if i and j share a common boundary and wG
n,ij = 0 otherwise.

(ii) Normalize each row sum of the zero-one matrix to be one. Denote
the spatial weights matrix based on similarities in economic characteristics
as W I

n which is generated by: (i) Cities located in different provinces are
viewed as spatially uncorrelated. (ii) Within the same province, the close-
ness of two cities is inversely proportional to their difference in economic
levels, namely wI

n,ij = 1/|PGDPni−PGDPnj |/SI
ni where PGDPni is per

capita GDP in city i, SI
ni is the sum of 1/|PGDPni−PGDPnj | for j going

over all cites other than i within the province containing i. Surely, the
resulting W I

n will be row-normalized automatically. There are two merits
for such row normalization. First, row normalization facilitates interpre-
tation of spatial lag term of cross sectional unit as weighted average of its
neighbors. Second, it can make different spatial autoregressive parameters
comparable. Like any other empirical studies that apply spatial model, the
principles to specify a spatial weights matrix seem to be somewhat arbi-
trary. There is no reason why we should adopt WG

n instead of W I
n in the

empirical implementation or vice versa. One possible procedure to reduce
such arbitrariness in specifying the notion of neighborliness is to nest these
two criteria:

Wn(ψ) = ψWG
n + (1− ψ)W I

n (27)

By varying ψ between 0 and 1, we can test the hypothesis more robustly
and assess the merits of different candidates for neighborliness.

5.3. Empirical Results
The following estimators, (i) MLE, (ii) BS2SLSE, (iii) distribution-free

GMME and (iv) BS3SLSE with J = 5, · · · , 8 are computed for equa-
tion (26) respectively. As in the Monte Carlo study, all the BS2SLSE,
GMME and BS3SLSE’s are computed using MLE as the initial estimator
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and choose mJj(ε) =
(
ε/(1 + ε2)1/2

)j
as the basis function series. The

empirical setting described in Section 5.1 implies that both λ and βSUL in
(26) are of particular interest to us. The estimate results of λ and βSUL

and their t-statistics are summarized in Table 5 with ψ ranging from 0 to
1. The findings from the estimation results include that (a) despite a few
exceptions, almost all the estimates of λ with different ψ’s are significantly
positive at 95% level, robustly suggesting the significant empirical pres-
ence of strategic interaction of local environmental policymaking. A few
irregular signs in BS2SLSEs might be caused by their substantial ineffi-
ciency relative to other estimators. (b) As expected, the slope of pollutant
emissions are significantly positive for all the estimators with various ψ’s,
implying that China’s lenient environmental regulations remain attractive
to foreign capitals. (c) With various estimators and spatial weights ma-
trices that have been tried, both observations above reliably confirm the
empirical presence of environmental “race-to-the-bottom” effect for local
governments in FDI competition.

6. CONCLUSIONS

In this paper, we develop for spatial autoregressive models a computa-
tionally simple three-stage least squares estimator, that can be interpreted
as the spatial counterpart of 3SLSE of a system of simultaneous equations,
where the number of equations grows with the sample size slowly. With
the best chosen instruments, the resulting BS3SLSE is shown to be asymp-
totically equivalent to BS2SLSE under normality and will be more efficient
otherwise. Under certain economic spatial environments where each unit
can be influenced aggregately by a significant portion of units in the cross
section, our BS3SLSE is shown to be asymptotically equivalent to MLE
(Lee, 2004) and GMME (Lee, 2007a) under normality and is more efficient
under nonnormal distributions. Monte Carlo results indicate that the sug-
gested BS3SLSE performs quite well in small or medium size samples and
will be particularly valuable relative to QMLE and GMME in improving
the precision of regression slopes if much information of the underlying
distribution is characterized by its high order moments. As an empiri-
cal example, we apply BS3SLSE and other previously proposed estimators
to re-testing the “race-to-the-bottom” hypothesis for local governments in
competition for FDI in a new empirical setting.

For future research, our S3SLSE can be easily extended to other im-
portant spatial regression models such as high order spatial autoregressive
models and spatial panel data models. It is also of practical interest to
investigate optimal choice of the number of moments J used in estimation
for small samples.
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APPENDIX A

Lemma A.1.-A.3, A.5, A.7-A.9 can be found in Newey (1988). Lemma
A.6, Lemma A.10 can be found in Lee (2007a).

Lemma 1. Consider a sequence {ηi(v)}∞i=1 of measurable functions and
a sequence {vi}∞j=1 of independent random variables. For each integer J ,
let ηJ,j = (η1(vj), · · · , ηJ(vj))′. For some 1 < ω ≤ 2 and {B(J)}∞J=1, let
1
n

∑J
i=1 supn

∑n
j=1 E

(
|ηi(vj)|1+ω

)
= O(B(J)). Then

∣∣∣ 1n ∑n
j=1 E(ηJ,j)

∣∣∣ =

O
(
B1/(1+ω)(J)

)
,
∣∣∣ 1n ∑n

j=1 ηJ,j

∣∣∣ = Op

(
B1/(1+ω)(J)

)
, and for ω < 1 and

any sequence an →∞,∣∣∣∣∣∣ 1n
n∑

j=1

(ηJ,j − E(ηJ,j))

∣∣∣∣∣∣ = Op

(
ann

−ω/(1+ω)B1/(1+ω)(J)
)
.

Lemma 2. Let {ηi(v, γ)}J
i=1 be a sequence of functions and {vi}∞i=1 a

sequence of random variables where γ is a Euclidean vector. Suppose that
there is a neighborhood of N of γ0 and a sequence of measurable functions
{ζi(v)}∞i=1, such that for all γ in N the Lipschitz condition |ηi(vj , γ) −
ηi(vj , γ0)| ≤ ζi(vj)|γ−γ0| holds for all i with probability one. Let {γ̃nj}n,∞

j=1,n=1

be a triangular array of random variables such that sup1≤j≤n |γ̃ − γ0| =
Op(n−δ) for some δ > 0. Then for any {B(J)} such that

n−1
J∑

i=1

sup
n

n∑
j=1

E(ζi(vj)) = O(B(J)),

it follows that for ηJ,j(γ) = (η1(vj , γ), · · · , ηJ(vj , γ))′,∣∣∣∣∣∣ 1n
n∑

j=1

(ηJ,j(γ̃)− ηJ,j(γ0))

∣∣∣∣∣∣ = Op(n−δB(J)).

Lemma 3. For any τ > 0, any positive integer j > 0, there exists some
positive constant C > 0 such that |s|j ≤ C(j!)2 exp(τ |s|).

Lemma 4. Assume that θ̃ is some
√
n-consistent estimator of θ0 =

(λ0, β
′
0)
′ such that

√
n
(
θ̃ − θ0

)
= Op(1), then z′ni(θ̃ − θ0) = Op(n−1/2)

uniformly for i = 1, · · · , n, where zni = (
∑n

j=1 wn,ijynj , x
′
ni)

′.
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Proof. Write Zn(θ̃−θ) = (λ̃−λ0)Gnun +Xn(β̃−β0)+(λ̃−λ0)GnXnβ0.
For the moment, let [cn]i be the i-th element of n-dimensional vector cn.
Then

√
nz′ni(θ̃ − θ0) =

√
n(λ̃ − λ0) [Gnun]i + x′ni

√
n(β̃ − β0) +

√
n(λ̃ −

λ0) [GnXnβ0]i. As the elements of Xn are uniformly bounded and the
row and column sums of Gn are uniformly bounded (by c, for exam-
ple), it remains to show that [Gnun]i = Op(1) uniformly in i = 1, · · · , n.
Both the uniform boundedness of the row and column sums of Gn and
Cauchy-Schwartz inequality give that E|[Gnun]i| = E

(
|
∑n

j=1 gn,ijunj |
)
≤∑n

j=1 |gn,ij |·E|uni| ≤ cE1/2
(
u2

ni

)
uniformly in i = 1, · · · , n. The desired re-

sult follows by Markov inequality.

Lemma 5. For any positive constant C and δ that is sufficiently small,
under Assumption 6, it follows that JCJn−δ → 0.

Lemma 6. Suppose that An is an n × n matrix with its column sums
being uniformly bounded in absolute value, elements of the n × k matrix
Cn are uniformly bounded, and un1, · · · , unn are i.i.d. with zero mean
and finite variance σ2

0. Then, 1/
√
nC ′nAnun = Op(1), 1/nC ′nAnun =

op(1) and 1/
√
nC ′nAnun →d N (0, σ2

0 limn→∞
1
nC

′
nAnA

′
nCn) if the limit of

1
nC

′
nAnA

′
nCn exists and is positive definite.

Lemma 7. For positive definite matrix A and a conformable matrix S,
ρ(S′AS) ≥ ρ(S′S)ρ(A), where ρ(·) is the smallest eigenvalue of some ma-
trix.

Lemma 8. Assume the density function f(ε) of ε is continuous so that
there is an interval on which it is bounded away from zero. m(·) is some
continuously differentiable function. Let q(ε) = (1,m(ε), · · · ,mv(ε))′, then
ρ (E [q′(ε)q(ε)]) ≥ Cv−cv.

Lemma 9. Let A and B denote r × r symmetric and r × k matrices,
respectively, and consider corresponding random matrices Ãn and B̃n, and
non-random matrices An and Bn, where r = rn, is allowed to depend on
n. Suppose that and that |An| = O(∆n),

∣∣∣[Ãn, B̃n]− [An, Bn]
∣∣∣ = Op(δn),

and that ρ(An) = ρn > 0. If rnδn/ρn = o(1), then
∣∣∣Ã−1

n B̃n −A−1
n Bn

∣∣∣ =

Op(r3nρ
−2
n ∆nδn),

∣∣A−1
n Bn

∣∣ = O(rn∆n/ρn).
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Lemma 10. Consider Sn(λ) = In − λWn. Suppose that {‖S−1
n ‖} and

{‖Wn‖}, where ‖ · ‖ is a matrix norm, are bounded. Then, {‖Sn(λ)‖} are
uniformly bounded in a neighborhood of λ0.

Proof of Proposition 1. To isolate the finite dimensional parameter
θ from the infinite-dimensional nuisance parameters µJ of δ in (11), the
formula of the inverse of a partitioned matrix gives thath eZ ′J,n

“eΣ−1
J ⊗Qn(Q′

nQn)−1Q′
n

” eZJ,n

i−1

=

264 eM′
J

eΣ−1
J

eMJ ⊗
`
Z′nQn(Q′

nQn)−1Q′
nZn

´ eM′
J

eΣ−1
J ⊗

`
Z′nQn(Q′

nQn)−1Q′
nln

´
eΣ−1

J
eMJ ⊗

`
l′nQn(Q′

nQn)−1Q′
nZn

´ eΣ−1
J ⊗

`
l′nQn(Q′

nQn)−1Q′
nln

´
375
−1

=

264 A1 A2

∗ ∗

375 ,

whereA1 =
(
M̃′

J Σ̃−1
J M̃J

)−1

⊗
(
Z ′nQn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′nZn

)−1

andA2 = −
(
M̃′

J Σ̃−1
J M̃J

)−1

M̃′
J⊗n−1

(
Z ′nQn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′nZn

)−1

×
(
Z ′nQn(Q′nQn)−1Q′nln

)
. Together with

Z̃ ′J,n

(
Σ̃−1

J ⊗Qn(Q′nQn)−1Q′n

)
ỸJ,n

=

 M̃′
J Σ̃−1

J ⊗
(
Z ′nQn(Q′nQn)−1Q′n

)
Σ̃−1

J ⊗
(
l′nQn(Q′nQn)−1Q′n

)
 ỸJ,n,

the S3SLSE given by (11) can be written equivalently as

θ̂s3sls,J,n = θ̃ (A.1)

+
(
M̃′

J Σ̃−1
J M̃J

)−1

M̃′
J Σ̃−1

J ⊗
(
Z ′nQn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′nZn

)−1

(
Z ′nQn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′n

) m̃J1(un(θ̃))− µ̃J1ln
· · ·

m̃JJ(un(θ̃))− µ̃JJ ln

 .
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A Taylor expansion of the righthand side of (A.1) around θ0 yields

√
n(θ̂s3sls,J,n − θ0) ={
Ik+1 −

[(
M̃′

J Σ̃−1
J M̃J

)−1 (
Z ′nQn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′nZn

)−1
]

[
M̃′

J Σ̃−1
J ⊗

(
Z ′nQn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′n

)]
·

 M̃J1(un(θ))
...

M̃JJ(un(θ))

Zn

}

×
√
n(θ̃ − θ0)

+
√
n

[(
M̃′

J Σ̃−1
J M̃J

)−1 (
Z ′nQn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′nZn

)−1
]

M̃′
J Σ̃−1

J ⊗
(
Z ′nQn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′n

) m̃J1(un(θ0))− µ̃J1ln
· · ·

m̃JJ(un(θ0))− µ̃JJ ln

 .

The proof will be completed by the steps (i)-(v) established below.
(i) Denote MJ = σ−1

0 E (ṁJ1(ε), · · · , ṁJJ(ε))′,
ρJ(ε) = (ṁJ1(ε)− µJ1, · · · , ṁJJ(ε)− µJJ)′ and ΣJ = E (ρJ(ε)ρ′J(ε)), where
ε = (u − α0)/σ0. Then MJ = −σ−1

0 E (ρJ(ε)φ(ε)). First we show that
σ2

0M′
JΣ−1

J MJ → E
(
φ2(ε)

)
as J → ∞. Let dJ = Σ−1

J E (ρJ(ε)φ(ε)) =
−σ0Σ−1

J MJ , then d′JρJ(ε) is the least squares projection of φ(ε) on ρJ(ε).
By Freud (1971), the raw moments of the random variable v = mJ1(ε)
characterize its distribution if and only if the non-negative powers of v to
form a basis for the Hilbert space of measure functions of v that have finite
squared expectation. Since E

(
φ2(m−1

J1 (v))
)

= E
(
φ2(ε)

)
is finite, where

m−1
J1 (·) is the inverse function of mJ1(·), there exists a triangular array

{c̃Jj}j≤J such that

E


φ(m−1

J1 (v))−
J∑

j=0

c̃Jjv
j


2
 = E


φ(ε)−

J∑
j=0

c̃Jjm
j
J1(ε)


2
→ 0,

as J →∞.

As E (φ(ε)) = 0, it follows that the least squares projection of φ(ε) on ρJ(ε)
will be equal the least squares projection of φ(ε) on

(
1,mJ1(ε), · · · ,mJ

J1(ε)
)
.
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Therefore limJ→∞ E
(
{φ(ε)− d′JρJ(ε)}2

)
= 0 follows from

E
(
{φ(ε)− d′JρJ(ε)}2

)
= min

c0,··· ,cJ

E


φ(ε)−

J∑
j=0

cjm
j
J1(ε)


2


≤ E


φ(ε)−

J∑
j=0

c̃Jjm
j
J1(ε)


2
 . (A.2)

Finally, σ2
0M′

JΣ−1
J MJ = d′JΣJdJ = E (d′JρJ(ε)ρ′J(ε)dJ) = E

(
[d′JρJ(ε)]2

)
→

E
(
φ2(ε)

)
.

(ii) Next show that
∥∥∥σ̃2M̃′

J Σ̃−1
J M̃J − σ2

0M′
JΣ−1

J MJ

∥∥∥→p 0. Let η1
J,ni(θ, α, σ) =

(ṁJ1 ((uni(θ)− α)/σ) , · · · , ṁJJ ((uni(θ)− α)/σ))′. For any j = 1, · · · , J
and θ, α, σ lying in the some neighborhood of θ0, α0, σ0, we have by As-
sumption 7 that

|ṁJj ((uni(θ)− α)/σ)− ṁJj ((uni − α0)/σ0)|

= j
∣∣∣mj−1

J1 ((uni(θ)− α)/σ) ṁJ1 ((uni(θ)− α)/σ)

−mj−1
J1 ((uni − α0)/σ0) ṁJ1 ((uni − α0)/σ0)

∣∣∣
≤ j

∣∣∣mj−1
J1 ((uni(θ)− α)/σ)

∣∣∣ |ṁJ1 ((uni(θ)− α)/σ)− ṁJ1 ((uni − α0)/σ0)|

+ j |ṁJ1 ((uni − α0)/σ0)|
∣∣∣mj−1

J1 ((uni(θ)− α)/σ)−mj−1
J1 ((uni − α0)/σ0)

∣∣∣
≤ J

(
BJ−1

1 (uni)B2(uni) + JBJ−2
1 (uni)B2

2(uni)
)
|(z′ni (θ − θ0) + α− α0, σ − σ0)|

where zni =
(∑n

j=1 wn,ijynj , x
′
ni

)′
. By Lemma A.3 and Assumption 7,

both E
(
BJ−1

1 (uni)
)

and E
(
BJ−2

1 (uni)
)

are smaller than (J !)2E (exp(τB1(u))) ≤
J2J . Letting B(J) = JCJ for some sufficiently large positive constant C,
vj = unj and δ = 1/2, both Lemma A.4 and Lemma A.2 apply and give
that∣∣∣∣∣ 1n

n∑
i=1

(
η1

J,ni(θ̃, α̃, σ̃)− η1
J,ni(θ0, α0, σ0)

)∣∣∣∣∣ = Op

(
n−1/2JCJ

)
. (A.3)

Further as for j = 1, · · · , J , |ṁJj((uni − α0)/σ0)|2 =∣∣∣j ·mj−1
J1 ((uni − α0)/σ0)ṁJ1((uni − α0)/σ0)

∣∣∣2 ≤ J2B2J
1 (uni)B2

2(uni), still
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we have E
(
η1′

J,ni(θ0, α0, σ0)η1
J,ni(θ0, α0, σ0)

)
= O

(
JCJ

)
. Letting ω = 1,

B(J) = JCJ , Lemma A.1 applies and gives∣∣∣∣∣ 1n
n∑

i=1

(
η1

J,ni(θ0, α0, σ0)− E
(
η1

J,ni(θ0, α0, σ0)
))∣∣∣∣∣ = Op

(
n−1/2JCJ

)
.

(A.4)
and ∣∣E (η1

J,ni(θ0, α0, σ0)
)∣∣ = O

(
JCJ

)
. (A.5)

Then ‖σ̃M̃J − σ0MJ‖ →p 0 follows from Lemma A.5, (A.3) and (A.4).
As µ̃Ji = n−1

∑n
k=1 m̃(unk(θ̃)), ΣJ,ij = n−1

∑n
k=1 m̃Ji(unk(θ̃))m̃Jj(unk(θ̃))−

n−1
∑n

k=1 m̃Ji(unk(θ̃))n−1
∑n

l=1 m̃Ji(unl(θ̃)). Define a J × J matrix func-
tion η2

J,n,i on θ, α and σ with its (j, k)-th element being η2
J,n,i,jk(θ, α, σ) =

mJj ((uni(θ)− α)/σ)mJk ((uni(θ)− α)/σ) and a J-dimensional vector func-
tion η3

J,n,i on θ, α and σ with its j-th element being η3
J,n,i,j(θ, α, σ) =

mJj ((uni(θ)− α)/σ). Then for any θ, α, σ lying in the some neighborhood
of θ0, α0, σ0, we have∣∣∣η2

J,n,i,jk

(
θ̃, α̃, σ̃

)
− η2

J,n,i,jk(θ0, α0, σ0)
∣∣∣

≤
∣∣∣mJj

(
(uni(θ̃)− α̃)/σ̃

)∣∣∣ ∣∣∣mJk

(
(uni(θ̃)− α̃)/σ̃

)
−mJk ((uni − α0)/σ0)

∣∣∣
+ |mJk ((uni − α)/σ)|

∣∣∣mJj

(
(uni(θ̃)− α̃)/σ̃

)
−mJj ((uni − α0)/σ0)

∣∣∣
≤ 2BJ

1 (uni)JBJ−1
1 (uni)B2(uni) |(z′ni (θ − θ0) + α− α0, σ − σ0)| ,

∣∣∣η3
J,n,i,j

(
θ̃, α̃, σ̃

)
− η3

J,n,i,j(θ0, α0, σ0)
∣∣∣

≤ JBJ−1
1 (uni)B2(uni) |(z′ni (θ − θ0) + α− α0, σ − σ0)| ,

E
(
tr
(
η2′

J,ni(θ0, α0, σ0)η2
J,ni(θ0, α0, σ0)

))
= O

(
JCJ

)
and

E
(
η3′

J,ni(θ0, α0, σ0)η3
J,ni(θ0, α0, σ0)

)
= O

(
JCJ

)
.

Applying Lemma A.1-A.2 and by similar argument in proving∥∥∥σ̃M̃J − σ0MJ

∥∥∥ →p 0, we have
∥∥∥Σ̃J − ΣJ

∥∥∥ →p 0. By Assumption 1,
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the density f(ε) is continuous so that there is an interval on which it
is bounded away from zero. Let q(εni) = (1,mJ1(εni), · · · ,mJJ(εni))′,
it follows by ΣJ = (−µJ , IJ) E (q(εni)q′(εni)) (−µJ , IJ)′, Lemma A.7-A.8
that ρ(ΣJ) ≥ CJ−CJ . Further the assumptions of Lemma A.9 are sat-
isfied with An = ΣJ and Bn = MJ , ∆n = J−CJ , δn = n−1/2J−CJ and
ρn = J−CJ . Then

∥∥∥σ̃2M̃′
J Σ̃−1

J M̃J − σ2
0M′

JΣ−1
J MJ

∥∥∥ =
∥∥∥d̃′JM̃J − d′JMJ

∥∥∥ ≤∥∥∥d̃′J − d′J

∥∥∥∥∥∥M̃J

∥∥∥+ ‖d′J‖
∥∥∥M̃J −MJ

∥∥∥ = Op

(
n−1/2JCJ

)
→ 0.

(iii) We claim that

[
M̃′

J Σ̃−1
J ⊗

(
1
n
Z ′nQn(Q′nQn)−1Q′nΓnQn(Q′nQn)−1Q′n

)]
·

 M̃J1(un(θ))
...

M̃JJ(un(θ))

Zn

→p lim
n→∞

σ−2
0 I · 1

n
(Gn(Xnβ0 + α0ln))′Qn(Q′nQn)−1Q′nΓnQn

×(Q′nQn)−1Q′n (Gn(Xnβ0 + α0ln))

By Lemma A.6, 1
nQ

′
nGnεn = Op

(
n−1/2

)
, 1

nZ
′
nQn →p 1

n (Gn(Xnβ0 + α0ln))′Qn.
It suffices to verify that

∥∥∥∥∥∥∥
1
n

(IJ ⊗Q′n)

 M̃J1(un(θ))
...

M̃JJ(un(θ))

Zn −
1
n

(MJ ⊗Q′nZn)

∥∥∥∥∥∥∥→p 0

Write Zn = Zn+(σ0Gnεn, 0), where Zn = (Gn(Xnβ0 + α0ln), Xn). Denote
Qn = (qn1, · · · , qnn)′, where qni is the i-th row of Qn and analogously,
Zn = (zn1, · · · , znn)′. Let η4

J,ni(θ, α, σ) = (ṁJ1 ((uni(θ)− α)/σ) , · · · ,
ṁJJ ((uni(θ)− α)/σ))′ ⊗ qniz

′
ni. Noting that the elements of Qn and Zn

are regarded as uniformly bounded constants, by analogous argument to
proving

∥∥∥σ̃M̃J − σ0MJ

∥∥∥→p 0, we have

∥∥∥∥∥∥∥
1
n

(IJ ⊗Q′n)

 M̃J1(un(θ))
...

M̃JJ(un(θ))

Zn −
1
n

(
MJ ⊗Q′nZn

)∥∥∥∥∥∥∥→p 0
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For the rest, let M̃(θ̄) = diag

{
σ̃−1ṁ((un1(θ̄)− α̃)/σ̃)− σ−1

0 E (ṁ(ε)) , · · · ,

σ̃−1ṁ((unn(θ̄)− α̃)/σ̃)− σ−1
0 E (ṁ(ε))

}
and ḡni =

∑n
j=1 gn,ijεnj . As

sup
1≤i≤n

E|ḡni| ≤ sup
1≤i≤n

 n∑
j=1

|gn,ij |

E|εni|

≤ sup
1≤i≤n

 n∑
j=1

|gn,ij |

E1/2
(
ε2ni

)
≤ C,

ḡni = Op(1) uniformly in i = 1, · · · , n by Markov inequality. Then by the
similar argument to (A.3), we have∥∥∥∥∥∥∥

1
n

(IJ ⊗Q′n)

 M̃J1(un(θ))
...

M̃JJ(un(θ))

Gnεn −
1
n

(MJ ⊗Q′nGnεn)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1n
 Q′nM̃J1(un(θ̄))Gnεn

· · ·
Q′nM̃JJ(un(θ̄))Gnεn

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1
n

 ∑n
i=1 |qni| |ḡni|

∣∣σ̃−1ṁJ1((uni(θ̄)− α̃)/σ̃)− σ−1
0 E (ṁJ1(ε))

∣∣
· · ·∑n

i=1 |qni| |ḡni|
∣∣σ̃−1ṁJJ((uni(θ̄)− α̃)/σ̃)− σ−1

0 E (ṁJ1(ε))
∣∣
∥∥∥∥∥∥

≤ C

∥∥∥∥∥∥ 1
n

 ∑n
i=1

∣∣σ̃−1ṁJ1((uni(θ̄)− α̃)/σ̃)− σ−1
0 E (ṁJ1(ε))

∣∣
· · ·∑n

i=1

∣∣σ̃−1ṁJJ((uni(θ̄)− α̃)/σ̃)− σ−1
0 E (ṁJ1(ε))

∣∣
∥∥∥∥∥∥

= Op

(
n−1/2JCJ

)
.

(iv) We show that

1√
n
Q′nΓn

(
φ̃J (un)− φ(εn)

)
= op(1),

where φ̃J(u) = −M̃J Σ̃−1
J

 m̃J1(u)− µ̃J1

· · ·
m̃JJ(u)− µ̃JJ

, φ̃J(un) =
(
φ̃J(un1), · · · , φ̃J(unn)

)′
and φ(un) = (φ(un1), · · · , φ(unn))′. Denote φJ(ε) = d′JρJ(ε) and φJ(εn) =

(φJ(εn1), · · · , φJ(εnn))′. Note that E
(

1√
n
Q′nΓn (φJ(εn)− φ(εn))

)
= 0 and
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use the independence of εn1, · · · , εnn, we have
E
(

1
nQ

′
nΓn (φJ(εn)− φ(εn)) (φJ(εn)− φ(εn))′ ΓnQn

)
= E (φJ(ε)− φ(ε))2 ·

1
nQ

′
nΓnQn = o(1) by (A.2). By Markov inequality,

1√
n
Q′nΓn (φJ(εn)− φ(εn)) = op(1). (A.6)

Letting η5
J,ni(α, σ) = (mJ1 ((uni − α)/σ) , · · · ,mJJ ((uni − α)/σ))′, γ =

(α, σ)′, we have∥∥∥∥∥ 1√
n

n∑
i=1

(qni − q) d̃′J (ρ̃J(uni)− ρJ(εni))

∥∥∥∥∥
=

∥∥∥∥∥ 1√
n

n∑
i=1

(qni − q) d̃′J (mJ((uni − α̃)/σ̃)−mJ((uni − α0)/σ0) + µ̃J − µJ)

∥∥∥∥∥
=

∣∣∣∣∣ 1√
n

n∑
i=1

(qni − q) d̃′J

(
∂η5

J,ni(γ̄)
∂γ′

(γ̃ − γ0) + µ̃J − µJ

)∥∥∥∥∥ (A.7)

=

∣∣∣∣∣ 1n
n∑

i=1

(qni − q) d̃′J

(
∂η5

J,ni(γ̄)
∂γ′

− E

(
∂η5

J,ni(γ̄)
∂γ′

))
√
n (γ̃ − γ0)

∥∥∥∥∥
≤
∥∥∥d̃′J∥∥∥∥∥√n (γ̃ − γ0)

∥∥∥∥∥∥∥ 1
n

n∑
i=1

(qni − q)

(
∂η5

J,ni(γ̄)
∂γ′

− E

(
∂η5

J,ni(γ̄)
∂γ′

))∥∥∥∥∥
∂m ((u− α)/σ) /∂α = −σ−1ṁ ((u− α)/σ) and ∂m ((u− α)/σ) /∂σ =

−σ−2(u−α)ṁ ((u− α)/σ). By analogous argument in proving
∥∥∥σ̃M̃J − σ0MJ

∥∥∥→p

0, the right hand of (A.7) will be no greater than Op

(
n−1/2JCJ

)
= op(1).

The desired result then follows by

1√
n
Q′nΓn

(
φ̃J(un)− φJ(εn)

)
=

∥∥∥∥∥ 1√
n

n∑
i=1

(qni − q)
(
d̃′J − d′J

)
ρJ(εni)

∥∥∥∥∥
≤
∥∥∥d̃J − dJ

∥∥∥∥∥∥∥∥ 1√
n

n∑
i=1

(qni − q) ρJ(εni)

∥∥∥∥∥ = Op

(
n−1/2JCJ

)
· J ·Op(1) = op(1).

(v) Finally,

1√
n
Q′nΓnφ(εn) →d N

(
0, I · 1

n
Q′nΓnQn

)
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by Lemma A.6.
Proof of Proposition 2. The proof essentially follows that of Propo-

sition 1 and will be completed by the steps (i)-(vi) established below.
(i) By direct computation,

(Gn(Xnβ0 + α0ln), Xn)′Qo,n(Q′o,nQo,n)−1

× Q′o,nΓnQo,n(Q′o,nQo,n)−1Q′o,n(Gn(Xnβ0 + α0ln), Xn)
= (Gn(Xnβ0 + α0ln), Xn)′Γn(Gn(Xnβ0 + α0ln), Xn),

suggesting that the specific asymptotic variance matrix for BS3SLSE can
be obtained by just replacing Qn = Qo,n in (13).

(ii) By exactly the same proof to that of the part (i)-(ii) in Proposition
1, we can show that σ̃2M̃′

J Σ̃−1
J M̃J →p E(φ2(ε)).

(iii) Write

G̃n

(
Xnβ̃ + α̃ln

)
= Gn (Xnβ0 + α0ln) +

(
λ̃− λ0

)
G̃nGn

(
Xnβ̃ + α̃ln

)
+ Gn

(
Xn

(
β̃ − β0

)
+ (α̃− α0) ln

)
. (A.8)

It is straightforward to verify that 1
n Q̃

′
o,nQ̃o,n →p 1

nQo,n′Qo,n and 1
nZn′Q̃n →p

1
n (Gn(Xnβ0 + α0ln), Xn)′Qo,n by referring to Lee (2003).

(iv)‚‚‚‚‚‚‚‚
1

n

“
IJ ⊗

“ eGnGn

“
Xn

eβ + eαln
””′” 2664

fMJ1(un(θ))
...fMJJ(un(θ))

3775 Gnεn −
1

n

“
MJ ⊗

“ eGnGn

“
Xn

eβ + eαln
””′

Gnεn

”‚‚‚‚‚‚‚‚
≤

‚‚‚‚‚‚‚‚
1

n

2664
“ eGnGn

“
Xn

eβ + eαln
””′ fMJ1(un(θ̄))Gnεn

· · ·“ eGnGn

“
Xn

eβ + eαln
””′ fMJJ(un(θ̄))Gnεn

3775
‚‚‚‚‚‚‚‚

≤

‚‚‚‚‚‚‚
1

n

264
Pn

i=1 |κni| |ḡni|
˛̨eσ−1ṁJ1((uni(θ̄)− eα)/eσ)− σ−1

0 E (ṁJ1(ε))
‚‚

· · ·Pn
i=1 ‖κni| |ḡni|

˛̨eσ−1ṁJJ((uni(θ̄)− eα)/eσ)− σ−1
0 E (ṁJ1(ε))

‚‚
375

‚‚‚‚‚‚‚
= Op

“
n−1/2JCJ

”
where κni =

[
G̃nGn

(
Xnβ̃ + α̃ln

)]
i

being the i-th element of

G̃nGn

(
Xnβ̃ + α̃ln

)
, is uniformly bounded by a constant C independent

of n by Lemma A.10. By analogous proof to that of part (iii) in Proposi-
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tion 1, it is straightforward to show that[
M̃′

J Σ̃−1
J ⊗

(
1
n
Z ′nQ̃o,n(Q̃′o,nQ̃o,n)−1Q̃′o,nΓnQ̃o,n(Q̃′o,nQ̃o,n)−1Q̃′o,n

)]

×

 M̃J1(un(θ))
...

M̃JJ(un(θ))

Zn

→p σ−2
0 I · 1

n
(Gn(Xnβ0 + α0ln))′ Γn (Gn(Xnβ0 + α0ln)) .

(v) We claim that

1√
n
Q̃′o,nΓn

(
φ̃J (un)− φ(εn)

)
= op(1).

By referring to part (iv) of Proposition 1 and (A.8), it suffices to show that

1√
n

(λ̃− λ0)
(
G̃nGn

(
Xnβ̃ + α̃ln

))′
Γn

(
φ̃J (un)− φ(εn)

)
= op(1). (A.9)

Write G̃nGn = G2
n + (λ̃− λ0)G̃nG

2
n. It can be concluded by the analogous

argument to that of part (iv) in Proposition 1 that

1√
n

(
G2

nXn

)′
Γn

(
φ̃J (un)− φ(εn)

)
= op(1)

and
1√
n

(
G2

nln
)′

Γn

(
φ̃J (un)− φ(εn)

)
= op(1).

Then (A.9) is given by∥∥∥∥ 1√
n

(λ̃− λ0)2
(
G̃nG

2
nXnβ̃

)′
Γn

(
φ̃J (un)− φ(εn)

)∥∥∥∥
≤ n−1/2

∥∥∥∥n(λ̃− λ0

)2
∥∥∥∥ ∣∣∣∣ sup

1≤i≤n

(
ΓnG̃nG

2
nXnβ̃

)
i

∣∣∣∣
× 1
n

n∑
i=1

∥∥∥φ̃J (uni)− φ(εni)
∥∥∥

≤ Op

(
n−1/2

)
.
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(vi) Finally, it can be established that

1√
n
Q̃′o,nΓnφ(εn) →d N

(
0, I · 1

n
Q′o,nΓnQo,n

)
by Lemma A.6 and similar reasoning to proving (A.9).
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