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A wide range of econometric and statistical models are specified through
moment conditions. Efficient estimation of such models essentially employs
two distinct ideas: optimally combining estimation equations (e.g., the optimal
estimating equations of Godambe (1976), the generalized method of moments
of Hansen (1982) and the empirical likelihood of Qin and Lawless (1994)), and
optimally combining estimators (e.g., the weighted method of moments of Xiao
(2010)). This paper extends these methods to moment condition models with
heterogeneous populations. Comparison of the finite sample performance of
the proposed estimators is conducted through Monte Carlo simulations.
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1. INTRODUCTION

A wide range of econometric and statistical models are specified through
over-identified moment restrictions in the name of moment condition mod-
els (also known as the estimating equation models). Efficient estimation
of such models essentially employs two types of ideas: optimally combin-
ing estimation equations (e.g., the optimal estimating equations (OEE) of
Godambe (1976), the generalized method of moments (GMM) of Hansen
(1982), the generalized estimating equations (GEE) of Liang and Zeger
(1986) and the empirical likelihood (EL) of Owen (1988) and Qin and

* I thank the managing editor and a referee for helpful comments. Part of the paper
was written when the author was a visiting scholar at the Sloan School of Management
of MIT. The research is supported by the National Science Foundation of China (Grant
No. 11001059).

89

1529-7373/2011

All rights of reproduction in any form reserved.



90 ZHIGUO XIAO

Lawless (1994)), and optimally combining estimators (e.g., the weighted
method of moments (WMM) of Xiao (2010)). Those methods were pri-
marily developed for data from a homogeneous population, i.e., all samples
are generated by a common data generating process.

For the majority of applications, assuming all data observations come
from a single population can serve the purpose of statistical modeling sat-
isfactorily; however, in practice, empirical researchers often face situations
where data were collected from multiple sources (e.g., data obtained from
cluster sampling or from multiple- center/region/country studies), or data
have different structure or dimensions (e.g., incomplete longitudinal/panel
data due to design or random missing), and under those circumstances, the
homogenous-population assumption may seem untenable (see e.g., Jöreskog
(1977), Muthén (1989), Muthén et al. (1997), Girma (2000), and Shao et
al. (2011)).

There are some sporadic studies that generalized to some extent the
aforementioned methods to heterogenous populations. Under the struc-
tural equation modeling framework, Wansbeek and Meijer (2000, pp.217)
suggested that one can minimize a weighted sum of subgroup-based GMM
objective functions to extend GMM to data with multiple subpopulations;
however, asymptotic properties (e.g., asymptotic normality and asymptotic
efficiency) were not established therein. Similar to Wansbeek and Meijer
(2000), Shao et al. (2011) developed a multiple-population based GMM
estimator and established its asymptotic properties for linear unbalanced
panel data with errors-in-variables. They also discussed the extension of
the OEE idea to multiple populations. However, their results are specific
to a class of linear moment condition models and need to be generalized.
For EL methodology, Owen (2001, pp. 223-226) discussed the hypothesis
testing with multiple samples and just-identified moment conditions. To
the best of our knowledge, general theories about the OEE, the GMM, the
EL and the WMM methods in multiple populations are not available.

The purpose of this paper is to extend these four estimation methods
to general nonlinear moment condition models with heterogeneous pop-
ulations. In Section 2 we outline the model setup and some regularity
conditions. In Section 3 we discuss in detail how to extend the ideas of
OEE, GMM, EL and WMM to multiple samples. We prove the asymptotic
properties of the resulting estimators, and establish their asymptotic e-
quivalence. Section 4 discusses the relationship among the four estimators,
and compares them from the perspective of finite sample bias. Section 5
presents Monte Carlo simulations to compare the finite sample properties
of the proposed estimators, and Section 6 concludes. All proofs are rele-

gated to the Appendix. Throughout the paper,
p→ denotes convergence in

probability, and
d→ denotes convergence in distribution.
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2. MODEL SETUP

We have independent observations Xk,1, ..., Xk,nk
∈ Rqk ∼ Fk,0 (k =

1, ...,K), where q1, ..., qK ,K are fixed positive integers, and F1,0, ..., FK,0
are unknown distributions with supports on X1, ...,XK–subsets ofRq1 , ..., RqK ,
respectively. The parameter of interest is θ0, an interior point of Θ, which
is assumed to be a compact subset of Rp. Assume that θ0 is the unique
solution to the following moment condition

E[ψk(Xk,i, θ)] = 0, k = 1, ...,K, (1)

where ψk : Rp+qk 7→ Rmk , k = 1, ...,K, are known vector-valued functions.1

Assume thatmk ≥ p, i.e., the set of moment conditions for every population

is identified. The total sample size is n =
K∑
k=1

nk. In the following, ∥ · ∥

denotes the Euclidean norm.

Assumption 1. For any k = 1, . . . ,K, and for any xk ∈ Xk, ψk(xk, θ)
is a continuously differentiable function of θ on Θ.

Assumption 2. For any k = 1, . . . ,K, E[supθ∈Θ ∥ψk(Xk,i, θ)∥] <∞.

Assumption 3. There exist a neighborhood U(θ0) of θ0 and integrable
functions Ψ1, . . . ,ΨK such that for any k = 1, . . . ,K,

sup
θ∈U(θ0)

∥ψk(xk, θ)∥3 ≤ Ψk(xk), for any xk ∈ Xk.

Assumption 4. For any k = 1, . . . ,K, Gk = E[
∂ψk(Xk,i,θ0)

∂θ ] exists and
rank(Gk) = p.

Assumption 5. There exist a neighborhood V1(θ0) of θ0 and integrable
functions Φ1, . . . ,ΦK such that for any k = 1, . . . ,K,

sup
θ∈V1(θ0)

∥∥∥∥∂ψk(xk, θ)∂θ

∥∥∥∥ ≤ Φk(xk), for any xk ∈ Xk.

1A special case of model (1)–often adopted by applied researchers–is that θ =
(θ1, ..., θK), and ψk(Xk,i, θ) depends on θ only through θk.
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Assumption 6. There exist a neighborhood V2(θ0) of θ0 and integrable

functions Υ1, . . . ,ΥK such that for any k = 1, . . . ,K, ∂
2ψk(xk,θ)
∂θ∂θ′ is contin-

uous in θ on V2(θ0), and

sup
θ∈V2(θ0)

∥∥∥∥∂2ψk(xk, θ)∂θ∂θ′

∥∥∥∥2 ≤ Υk(xk), for any xk ∈ Xk.

Assumption 7. For any k = 1, . . . ,K, Σk = E[ψk(Xk,i, θ0)ψk(Xk,i, θ0)
′]

is positive definite.

Assumption 8. For k = 1, . . . ,K, there exists a constant αk such that
nk

n → αk ∈ (0, 1), as n→ ∞.

3. OEE, GMM, EL AND WMM FOR MULTIPLE
POPULATIONS

In this section we extend the OEE method, the GMM method, the EL
method and the WMM method to moment condition models with multiple
populations.

3.1. OEE for multiple populations

The idea of OEE is to linearly combine all moment conditions into a set
of just-identified moment conditions such that the resulting estimator has
the smallest asymptotic variance. Extending the OEE method for multiple
populations is simple. For a set ofK linear combination coefficient matrices
Π1, ...,ΠK , with dimensions p×m1, ..., p×mK respectively, we solve for an
estimator θ̂EE from the following estimating equation

K∑
k=1

Πk

nk∑
i=1

ψk(Xk,i, θ) = 0. (2)

The following theorem summarizes the asymptotic properties of θ̂EE .

Theorem 1. If Assumptions 1,2,4,7 and 8 hold, then as n→ ∞,
√
n(θ̂EE−

θ0)
d→ N(0,Ω1(Π)), and for any Π = (Π1, ...,ΠK), we have that

Ω1(Π) ≥ Ω∗ =

(
K∑
k=1

αkG
′
kΣ

−1
k Gk

)−1

,
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in the sense of being nonnegative definite. The equality is achieved when
Πk = G′

kΣ
−1
k for k = 1, ...,K. If practice, if θ̃ is a first step consistent

estimator of θ0, then Πk can be consistently estimated by Π̂k = Ĝ′
kΣ̂

−1
k ,

with

Ĝk(θ̃) =
1

nk

nk∑
i=1

[
∂ψk(Xk,i, θ̃)

∂θ

]
(3)

and

Σ̂k(θ̃) =
1

nk

nk∑
i=1

[
ψk(Xk,i, θ̃)ψk(Xk,i, θ̃)

′
]
. (4)

The solution θ̂OEE to (2), with Πk replaced by Π̂k = Ĝ′
kΣ̂

−1
k , is call the

OEE estimator.

3.2. GMM for multiple populations

Define ψk(θ) = 1
nk

nk∑
i=1

ψk(Xk,i, θ), k = 1, ...,K. Let Ŵk be an mk ×mk

positive semidefinite matrix and that Ŵk
p→ Wk as nk → ∞, where Wk

is also a positive semidefinite matrix. Using Ŵk as weighting matrix, the
GMM objective function for population k is

Jk(θ) = nkψk(θ)
′Ŵkψk(θ). (5)

To obtain an GMM estimator using all data information, it is natural
to consider minimizing the following objective function, as suggested by
Wansbeek and Meijer’s (2000):

J(θ) =

K∑
k=1

Jk(θ) =

K∑
k=1

nkψk(θ)
′Ŵkψk(θ).

Let θ̂GMM be the minimizer of J(θ). We establish the following result

about the asymptotic distribution of θ̂GMM .

Theorem 2. If Assumptions 1,2,4,7 and 8 hold, then as n→ ∞,
√
n(θ̂GMM−

θ0)
d→ N(0,Ω2(W )), with

Ω2(W ) =

(
K∑
k=1

αkG
′
kWkGk

)−1( K∑
k=1

αkG
′
kWkΣkWkGk

)(
K∑
k=1

αkG
′
kWkGk

)−1

.

For any W = (W1, ...,WK), we have that Ω2(W ) ≥ Ω∗. The equality is
achieved when Wk = Σ−1

k for every k.
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Let Σ̂k be a consistent estimators for Σk, k = 1, ...,K. For example, Σ̂k
can be specified by (4). Then the GMM estimator

θ̂eGMM = argmin
θ∈Θ

K∑
k=1

nkψk(θ)
′Σ̂−1
k ψk(θ)

has an asymptotic variance that achieves the lower bound Ω∗. It is called
an efficient GMM estimator of θ0. Setting all Ŵk as identity matrices,
we obtain a consistent GMM estimator, which can serve as the first step
consistent estimator θ̃ of θ0.

3.3. EL for multiple populations

We consider generalizing EL in the following manner. We first solve the
following restricted optimization problem:

max
pk,i:i=1,...,nk,k=1,...,K

K∏
k=1

nk∏
i=1

nkpk,i,

subject to the constraints that for any i and k,

pk,i ≥ 0,

nk∑
i=1

pk,i = 1,

nk∑
i=1

pk,iψk(Xk,i, θ) = 0.

For any given θ, we solve the maximization problem by Lagrange multiplier.
Define

L =
K∑
k=1

nk∑
i=1

log pk,i+
K∑
k=1

γk

(
1−

nk∑
i=1

pk,i

)
−

K∑
k=1

nkλ
′
k

(
nk∑
i=1

pk,iψk(Xk,i, θ)

)
,

where γk and λk = (λk,1, ..., λk,mk
)′, k = 1, ...,K, are Lagrange multipliers.

From the first order conditions we have

pk,i =
1

nk

1

1 + λ′kψk(Xk,i, θ)
, (6)

and
nk∑
i=1

1

1 + λ′kψk(Xk,i, θ)
ψk(Xk,i, θ) = 0. (7)

For given Xk = (Xk,1, ..., Xk,nk
), eqn. (7) defines an implicit functional

relationship between λk and θ. Solving for λk in terms of Xk and θ, we
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have λk = λk(Xk, θ). For notational convenience let’s write λk(Xk, θ) as
λk(θ). Substituting (6) into L and denoting the resulting objective function
by R(θ, λ), we have

R(θ, λ) = −
K∑
k=1

nk log nk −
K∑
k=1

nk∑
i=1

log(1 + λ′kψk(Xk,i, θ)).

Note that λ(θ) = (λ1(θ)
′, ..., λK(θ)′)′ is the minimizer of R(θ, λ), i.e.,

λ(θ) = argmin
λ

R(θ, λ).

The profile empirical log-likelihood for θ is

R(θ) = R(θ, λ(θ)) = −
K∑
k=1

nk log nk −
K∑
k=1

nk∑
i=1

log(1 + λk(θ)
′ψk(Xk,i, θ)).

Maximizing R(θ) is equivalent to minimizing the empirical log-likelihood
ratio

lE(θ) =
K∑
k=1

nk∑
i=1

log(1 + λk(θ)
′ψk(Xk,i, θ)).

The minimizer of lE(θ), denoted by θ̂EL, is called the EL estimator of θ0.

The following result summarizes the asymptotic properties of θ̂EL.

Theorem 3. Suppose Assumptions 1,3,5,7 and 8 hold. (i) As n → ∞,

with probability one lE(θ) attains its minimum at some point θ̂EL in the

interior of ball Bθ0 = {θ : ∥θ−θ∥ ≤ n−
1
3 }, and θ̂EL and λ̂k = λk(θ̂EL), k =

1, ...,K satisfy Q1(θ̂EL, λ̂) = 0, Q2(θ̂EL, λ̂) = 0, where

Q1(θ, λ) = − 1

n

∂R(θ, λ)

∂λ
=


1
n

n1∑
i=1

[
1

1+λ′
1ψ1(X1,i,θ)

ψ1(X1,i, θ)
]

...

1
n

nK∑
i=1

[
1

1+λ′
KψK(XK,i,θ)

ψK(XK,i, θ)
]
 ,

and

Q2(θ, λ) = − 1

n

∂R(θ, λ)

∂θ
=


1
n

n1∑
i=1

[
1

1+λ′
1ψ1(X1,i,θ)

(
∂ψ1(X1,i,θ)

∂θ )′λ1

]
...

1
n

nK∑
i=1

[
1

1+λ′
KψK(XK,i,θ)

(
∂ψK(XK,i,θ)

∂θ )′λK

]
 .
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(ii) Suppose further that Assumption 6 holds. Then as n→ ∞,
√
n(θ̂EL −

θ0)
d→ N(0,Ω∗).

3.4. WMM for multiple populations

As will be shown in Section 4, OEE, GMM and EL are all methods to
optimally combining moment conditions. Xiao (2010) proposed the WMM
method from a new perspective–optimally combining method of moment
estimators. We now discuss the extension of WMM to multiple populations.

For each k, we have mk moment conditions. We can select p conditions
out of those mk conditions to form a just-identified model and solve for
a method of moment estimator. There are Mk = Cpmk

ways to select
moments, thus producing Mk inefficient method of moments estimators

θ̂
(k)
WMM,l, l = 1, ...,Mk. Repeating the procedure for all populations, we

obtain M =
K∑
k=1

Mk method of moments estimators. The idea of WMM

is to construct an efficient estimator of θ0 by linearly combining the M
method of moments estimators. Specifically, the WMM estimator is defined
as

θ̂WMM =
K∑
k=1

Mk∑
l=1

Λk,lθ̂
(k)
WMM,l, (8)

where Λk,l (k = 1, ...,K; l = 1, ...,Mk) are p × p linear combination coef-

ficient matrices such that
K∑
k=1

Mk∑
l=1

Λk,l = Ip, with Ip the identity matrix of

order p.

Theorem 4. If Assumptions 1,2,4,7 and 8 hold, then as n→ ∞,
√
n(θ̂WMM−

θ0)
d→ N(0,Ω3(Λ)), and for any Λ = {Λk,l, k = 1, ...,K; l = 1, ...,Mk}, we

have that Ω3(Λ) ≥ Ω∗. The equality is achieved when

Λk,l =
αk

Cp−1
mk−1

Ω∗G′
kΣ

−1
k P ′

Sk
l
PSk

l
Gk (9)

for k = 1, ...,K; l = 1, ...,Mk, where PSk
l
is the lth mk-select-p matrix. If

practice, if θ̃ is a first step consistent estimator of θ0, then Λk,l can be
consistently estimated by

Λ̂k,l =
nk

nCp−1
mk−1

Ω̂∗(θ̃)[Ĝk(θ̃)]
′[Σ̂k(θ̃)]

−1P ′
Sk
l
PSk

l
Ĝk(θ̃), (10)
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where Ĝk(θ̃) and Σ̂k(θ̃) are defined in Theorem 1, and

Ω̂∗(θ̃) =

[
K∑
k=1

nk
n
[Ĝk(θ̃)]

′[Σ̂k(θ̃)]
−1Ĝk(θ̃)

]−1

.

The estimator

θ̂eWMM =
K∑
k=1

Mk∑
l=1

Λ̂k,lθ̂
(k)
WMM,l

with Λ̂k,l specified by (10) is called the efficient WMM estimator.

4. CONNECTIONS OF OEE, GMM, EL AND WMM

By definition, the OEE estimator is efficient, in the sense that it has the
smallest variance among all estimators obtained by linearly combining all
the moment conditions in (1). Since the GMM, the EL and the WMM
estimators have the same asymptotic distribution as the OEE estimator,
they are also efficient. The four estimators were derived based on different
principles, therefore, in general they should be different in finite samples.
The following result states that for linear models, OEE, GMM and WMM
produce identical estimators.

Theorem 5. For linear moment condition models, i.e., models where
ψk(Xk,i, θ), k = 1, ...,K are linear functions of θ, θ̂OEE = θ̂eGMM =

θ̂eWMM .

The proof of Theorem 5 is by some matrix algebra and is omitted. We
now follow Newey and Smith (2004) to discuss the finite sample biases of

the four estimators. It is easy to see that θ̂OEE satisfies

K∑
k=1

nk

nk∑
i=1

[Ĝk(θ̃)]
′[Σ̂k(θ̃)]

−1ψk(Xk,i, θ̂OEE) = 0. (11)

From the first order condition of GMM, θ̂eGMM satisfies

K∑
k=1

nk

nk∑
i=1

[Ĝk(θ̂eGMM )]′[Σ̂k(θ̃)]
−1ψk(Xk,i, θ̂eGMM ) = 0. (12)
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A direct extension of Theorem 2.3 of Newey and Smith (2004) implies that

θ̂EL satisfies the following first order condition:

K∑
k=1

nk

nk∑
i=1

[G̃k(θ̂EL)]
′[Σ̃k(θ̂EL)]

−1ψk(Xk,i, θ̂EL) = 0, (13)

where G̃k(θ) =
1
nk

nk∑
i=1

[
p̂k,i

∂ψk(Xk,i,θ)
∂θ

]
, Σ̃k(θ) =

1
nk

nk∑
i=1

[p̂k,iψk(Xk,i, θ)ψk(Xk,i, θ)]
′
,

and p̂k,i (i = 1, ..., nk, k = 1, ...,K) are empirical probabilities.
Comparing (11), (12) and (13), we can see that OEE, GMM and EL share

a common structure, all being estimators derived by linearly combining
moment conditions. The ideal (yet infeasible) way to linearly combine
moment conditions is

K∑
k=1

nk

nk∑
i=1

G′
kΣ

−1
k ψk(Xk,i, θ̂ideal) = 0. (14)

According to the stochastic higher order expansion theory of Newey and
Smith (2004), EL should have smaller finite sample bias than OEE and G-

MM, since G̃k(θ̂EL), Σ̃k(θ̂EL) are efficient estimators of Gk,Σk respectively,

while Ĝk(θ̃), Σ̂k(θ̃) and Ĝk(θ̂eGMM ), Σ̂k(θ̃) are not. WMM uses the same
first step information as OEE, we expect that its finite sample performance
should be similar to that of OEE.

5. MONTE CARLO STUDIES

In this section we inspect the finite sample performance of OEE, GM-
M, EL and WMM using simulations.2 Consider K = 2, i..e., we have
two independent populations. Suppose the moment conditions for the first
population is E[g(Xi, θ0)] = 0, with g(x, θ) = (x − θ, x2 − θ2 − 2θ)′, and
X1, · · ·, Xn1 are i.i.d. observations from chi-square distribution with de-
gree of freedom θ0. The moment conditions for the second population is
E[h(Yi, θ0)] = 0, with h(y, θ) = (y− θ

2 , y
2 − 3

4θ
2)′, and Y1, · · ·, Yn2 are i.i.d.

observations from gamma distribution with scale parameter θ0 and shape
parameter 1/2.

We experiment with θ0 = 2 and total sample sizes n = 150, 600, 1500.
Denote by α the fraction of observations from population 1. We consider

2In econometric literature, it is well known that GMM has finite sample bias and EL
can improve upon GMM. See, e.g., Altonji and Segal (1996), Imbens (2002), Newey and
Smith (2004) and Kitamura (2006).
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two scenarios: α = 1/3 and α = 2/3. We run 10,000 replications each time.
Estimation results are reported in Table 1.3

TABLE 1.

Performance of the multiple-population OEE, GMM, EL and WMM estimators

150 Observations

α = 1/3 α = 2/3

GMM WMM OEE EL GMM WMM OEE EL

Estimate 1.8780 1.8608 1.8599 1.9103 1.8929 1.8659 1.8750 1.9137

Std. Err. 0.2126 0.2320 0.2308 0.1829 0.1877 0.2201 0.2095 0.1803

600 Observations

α = 1/3 α = 2/3

GMM WMM OEE EL GMM WMM OEE EL

Estimate 1.9712 1.9725 1.9716 1.9693 1.9720 1.9711 1.9722 1.9744

Std. Err. 0.0978 0.0993 0.0991 0.1133 0.0881 0.0925 0.0906 0.1116

1500 Obervations

α = 1/3 α = 2/3

GMM WMM OEE EL GMM WMM OEE EL

Estimate 1.9894 1.9908 1.9902 1.9762 1.9903 1.9909 1.9910 1.9846

Std. Err. 0.0612 0.0613 0.0613 0.1004 0.0527 0.0532 0.0529 0.1028

We observe from Table 1 that when sample size is small, all four esti-
mators have nonnegligible biases. Among them, EL has the smallest bias
and smallest variance. WMM and OEE are very similar to each other, and
their biases and variances are bigger than those of GMM. As sample size
increases, the biases of all estimators decrease. In terms of the rate of bias
diminishing, WMM and OEE are the fastest, and EL is the slowest. In
large samples, WMM and OEE have apparent advantage (smaller bias and
smaller variance) over EL. Change in α does not change the above pattern.

6. CONCLUDING REMARKS

In this article, we discussed the extensions of four types of semipara-
metrically efficient estimators (OEE, GMM, EL and WMM) to moment
condition models with multiple independent populations. The paper did-
n’t address the extension of the GEE of Liang and Zeger (1986). However,
since the idea of GEE is in line with the idea of OEE, the extension is
immediate. Although our focus is parameter estimation, asymptotic hy-
pothesis testing results can be easily obtained. Results in the paper were

3Computation of the EL estimator is based on a modified algorithm of Hansen (2003).
For each simulation run, the starting value of the EL algorithm is a randomly generated
number from the uniform distribution on [1.5, 2.5], the center of which is θ0.
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proved using standard techniques combined with matrix algebra. The as-
sumptions we adopted are standard regularity assumptions, but can be
relaxed to some extent without jeopardizing validity of the results. For
example, Assumption 8 can be dropped, and all the asymptotic results still
hold, with the asymptotic covariance matrices appropriately redefined, as
min{nk|k = 1, ...,K} → ∞. The methods proposed in this paper are appli-
cable in a number of situations, such as cluster sampling and unbalanced
panel data. Our simulation results confirmed the small sample bias advan-
tage of EL as established by Newey and Smith (2004). For future research,
it is of interest to investigate the cause of the persistent bias of EL even
for large samples.

APPENDIX: PROOFS OF RESULTS

We first establish the following lemma, which is an extension of the
matrix version of the Cauchy-Schwartz inequality. A special case of this
results is given in Wansbeek and Meijer (2000, pp.359-360).

Lemma 1. Let Ck and Γk, k = 1, ...,K be pk × qk and pk × pk matrices,

respectively, Γk is positive definite for any k, and that (
K∑
k=1

C ′
kΓ

−1
k Ck)

−1

exists. Let Πk, k = 1...,K, of order qk × pk respectively, be a collection of

matrices such that

(
K∑
k=1

ΠkCk

)−1

exists. Then

(
K∑
k=1

ΠkCk

)−1( K∑
k=1

ΠkΓkΠ
′
k

)(
K∑
k=1

C ′
kΠ

′
k

)−1

≥

(
K∑
k=1

C ′
kΓ

−1
k Ck

)−1

.

(A.1)
The equality holds when Πk = C ′

kΓ
−1
k for every k.

Proof (Proof of Lemma 1). Define Π =

Π1

. . .

ΠK

 , C =

C1

. . .

CK

,
and Π =

Γ1

. . .

ΓK

. Then (A.1) can be expressed as

(ΠC)−1(ΠΓΠ′)(C ′Π′)−1 ≥ (C ′Γ−1C)−1.

Let M = (ΠC)−1Π, U = Γ
1
2M ′ and V = Γ− 1

2C. Then U ′V = I, hence

U ′U − (V ′V )−1 = [U − V (V ′V )−1V ′U ]′[U − V (V ′V )−1V ′U ] ≥ 0.
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Therefore (ΠC)−1(ΠΓΠ′)(C ′Π′)−1 =MΓM ′ = U ′U ≥ (V ′V )−1 = (C ′Γ−1C)−1.

Proof (Proof of Theorem 1). Let H(θ) =
K∑
k=1

Πk
nk∑
i=1

ψk(Xk,i, θ).Take

a first order Taylor expansion of H(θ) around θ0 we have

H(θ) = H(θ0) +

(
K∑
k=1

nkΠk
∂ψk(θ̃)

∂θ′

)
(θ − θ0).

Solving H(θ̂EE) = 0 we obtain

θ̂EE − θ0 = −

(
K∑
k=1

nkΠk
∂ψk(θ̃)

∂θ′

)
H(θ0).

Hence

√
n(θ̂EE − θ0) = −

(
K∑
k=1

nk
n
Πk

∂ψk(θ̃)

∂θ′

)
1√
n
H(θ0)

= −

(
K∑
k=1

nk
n
Πk

∂ψk(θ̃)

∂θ′

)(
K∑
k=1

√
nk
n
Πk

√
nkψk(θ0)

)
d→ N(0,Ω1(Π)),

with

Ω1(Π) =

(
K∑
k=1

αkΠkGk

)(
K∑
k=1

αkΠkΣkΠ
′
k

)(
K∑
k=1

αkΠkGk

)′

.

By Lemma 1, Ω1(Π) ≥
(

K∑
k=1

αkG
′
kΣ

−1
k Gk

)−1

for any Π, with the equality

hold if Πk = G′
kΣ

−1
k for any k.

Proof (Proof of Theorem 2). The first order condition for (5) is

2H(θ̂) =
∂J(θ̂)

∂θ
=

K∑
k=1

2nk

[
∂ψk(θ̂)

∂θ

]′
Ŵkψk(θ̂) = 0.

Taking a Taylor expansion of H(θ) around θ0 we have

0−H(θ0) = H(θ̂)−H(θ0) =
∂H(θ)

∂θ′
(θ̂ − θ0),
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hence

θ̂ − θ0 = −
[
∂H(θ)

∂θ′

]−1

H(θ0) = −
[
1

n

∂H(θ)

∂θ′

]−1
1

n
H(θ0)

√
n(θ̂ − θ0) = −

[
1

n

∂H(θ)

∂θ′

]−1
1√
n
H(θ0).

While

1√
n
H(θ0) =

1√
n

K∑
k=1

nk

[
∂ψk(θ0)

∂θ

]′
Ŵkψk(θ0)

=

K∑
k=1

√
nk
n

[
∂ψk(θ0)

∂θ

]′
Ŵk

√
nkψk(θ0)

d→ N(0, V ),

with V =
K∑
k=1

(αkG
′
kWkΣkWkGk), where the last convergence is due to the

Law of Large Numbers, the Central Limit Theorem , the Slutsky Theorem,
and the independence of populations. Now

1

n

∂H(θ)

∂θ′
=

1

n

∂

∂θ′

K∑
k=1

nk

[
∂ψk(θ)

∂θ

]′
Ŵkψk(θ)

=
K∑
k=1

nk
n

[
∂ψk(θ)

∂θ

]′
Ŵk

∂ψk(θ)

∂θ
+

K∑
k=1

nk
n
[ψk(θ)]

′Ŵk
∂

∂θ′
(
∂ψk(θ)

∂θ
)

p→
K∑
k=1

αkG
′
kWkGk,

since θ
p→ θ0,

∂ψk(θ)
∂θ

p→ Gk, ψk(θ)
p→ 0, and that ∂

∂θ′ (
∂ψk(θ)
∂θ ) = Op(1).

Therefore by Slutsky Theorem again, we have

√
n(θ̂ − θ0)

d→

(
K∑
k=1

αkG
′
kWkGk

)−1

N(0, V )
d
= N(0,Ω2(W )),

where

Ω2(W ) =

(
K∑
k=1

αkG
′
kWkGk

)−1 K∑
k=1

(αkG
′
kWkΣkWkGk)

(
K∑
k=1

αkG
′
kWkGk

)−1

.
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By Lemma 1, we have that Ω2(W ) ≥
(

K∑
k=1

αkG
′
kWkGk

)−1

for any W .

Proof (Proof of Theorem 3). The proof of Theorem 3 is a direct
generalization of the proofs of Lemma 1 and Theorem 1 in Qin and Lawless
(1994). (i) Since λk(θ) is defined by (7), similar to the proof of Owen (1990),

we have that uniformly for θ ∈ {θ : ∥θ − θ0∥ ≤ n−
1
3 }, λk(θ) = O(n−

1
3 ),

for any k. For any given θ ∈ {θ : ∥θ − θ0∥ = n−
1
3 }, we can express θ as

θ = θ0 + un− 1
3 , where ∥u∥ = 1. By a Taylor expansion, we have that

lE(θ) =
K∑
k=1

nk∑
i=1

λ′kψk(Xk,i, θ)−
1

2

K∑
k=1

nk∑
i=1

[λ′kψk(Xk,i, θ)]
2 + o(n

1
3 )

=
K∑
k=1

nk
2

[
1

nk

nk∑
i=1

ψk(Xk,i, θ)

]′ [
1

nk

nk∑
i=1

ψk(Xk,i, θ)ψk(Xk,i, θ)
′

]−1

×

[
1

nk

nk∑
i=1

ψk(Xk,i, θ)

]
+ o(n

1
3 )

=
K∑
k=1

nk
2

[
1

nk

nk∑
i=1

ψk(Xk,i, θ0) +
1

nk

nk∑
i=1

∂ψk(Xk,i, θ0)

∂θ
un−

1
3

]′

×

[
1

nk

nk∑
i=1

ψk(Xk,i, θ)ψk(Xk,i, θ)
′

]−1

×

[
1

nk

nk∑
i=1

ψk(Xk,i, θ0) +
1

nk

nk∑
i=1

∂ψk(Xk,i, θ0)

∂θ
un− 1

3

]
+ o(n

1
3 )

=

K∑
k=1

nk
2

[
O(n−1 log log n)

1
2 + E

(
∂ψk(Xk,i, θ0)

∂θ

)
un−

1
3

]′
×E[ψk(Xk,i, θ0)ψk(Xk,i, θ0)

′]

×
[
O(n−1 log log n)

1
2 + E[

∂ψk(Xk,i, θ0)

∂θ
]un−

1
3

]
+ o(n

1
3 )

≥
K∑
k=1

ckn
1
3

k

= Cn
1
3 ,
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where C is a positive constant. By a similar argument, we have

lE(θ0) =
K∑
k=1

nk
2

[
1

nk

nk∑
i=1

ψk(Xk,i, θ0)

]′ [
1

nk

nk∑
i=1

ψk(Xk,i, θ0)ψk(Xk,i, θ0)
′

]−1

[
1

nk

nk∑
i=1

ψk(Xk,i, θ0)

]
+ o(1)

= O(log log n).

Thus lE(θ0)
lE(θ) = o(1) for any θ on the surface of the ball {θ : ∥θ − θ0∥ ≤

n−
1
3 }. Therefore the minimum of lE(θ) must be attained in the interior of

{θ : ∥θ − θ0∥ ≤ n−
1
3 }. By definition, (θ̂EL, λ̂) minimizes R(θ, λ), thus it

satisfies

Rθ(θ̂EL, λ̂) =
∂R(θ̂EL, λ̂)

∂θ
= 0,

Rλ(θ̂EL, λ̂) =
∂R(θ̂EL, λ̂)

∂λ
= 0.

(ii) Let Q(θ, λ) = [Rθ(θ, λ)
′, Rλ(θ, λ)

′]′. Then (θ̂EL, λ̂) is the solution to

the equation Q(θ̂EL, λ̂) = 0. Taking a Taylor expansion of Q(θ, λ) around
(θ0, 0) we have

Q(θ, λ) = Q(θ0, 0) +

[
∂Q(θ0, 0)

∂θ′
,
∂Q(θ0, 0)

∂λ′

] [
θ − θ0
λ− 0

]
+ o(δ),

with δ = ∥θ−θ0∥+∥λ∥. Hence 0 = Q(θ0, 0)+
[
∂Q(θ0,0)
∂θ′ , ∂Q(θ0,0)

∂λ′

] [ θ̂EL − θ0
λ̂− 0

]
+

o(δ̂), with δ̂ = ∥θ̂EL − θ0∥+ ∥λ̂∥. Therefore[
θ̂EL − θ0

λ̂

]
= −

[
∂Q(θ0, 0)

∂θ′
,
∂Q(θ0, 0)

∂λ′

]−1

[Q(θ0, 0) + o(δ̂)]

= −
[
1

n

∂Q(θ0, 0)

∂θ′
,
1

n

∂Q(θ0, 0)

∂λ′

]−1
[
1

n
Q(θ0, 0) + o(

δ̂

n
)

]

= −S−1
n

[
1
nRθ(θ0, 0) + o( δ̂n )
1
nRλ(θ0, 0) + o( δ̂n )

]
,

where Sn =

[
Sn,11 Sn,12
Sn,21 Sn,22

]
=

[
1
nRθθ(θ0, 0)

1
nRθλ(θ0, 0)

1
nRλθ(θ0, 0)

1
nRλλ(θ0, 0)

]
. By calculus we

have that Sn,11 = 0, Sn,12 =

(
1
n

n1∑
i=1

∂ψ1(X1,i,θ0)
∂θ′

′
, ..., 1

n

nK∑
i=1

∂ψK(XK,i,θ0)
∂θ′

′
)′

,
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and Sn,22 is a block-diagonal matrix whose kth diagonal element is

1

n

nk∑
i=1

[ψk(Xk,i, θ0)ψk(Xk,i, θ0)
′] ,

for k = 1, . . . ,K. Hence Sn
p→ S =

[
S11 S12

S21 S22

]
, where S11 = 0, S12 = S′

21 =

[α1G
′
1, . . . , αKG

′
K ], and S22 is a block-diagonal matrix whose kth diagonal

element is αkΣk, for k = 1, . . . ,K. Therefore

√
n(θ̂EL − θ0) = [S12S

−1
22 S21]

−1S−1
12 S

−1
22

1√
n
Rλ(θ0, 0) + o(1)

d→ N
(
0, [S12S

−1
22 S21]

−1
)

= N

0,

(
K∑
k=1

αkG
′
kΣ

−1
k Gk

)−1
 .

Proof (Proof of Theorem 4). Let PSk
l
be the lth mk-select-p ma-

trix. For population k, we can use the lth set of (just-identified) moment
conditions PSk

l
E[ψk(Xk,i, θ)] = 0 to construct a method of moments esti-

mator θ̂kWMM,l, which is the solution of PSk
l
ψk(θ) = 0. Applying a Taylor

expansion around θ0 we have

0− PSk
l
ψk(θ0) = PSk

l

∂ψk(θ̃k,l)

∂θ′
(θ̂

(k)
WMM,l − θ0),

hence

θ̂
(k)
WMM,l − θ0 = −

[
PSk

l

∂ψk(θ̃k,l)

∂θ′

]−1

PSk
l
ψk(θ0).

Now

√
n(θ̂WMM − θ0) =

K∑
k=1

Mk∑
l=1

Λk,l
√
n(θ̂

(k)
WMM,l − θ0)

= −
K∑
k=1

Mk∑
l=1

Λk,l
nk√
n

[
1

n
PSk

l

∂ψk(θ̃k,l)

∂θ′

]−1

PSk
l
ψk(θ0)

= −
K∑
k=1

Mk∑
l=1

√
nk
n
Λk,l

[
1

n
PSk

l

∂ψk(θ̃k,l)

∂θ′

]−1

PSk
l

√
nkψk(θ0)

d→ N(0,Ω3(Λ)),
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with

Ω3(Λ) =
K∑
k=1

Mk∑
l=1

αkΛ
k
l [PSk

l
Gk]

−1PSk
l
ΣkP

′
Sk
l
[G′

kP
′
Sk
l
]−1(Λk,l)

′.

By Lemma 1, Ω3(Λ) ≥
(

K∑
k=1

αkG
′
kΣ

−1
k Gk

)−1

for any Λ, with the equality

hold if

Λk,l =
αk

Cp−1
mk−1

(
K∑
k=1

αkG
′
kΣ

−1
k Gk

)−1

G′
kΣ

−1
k P ′

Sk
l
PSk

l
Gk.
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