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1. INTRODUCTION

In portfolio analysis, one is often interested in finding out whether one
set of risky assets can improve the investment opportunity set of another
set of risky assets. If an investor chooses portfolios based on mean and
variance, then the question becomes whether adding a new set of risky
assets can allow the investor to improve the minimum-variance frontier
from a given set of risky assets. This question was first addressed by
Huberman and Kandel (1987, HK hereafter). They propose a multivariate
test of the hypothesis that the minimum-variance frontier of a set of K
benchmark assets is the same as the minimum-variance frontier of the K
benchmark assets plus a set of N additional test assets. Their study has
generated many applications and various extensions. Examples include
Ferson, Foerster, and Keim (1993), DeSantis (1993), Bekaert and Urias
(1996), De Roon, Nijman, and Werker (2001), Korkie and Turtle (2002),
Ahn, Conrad, and Dittmar (2003), Jagannathan, Skoulakis, and Wang
(2003), Peñaranda and Sentana (2004), Christiansen, Joensen, and Nielsen
(2007), and Chen, Chung, Ho and Hsu (2010).

In this paper, we aim at providing a complete understanding of various
tests of mean-variance spanning.1 First, we provide two new spanning tests
based on the Wald and Lagrange multiplier principles. The popular HK
spanning test is a likelihood ratio test. Unlike the case of testing the CAP-
M as in Jobson and Korkie (1982) and Gibbons, Ross, and Shanken (1989,
GRS hereafter), this test is in general not the uniformly most powerful
invariant test (as shown below), and hence the new tests are of interest.
Second, we provide geometrical interpretations of the three tests in terms of
the ex post minimum-variance frontier of the K benchmark assets and that
of the entire N+K assets, which are useful for better economic understand-
ing of the tests. Third, under the normality assumption, we present the
small sample distributions for all of the three tests, and provide a complete
analysis of their power under alternative hypotheses. We relate the power
of these tests to the economic significance of departure from the spanning
hypothesis, and find that the power of the tests does not align well with the
economic significance of the difference between the two minimum-variance
frontiers. Fourth, as an attempt to overcome the power problem, we pro-
pose a new step-down spanning test that is potentially more informative
than the earlier three tests. Finally, without the normality assumption,
we provide a new spanning test based on the generalized method of mo-

1We would like to alert readers two common mistakes in applications of the widely
used HK test of spanning. The first is that the test statistic is often incorrectly computed
due to a typo in HK’s original paper. The second is that the HK test is incorrectly used
for the single test asset case (i.e., N = 1).
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ments (GMM). We evaluate its performance along with other GMM tests
by simulation. and reach a similar conclusion to the normality case.

The rest of the paper is organized as follows. The next section discusses
the spanning hypothesis and the regression based approach for tests of
spanning. Section III provides a comprehensive power analysis of various
regression based spanning tests. Section IV discusses how to generalize
these tests to the case that the assets returns are not multivariate normally
distributed. Section V applies various mean-variance spanning tests to
examine whether there are benefits of international diversification for a
U.S. investor. The final section concludes.

2. REGRESSION BASED TESTS OF SPANNING

In this section, we introduce the various regression-based spanning tests,
and provide both their distributions under the null and their geometric
interpretations. The Appendix contains the proofs of all propositions and
formulas.

2.1. Mean-Variance Spanning

The concept of mean-variance spanning is simple. Following Huberman
and Kandel (1987), we say that a set of K risky assets spans a larger set
of N +K risky assets if the minimum-variance frontier of the K assets is
identical to the minimum-variance frontier of the K assets plus an addi-
tional N assets. The first set is often called the benchmark assets, and the
second set the test assets. When there exists a risk-free asset and when
unlimited lending and borrowing at the risk-free rate is allowed, then in-
vestors who care about the mean and variance of their portfolios will only
be interested in the tangency portfolio of the risky assets (i.e., the one that
maximizes the Sharpe ratio). In that case, the investors are only concerned
with whether the tangency portfolio from using K benchmark risky assets
is the same as the one from using all N +K risky assets. However, when a
risk-free asset does not exist, or when the risk-free lending and borrowing
rates are different, then investors will be interested instead in whether the
two minimum-variance frontiers are identical. The answer to this question
allows us to address two interesting questions in finance. The first question
asks whether, conditional on a given set of N +K assets, an investor can
maximize his utility by holding just a smaller set of K assets instead of
the complete set. This question is closely related to the concept of K-fund
separation and has implications for efficient portfolio management. The
second question asks whether an investor, conditional on having a portfo-
lio of K assets, can benefit by investing in a new set of N assets. This
latter question addresses the benefits of diversification, and is particularly
relevant in the context of international portfolio management when the K
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benchmark assets are domestic assets whereas the N test assets are invest-
ments in foreign markets.

HK first discuss the question of spanning and formalize it as a statistical
test. Define Rt = [R′

1t, R
′
2t]

′ as the raw returns on N +K risky assets at
time t, where R1t is a K-vector of the returns on the K benchmark assets
and R2t is an N -vector of the returns on the N test assets.2 Define the
expected returns on the N +K assets as

µ = E[Rt] ≡
[
µ1

µ2

]
, (1)

and the covariance matrix of the N +K risky assets as

V = Var[Rt] ≡
[
V11 V12

V21 V22

]
, (2)

where V is assumed to be nonsingular. By projecting R2t on R1t, we have

R2t = α+ βR1t + ϵt, (3)

with E[ϵt] = 0N and E[ϵtR
′
1t] = 0N×K , where 0N is an N -vector of zeros

and 0N×K is an N by K matrix of zeros. It is easy to show that α and β
are given by α = µ2 − βµ1 and β = V21V

−1
11 . Let δ = 1N − β1K where 1N

is an N -vector of ones. HK provide the necessary and sufficient conditions
for spanning in terms of restrictions on α and δ as

H0 : α = 0N , δ = 0N . (4)

To understand why (4) implies mean-variance spanning, we observe that
when (4) holds, then for every test asset (or portfolio of test assets), we can
find a portfolio of the K benchmark assets that has the same mean (since
α = 0N and β1K = 1N ) but a lower variance than the test asset (since R1t

and ϵt are uncorrelated and Var[ϵt] is positive definite). Hence, the N test
assets are dominated by the K benchmark assets.

To facilitate later discussion and to gain a further understanding of what
the two conditions α = 0N and δ = 0N represent, we consider two portfolios
on the minimum-variance frontier of the N +K assets with their weights
given by

w1 =
V −1µ

1′N+KV −1µ
, (5)

w2 =
V −11N+K

1′N+KV −11N+K
. (6)

2Note that we can also define Rt as total returns or excess returns (in excess of risk-free
lending rate).
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From Merton (1972) and Roll (1977), we know that the first portfolio is
the tangency portfolio when the tangent line starts from the origin, and
the second portfolio is the global minimum-variance portfolio.3

Denote Σ = V22 − V21V
−1
11 V12 and Q = [0N×K , IN ] where IN is an N

by N identity matrix. Using the partitioned matrix inverse formula, the
weights of the N test assets in these two portfolios can be obtained as

Qw1 =
QV −1µ

1′N+KV −1µ
=

[−Σ−1β, Σ−1]µ

1′N+KV −1µ
=

Σ−1(µ2 − βµ1)

1′N+KV −1µ
=

Σ−1α

1′N+KV −1µ
,

(7)
and

Qw2 =
QV −11N+K

1′N+KV −11N+K
=

[−Σ−1β, Σ−1]1N+K

1′N+KV −11N+K

=
Σ−1(1N − β1K)

1′N+KV −11N+K
=

Σ−1δ

1′N+KV −11N+K
. (8)

From these two expressions, we can see that testing α = 0N is a test
of whether the tangency portfolio has zero weights in the N test asset-
s, and testing δ = 0N is a test of whether the global minimum-variance
portfolio has zero weights in the test assets. When there are two distinct
minimum-variance portfolios that have zero weights in the N test assets,
then by the two-fund separation theorem, we know that every portfolio
on the minimum-variance frontier of the N +K assets will also have zero
weights in the N test assets.4

2.2. Multivariate Tests of Mean-Variance Spanning

To test (4), additional assumptions are needed. The popular assumption
in the literature is to assume α and β are constant over time. Under this
assumption, α and β can be estimated by running the following regression

R2t = α+ βR1t + ϵt, t = 1, 2, . . . , T, (9)

where T is the length of time series. HK’s regression based approach is to
test (4) in regression (9) by using the likelihood ratio test.

For notational brevity, we use the matrix form of model (9) in what
follows:

Y = XB + E, (10)

3In defining w1, we implicitly assume 1′N+KV −1µ ̸= 0 (i.e., the expected return of

the global minimum-variance portfolio is not equal to zero). If not, we can pick the
weight of another frontier portfolio to be w1.

4Instead of testing H0 : α = 0N and δ = 0N , we can generalize the approach of Jobson
and Korkie (1983) and Britten-Jones (1999) to test directly Qw1 = 0N and Qw2 = 0N .
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where Y is a T × N matrix of R2t, X is a T × (K + 1) matrix with its
typical row as [1, R′

1t], B = [α, β ]
′
, and E is a T ×N matrix with ϵ′t as its

typical row. As usual, we assume T ≥ N +K +1 and X ′X is nonsingular.
For the purpose of obtaining exact distributions of the test statistics, we
assume that conditional on R1t, the disturbances ϵt are independent and
identically distributed as multivariate normal with mean zero and variance
Σ.5 This assumption will be relaxed later in the paper.

The likelihood ratio test of (4) compares the likelihood functions un-
der the null and the alternative. The unconstrained maximum likelihood
estimators of B and Σ are the usual ones

B̂ ≡ [ α̂, β̂ ]′ = (X ′X)−1(X ′Y ), (11)

Σ̂ =
1

T
(Y −XB̂)′(Y −XB̂). (12)

Under the normality assumption, we have

vec(B̂′) ∼ N(vec(B′), (X ′X)−1 ⊗ Σ), (13)

T Σ̂ ∼ WN (T −K − 1,Σ), (14)

where WN (T−K−1,Σ) is the N -dimensional central Wishart distribution
with T −K − 1 degrees of freedom and covariance matrix Σ. Define Θ =
[α, δ ]

′
, the null hypothesis (4) can be written as H0 : Θ = 02×N . Since

Θ = AB + C with

A =

[
1 0′K

0 −1′K

]
, (15)

C =

[
0′N

1′N

]
, (16)

the maximum likelihood estimator of Θ is given by Θ̂ ≡ [ α̂, δ̂ ]′ = AB̂+C.
Define

Ĝ = TA(X ′X)−1A′ =

[
1 + µ̂′

1V̂
−1
11 µ̂1 µ̂′

1V̂
−1
11 1K

µ̂′
1V̂

−1
11 1K 1′K V̂ −1

11 1K

]
, (17)

where µ̂1 = 1
T

∑T
t=1 R1t and V̂11 = 1

T

∑T
t=1(R1t − µ̂1)(R1t − µ̂1)

′, it can be
verified that

vec(Θ̂′) ∼ N(vec(Θ′), (Ĝ/T )⊗ Σ). (18)

5Note that we do not require Rt to be multivariate normally distributed; the distribu-
tion of R1t can be time-varying and arbitrary. We only need to assume that conditional
on R1t, R2t is normally distributed.
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Let Σ̃ be the constrained maximum likelihood estimator of Σ and U =
|Σ̂|/|Σ̃|, the likelihood ratio test of H0 : Θ = 02×N is given by

LR = −T ln(U)
A∼ χ2

2N . (19)

It should be noted that, numerically, one does not need to perform the
constrained estimation in order to obtain the likelihood ratio test statistic.
From Seber (1984, p.410), we have

Σ̃− Σ̂ = Θ̂′Ĝ−1Θ̂, (20)

and hence 1/U can be obtained from the unconstrained estimate alone as

1

U
=

|Σ̃|
|Σ̂|

= |Σ̂−1Σ̃| = |Σ̂−1(Σ̂ + Θ̂′Ĝ−1Θ̂)|

= |IN + Σ̂−1Θ̂′Ĝ−1Θ̂| = |I2 + ĤĜ−1|, (21)

where

Ĥ = Θ̂Σ̂−1Θ̂′ =

[
α̂′Σ̂−1α̂ α̂′Σ̂−1δ̂

α̂′Σ̂−1δ̂ δ̂′Σ̂−1δ̂

]
. (22)

Denoting λ1 and λ2 as the two eigenvalues of ĤĜ−1, where λ1 ≥ λ2 ≥ 0,
we have 1/U = (1 + λ1)(1 + λ2). Then, the likelihood ratio test can then
be written as

LR = T

2∑
i=1

ln(1 + λi). (23)

The two eigenvalues of ĤĜ−1 are of great importance since all invariant
tests of (4) are functions of these two eigenvalues (Theorem 10.2.1 of Muir-
head (1982)). In order for us to have a better understanding of what λ1

and λ2 represent, we present an economic interpretation of these two eigen-
values in the following lemma.

Lemma 1. Suppose there exists a risk-free rate r. Let θ̂1(r) and θ̂(r)
be the sample Sharpe ratio of the ex post tangency portfolios of the K
benchmark asset, and of the N +K assets, respectively. We have

λ1 = max
r

1 + θ̂2(r)

1 + θ̂21(r)
− 1, λ2 = min

r

1 + θ̂2(r)

1 + θ̂21(r)
− 1. (24)

If there were indeed a risk-free rate, it would be natural to measure
how close the two frontiers are by comparing the squared sample Sharpe
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ratios of their tangency portfolios because investors are only interested
in the tangency portfolio. However, in the absence of a risk-free rate,
it is not entirely clear how we should measure the distance between the
two frontiers. This is because the two frontiers can be close over some
some region but yet far apart over another region. Lemma 1 suggests that
λ1 measures the maximum difference between the two ex post frontiers in
terms of squared sample Sharpe ratios (by searching over different values
of r), and λ2 effectively captures the minimum difference between the two
frontiers in terms of the squared sample Sharpe ratios.

Besides the likelihood ratio test, econometrically, one can also use the
standard the Wald test and Lagrange multiplier tests for almost any hy-
potheses. As is well known, see. e.g., Berndt and Savin (1977), the Wald
test is given by

W = T (λ1 + λ2)
A∼ χ2

2N . (25)

and the Lagrange multiplier test is given by

LM = T
2∑

i=1

λi

1 + λi

A∼ χ2
2N . (26)

Note that although LR, W , and LM all have an asymptotic χ2
2N distribu-

tion, Berndt and Savin (1977) and Breusch (1979) show that we must have
W ≥ LR ≥ LM in finite samples.6 Therefore, using the asymptotic distri-
butions to make an acceptance/rejection decision, the three tests could give
conflicting results, with LM favoring acceptance and W favoring rejection.

Note also that unlike the case of testing the mean-variance efficiency of
a given portfolio, the three tests are not increasing transformation of each
other except for the case of N = 1,7 so they are not equivalent tests in gen-
eral. It turns out that none of the three tests are uniformly most powerful
invariant tests when N ≥ 2, and which test is more powerful depends on
the choice of an alternative hypothesis. Therefore, it is important for us
not just to consider the likelihood ratio test but also the other two.

2.3. Small Sample Distributions of Spanning Tests

As demonstrated by GRS and others, asymptotic tests could be gross-
ly misleading in finite samples. In this section, we provide finite sample

6The three test statistics can be modified to have better small sample properties. The
modified LR statistic is obtained by replacing T by T −K− (N +1)/2, the modified W
statistic is obtained by replacing T by T −K −N +1, and the modified LM statistic is
obtained by replacing T by T −K + 1.

7When N = 1, we have λ2 = 0 and hence LR = T ln(1+ W
T
) and LM = W/(1+ W

T
).
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distribution of the three tests under the null hypothesis.8 Starting with
the likelihood ratio test, HK and Jobson and Korkie (1989) show that the
exact distribution of the likelihood ratio test under the null hypothesis is
given by9 (

1

U
1
2

− 1

)(
T −K −N

N

)
∼ F2N,2(T−K−N). (27)

Although this F -test has been used to test the spanning hypothesis in the
literature for N = 1, it should be emphasized that this F -test is only valid
when N ≥ 2. When N = 1, the correct F -test should be(

1

U
− 1

)(
T −K − 1

2

)
∼ F2,T−K−1. (28)

In this case, the exact distribution of the Wald and Lagrange multipli-
er tests can be obtained from the F -test in (28) since all three tests are
increasing transformations of each other.

Based on Hotelling (1951) and Anderson (1984), the exact distribution
of the Wald test under the null hypothesis is, when N ≥ 2,

P [λ1 + λ2 ≤ w]

= I w
2+w

(N − 1, T −K −N)−

B
(
1
2
, T−K

2

)
B
(
N
2
, T−K−N+1

2

) (1 + w)−(T−K−N
2

)I( w
2+w )2

(
N − 1

2
,
T −K −N

2

)
,(29)

where B(·, ·) is the beta function, and Ix(·, ·) is the incomplete beta
function.

For the exact distribution of the Lagrange multiplier test when N ≥ 2,
there are no simple expressions available in the literature.10 The simplest
expression we have obtained is, for 0 ≤ v ≤ 2,

P

[
λ1

1 + λ1
+

λ2

1 + λ2
≤ v

]

= I v
2
(N − 1, T −K −N + 1)−

∫ v2

4
max[0,v−1] u

N−3
2 (1− v + u)

T−K−N
2 du

2B(N − 1, T −K −N + 1)
.(30)

8The small sample version of the likelihood ratio, the Wald and the Lagrange multi-
plier tests are known as the Wilks’ U , the Lawley-Hotelling trace, and the Pillai trace,
respectively, in the multivariate statistics literature.

9HK’s expression of the F -test contains a typo. Instead of U
1
2 , it was misprinted as U .

This mistake was unfortunately carried over, to our knowledge, to all later studies such
as Bekaert and Urias (1996) and Errunza, Hogan, and Hung (1999), with the exception
of Jobson and Korkie (1989).

10Existing expressions in Mikhail (1965) and Pillai and Jayachandran (1967) require
summing up a large number of terms and only work for the special case that both N
and T −K are odd numbers.
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Unlike that for the Wald test, this formula requires the numerical compu-
tation of an integral, which can be done using a suitable computer program
package.

Under the null hypothesis, the exact distributions of all the three tests
depend only onN and T−K, and are independent of the realizations of R1t.
Therefore, under the null hypothesis, the unconditional distributions of the
test statistics are the same as their distributions when conditional on R1t.
In Table 1, we provide the actual probabilities of rejection of the three tests
under the null hypothesis when the rejection is based on the 95% percentile
of their asymptotic χ2

2N distribution. We see that the actual probabilities
of rejection can differ quite substantially from the asymptotic p-value of
5%, especially when N and K are large relative to T . For example, when
N = 25, even when T is as high as 240, the probabilities of rejection can
still be two to four times the size of the test for the Wald and the likelihood
ratio tests. Therefore, using asymptotic distributions could lead to a severe
over-rejection problem for the Wald and the likelihood ratio tests. For the
Lagrange multiplier test, the actual probabilities of rejection are actually
quite close to the size of the test, except when T is very small. If one wishes
to use an asymptotic spanning test, the Lagrange multiplier test appears
to be preferable to the other two in terms of the size of the test.

2.4. The Geometry of Spanning Tests

While it is important to have finite sample distributions of the three tests,
it is equally important to develop a measure that allows one to examine the
economic significance of departures from the null hypothesis. Fortunately,
all three tests have nice geometrical interpretations. To prepare for our
presentation of the geometry of the three test statistics, we introduce three
constants â = µ̂′V̂ −1µ̂, b̂ = µ̂′V̂ −11N+K , ĉ = 1′N+K V̂ −11N+K , where

µ̂ = 1
T

∑T
t=1 Rt and V̂ = 1

T

∑T
t=1(Rt − µ̂)(Rt − µ̂)′. It is well known

that these three constants determine the location of the ex post minimum-
variance frontier of the N + K assets. Similarly, the corresponding three
constants for the mean-variance efficiency set of just the K benchmark
assets are â1 = µ̂′

1V̂
−1
11 µ̂1, b̂1 = µ̂′

1V̂
−1
11 1K , ĉ1 = 1′K V̂ −1

11 1K . Using these
constants, we can write

Ĝ =

[
1 + â1 b̂1
b̂1 ĉ1

]
. (31)

The following lemma relates the matrix Ĥ to these two sets of efficiency
constants.



TESTS OF MEAN-VARIANCE SPANNING 149

TABLE 1.

Sizes of Three Asymptotic Tests of Spanning Under Normality

Actual Probabilities of Rejection

K N T W LR LM

2 2 60 0.078 0.063 0.048

120 0.063 0.056 0.049

240 0.056 0.053 0.050

10 60 0.249 0.125 0.037

120 0.126 0.080 0.044

240 0.082 0.063 0.047

25 60 0.879 0.500 0.015

120 0.422 0.185 0.033

240 0.183 0.099 0.042

5 2 60 0.094 0.076 0.059

120 0.069 0.062 0.054

240 0.059 0.056 0.052

10 60 0.315 0.172 0.058

120 0.146 0.095 0.054

240 0.089 0.069 0.052

25 60 0.932 0.638 0.038

120 0.479 0.229 0.047

240 0.203 0.113 0.049

10 2 60 0.126 0.105 0.084

120 0.081 0.073 0.064

240 0.064 0.060 0.057

10 60 0.446 0.279 0.118

120 0.186 0.126 0.075

240 0.103 0.081 0.061

25 60 0.981 0.838 0.146

120 0.579 0.315 0.082

240 0.238 0.138 0.063

The table presents the actual probabilities of rejection
of three asymptotic tests of spanning (Wald (W ), like-
lihood ratio (LR), and Lagrange multiplier (LM)), un-
der the null hypothesis for different values of number of
benchmark assets (K), test assets (N), and time series
observations (T ). The asymptotic p-values of all three
tests are set at 5% based on the asymptotic distribution
of χ2

2N and the actual p-values reported in the table are
based on their finite sample distributions under normal-
ity assumption.

Lemma 2. Let ∆â = â− â1, ∆b̂ = b̂− b̂1, and ∆ĉ = ĉ− ĉ1, we have

Ĥ =

[
∆â ∆b̂

∆b̂ ∆ĉ

]
. (32)
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Since Ĥ summarizes the marginal contribution of the N test assets to
the efficient set of the K benchmark assets, Jobson and Korkie (1989) call
this matrix the “marginal information matrix.” With this lemma, we have

U =
1

|I2 + ĤĜ−1|
=

|Ĝ|
|Ĝ+ Ĥ|

=
(1 + â1)ĉ1 − b̂21

(1 + â)ĉ− b̂2

=
ĉ1 + d̂1

ĉ+ d̂
=

(
ĉ1
ĉ

)1 + d̂1

ĉ1

1 + d̂
ĉ

 , (33)

where d̂ = âĉ − b̂2 and d̂1 = â1ĉ1 − b̂21. Therefore, the F -test of (27) can
be written as

F =

(
T −K −N

N

)(
1

U
1
2

− 1

)

=

(
T −K −N

N

)( √
ĉ√
ĉ1

)
√
1 + d̂

ĉ√
1 + d̂1

ĉ1

− 1

 . (34)

In Figure 1, we plot the ex post minimum-variance frontier of the K bench-
mark assets as well as the frontier for all N +K assets in the (σ̂, µ̂) space.
Denote g1 the ex post global minimum-variance portfolio of the K assets
and g the ex post global minimum-variance portfolio of all N + K asset-
s. It is well known that the standard deviation of g1 and g are 1/

√
ĉ1

and 1/
√
ĉ, respectively. Therefore, the first ratio

√
ĉ/
√
ĉ1 is simply the

ratio of the standard deviation of g1 to that of g, and this ratio is always
greater than or equal to one. To obtain an interpretation of the second

ratio

√
1 + d̂

ĉ

/√
1 + d̂1

ĉ1
, we note that the absolute value of the slopes of

the asymptotes to the efficient set hyperbolae of the K benchmark assets

and of all N + K assets are

√
d̂1/ĉ1 and

√
d̂/ĉ, respectively. Therefore,√

1 + d̂1

ĉ1
is the length of the asymptote to the hyperbola of the K bench-

mark assets from σ̂ = 0 to σ̂ = 1, and

√
1 + d̂

ĉ is the corresponding length
of the asymptote to the hyperbola of the N +K assets. Since the ex post
frontier of the N +K assets dominates the ex post frontier of the K bench-

mark assets, the ratio

√
1 + d̂

ĉ

/√
1 + d̂1

ĉ1
must be greater than or equal to

one. In Figure 1, we can see that for N > 1, the F -test of (27) can be
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geometrically represented as11

F =

(
T −K −N

N

)[(
OD

OC

)(
AH

BF

)
− 1

]
. (36)

Under the null hypothesis, the two minimum-variance frontiers are ex

ante identical, so the two ratios
√
ĉ/
√
ĉ1 and

√
1 + d̂

ĉ

/√
1 + d̂1

ĉ1
should be

close to one and the F -statistic should be close to zero. When either g1 is
far enough from g or the slopes of the asymptotes to the two hyperbolae
are very different, we get a large F -statistic and we will reject the null
hypothesis of spanning.

For the Wald and the Lagrange multiplier tests, mean-variance spanning
is tested by examining different parts of the two minimum-variance fron-
tiers. To obtain a geometrical interpretation of these two test statistics,
we define θ̂1(r) and θ̂(r) as the slope of the tangent lines to the sample
frontier of the K benchmark assets and of all N +K assets, respectively,
when the tangent lines have a y-intercept of r. Also denote µ̂g1 = b̂1/ĉ1
and µ̂g = b̂/ĉ as the sample mean of the ex post global minimum-variance
portfolio of the K benchmark assets and of all N + K assets, respective-
ly. Using these definitions, the Wald and Lagrange multiplier tests can be
represented geometrically as12

λ1 + λ2 =
ĉ− ĉ1
ĉ1

+
θ̂2(µ̂g1)− θ̂21(µ̂g1)

1 + θ̂21(µ̂g1)
=

(
OD

OC

)2

− 1+

(
BE

BF

)2

− 1 (37)

and

λ1

1 + λ1
+

λ2

1 + λ2
=

ĉ− ĉ1
ĉ

+
θ̂2(µ̂g)− θ̂21(µ̂g)

1 + θ̂2(µ̂g)
= 1−

(
OC

OD

)2

+1−
(
AG

AH

)2

.

(38)
From these two expressions and Figure 1, we can see that both theWald and
the Lagrange multiplier test statistics are each the sum of two quantities.
The first quantity measures how close the two ex post global minimum-
variance portfolios g1 and g are, and the second quantity measures how
close together the two tangency portfolios are. However, there is a subtle

11For N = 1, the F -test of (28) can be geometrically represented as

F =

(
T −K − 1

2

)[(
OD

OC

)2 (AH

BF

)2

− 1

]
. (35)

12Note that θ̂21(µ̂g1 ) = d̂1/ĉ1 and θ̂2(µ̂g) = d̂/ĉ and they are just the square of the
slope of the asymptote to the efficient set hyperbolae of the K benchmark assets and of
all N +K assets, respectively.
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FIG. 1. The Geometry of Mean-Variance Spanning Tests
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The figure plots the ex post minimum-variance frontier hyperbola of K
benchmark assets and that of all N + K assets on the (σ̂, µ̂) space.
The constants that determine the hyperbola of K benchmark assets are
â1 = µ̂′

1V̂11µ̂1, b̂1 = µ̂′
1V̂111K , ĉ1 = 1′K V̂111K , and d̂1 = â1ĉ1 − b̂21, where

µ̂1 and V̂11 are maximum likelihood estimates of the expected return and
covariance matrix of the K benchmark assets. The constants that deter-
mine the hyperbola of all N + K assets are â = µ̂′V̂ µ̂, b̂ = µ̂′V̂ 1N+K ,
ĉ = 1′N+K V̂ 1N+K , and d̂ = âĉ − b̂2, where µ̂ and V̂ are maximum likeli-
hood estimates of the expected return and covariance matrix of all N +K
assets. Portfolios g1 and g are the ex post global minimum-variance port-
folios of the two frontiers. The dotted line going through BF is one of the

asymptotes to the hyperbola of K benchmark assets. It has slope −
√

d̂1

ĉ1

and the distance BF is
√
1 + d̂1

ĉ1
. The dotted line going through AH is one

of the asymptotes to the hyperbola of all N +K assets. It has slope

√
d̂
ĉ

and the distance AH is

√
1 + d̂

ĉ . The distance AG is
√
1 + θ̂21(µ̂g) where

θ̂1(µ̂g) is the slope of the tangent line to the frontier of the K benchmark
assets when the y-intercept of the tangent line is µ̂g. The distance BE is√

1 + θ̂2(µ̂g1) where θ̂(µ̂g1) is the slope of the tangent line to the frontier

of all N +K assets when the y-intercept of the tangent line is µ̂g1 .

difference between the two test statistics. For the Wald test, g1 is the
reference point and the test measures how close the sample frontier of the
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N + K assets is to g1 in terms of the increase in the variance of going
from g to g1, and in terms of the improvement of the square of the slope of
the tangent line from introducing N additional test assets, with µ̂g1 as the
y-intercept of the tangent line. For the Lagrange multiplier test, g is the
reference point and the test measures how close the sample frontier of the
K assets is to g in terms of the reduction in the variance of going from g1
to g, and in terms of the reduction of the square of the slope of the tangent
line when using only K benchmark assets instead of all the assets, with
µ̂g as the y-intercept of the tangent line. Such a difference is due to the
Wald test being derived under the unrestricted model but the Lagrange
multiplier test being derived under the restricted model.

3. POWER ANALYSIS OF SPANNING TESTS

3.1. Single Test Asset

In the mean-variance spanning literature, there are many applications
and studies of HK’s likelihood ratio test. However, not much has been
done on the power of this test. GRS consider the lack of power analysis as
a drawback of HK test of spanning. Since the likelihood ratio test is not in
general the uniformly most powerful invariant test, it is important for us
to understand the power of all three tests.

We should first emphasize that although in finite samples we have the
inequality W ≥ LR ≥ LM , this inequality by no means implies the Wald
test is more powerful than the other two. This is because the inequality
holds even when the null hypothesis is true. Hence, the inequality simply
suggests that the tests have different sizes when we use their asymptotic
χ2
2N distribution. In evaluating the power of these three tests, it is impor-

tant for us to ensure that all of them have the correct size under the null
hypothesis. Therefore, the acceptance/rejection decisions of the three tests
must be based on their exact distributions but not on their asymptotic χ2

2N

distribution. It also deserves emphasis that the distributions of the three
tests under the alternative are conditional on Ĝ, i.e., conditional on the
realizations of the ex post frontier of K benchmark assets. Thus, similar
to GRS, we study the power functions of the three tests conditional on a
given value of Ĝ, not the unconditional power function.

When there is only one test asset (i.e., N = 1), all three tests are increas-
ing transformations of the F -test in (28). For this special case, the power
analysis is relatively simple to perform because it can be shown that this
F -test has the following noncentral F -distribution under the alternative
hypothesis

(
1

U
− 1

)(
T −K − 1

2

)
∼ F2,T−K−1(Tω), (39)
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where Tω is the noncentrality parameter and ω = (Θ′Ĝ−1Θ)/σ2, with σ2

representing the variance of the residual of the test asset. Geometrically,
ω can be represented as13

ω =

[
c− c1
ĉ1

+
θ2(µ̂g1)− θ21(µ̂g1)

1 + θ̂21(µ̂g1)

]
, (40)

where c1 = 1′KV −1
11 1K and c = 1′N+KV −11N+K are the population coun-

terparts of the efficient set constants ĉ1 and ĉ, and θ1(µ̂g1) and θ(µ̂g1) are
the slope of the tangent lines to the ex ante frontiers of the K benchmark
assets, and of all N + K assets, respectively, with the y-intercept of the
tangent lines as µ̂g1 .

In Figure 2, we present the power of the F -test as a function of ω∗ =
Tω/(T −K − 1) for T −K = 60, 120, and 240, when the size of the test is
5%. It shows that the power function of the F -test is an increasing function
of T −K and ω∗ and this allows us to determine what level of ω∗ that we
need to reject the null hypothesis with a certain probability. For example,
if we wish the F -test to have at least a 50% probability of rejecting the
spanning null hypothesis, then we need ω∗ to be greater than 0.089 for
T −K = 60, 0.043 for T −K = 120, and 0.022 for T −K = 240.

Note that ω is the sum of two terms. The first term measures how close
the ex ante global minimum-variance portfolios of the two frontiers are in
terms of the reciprocal of their variances. The second term measures how
close the ex ante tangency portfolios of the two frontiers are in terms of
the square of the slope of their tangent lines.

In determining the power of the test, the distance between the two global
minimum-variance portfolios is in practice a lot more important than the
distance between the two tangency portfolios. We provide an example
to illustrate this. Consider the case of two benchmark assets (i.e., K =
2), chosen as the equally weighted and value-weighted market portfolio of
the NYSE.14 Using monthly returns from 1926/1–2006/12, we estimate µ̂1

and V̂11 and we have µ̂g1 = b̂1/ĉ1 = 0.0074, σ̂g1 = 1/
√
ĉ1 = 0.048, and

θ̂1(µ̂g1) = 0.0998. We plot the ex post minimum-variance frontier of these
two benchmark assets in Figure 3. Suppose we take this frontier as the ex
ante frontier of the two benchmark assets and consider the power of the F -
test for two different cases. In the first case, we consider a test asset that
slightly reduces the standard deviation of the global minimum-variance
portfolio from 4.8%/month to 4.5%/month. This case is represented by
the dotted frontier in Figure 3. Although geometrically this asset does not
improve the opportunity set of the two benchmark assets by much, the

13The derivation of this expression is similar to that of (37) and therefore not provided.
14This example was also used by Kandel and Stambaugh (1989).
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FIG. 2. Power Function of Mean-Variance Spanning Test with Single Test Asset
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The figure plots the probability of rejecting the null hypothesis of mean-
variance spanning as a function of ω∗ for three different values of T − K
(the number of time series observations minus the number of benchmark
assets), when there is only one test asset and the size of the test is 5%.
The spanning test is an F -test, which has a central F -distribution with 2
and T − K − 1 degrees of freedom under the null hypothesis, and has a
noncentral F -distribution with 2 and T − K − 1 degrees of freedom with
noncentrality parameter (T −K − 1)ω∗ under the alternatives.

ω for this test asset is 0.1610 (with 0.1574 coming from the first term).
Based on Figure 2, this allows us to reject the null hypothesis with a 79%
probability for T − K = 60, and the probability of rejection goes up to
almost one for T − K = 120 and 240. In the second case, we consider
a test asset that does not reduce the variance of the global minimum-
variance portfolio but doubles the slope of the asymptote of the frontier
from 0.0998 to 0.1996. This case is represented by the outer solid frontier in
Figure 3. While economically this test asset represents a great improvement
in the opportunity set, its ω is only 0.0299 and the F -test does not have
much power to reject the null hypothesis. From Figure 2, the probability
of rejecting the null hypothesis is only 20% for T − K = 60, 37% for
T −K = 120, and 66% for T −K = 240.

It is easy to explain why the F -test has strong power rejecting the span-
ning hypothesis for a test asset that can improve the variance of the global
minimum-variance portfolio but little power for a test asset that can only
improve the tangency portfolio. This is because the sampling error of the
former is in practice much less than that of the latter. The first term of ω
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involves c − c1 = 1′N+KV −11N+K − 1′KV −1
11 1K which is determined by V

but not µ. Since estimates of V are in general a lot more accurate than es-
timates of µ (see Merton (1980)), even a small difference in c and c1 can be
detected and hence the test has strong power to reject the null hypothesis
when c ̸= c1. However, the second term of ω involves θ2(µ̂g1) − θ21(µ̂g1),
which is difficult to estimate accurately as it is determined by both µ and V .
Therefore, even when we observe a large difference in the sample measure
θ̂2(µ̂g1) − θ̂21(µ̂g1), it is possible that such a difference is due to sampling
errors rather than due to a genuine difference. As a result, the spanning
test has little power against alternatives that only display differences in the
tangency portfolio but not in the global minimum-variance portfolio.

FIG. 3. Minimum-Variance Frontier of Two Benchmark Assets
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The figure plots the minimum-variance frontier hyperbola of two bench-
mark assets in the (σ, µ) space. The two benchmark assets are the value-
weighted (VW) and equally weighted (EW) portfolios of the NYSE. g1
is the global minimum-variance portfolio and the two dashed lines are the
asymptotes to the efficient set parabola. The frontier of the two benchmark
assets is estimated using monthly data from the period 1926/1–2006/12.
The figure also presents two additional frontiers for the case that a test as-
set is added to the two benchmark assets. The dotted frontier is for a test
asset that improves the standard deviation of the global minimum-variance
portfolio from 4.8%/month to 4.5%/month. The outer solid frontier is for
a test asset that does not improve the global minimum-variance portfolio
but doubles the slope of the asymptote from 0.0998 to 0.1996.
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3.2. Multiple Test Assets

The calculation for the power of the spanning tests is extremely difficult
when N > 1. For example, even though the F -test in (27) has a central
F -distribution under the null, it does not have a noncentral F -distribution
under the alternatives. To study the power of the three tests for N > 1,
we need to understand the distribution of the two eigenvalues, λ1 and λ2,
of the matrix ĤĜ−1 under the alternatives. In this subsection, we provide
first the exact distribution of λ1 and λ2 under the alternative hypothesis,
then a simulation approach for computing the power in small samples, and
finally examples illustrating the power under various alternatives.

Denote ω1 ≥ ω2 ≥ 0 the two eigenvalues of HĜ−1 where H = ΘΣ−1Θ′

is the population counterpart of Ĥ. The joint density of λ1 and λ2 can be
written as

f(λ1, λ2) = e−
T (ω1+ω2)

2 1F1

(
T −K + 1

2
;
N

2
;
D

2
, L(I2 + L)−1

)
×

N − 1

4B(N,T −K −N)

[
2∏

i=1

λ
N−3

2
i

(1 + λi)
T−K+1

2

]
(λ1 − λ2), (41)

for λ1 ≥ λ2 ≥ 0, where L = Diag(λ1, λ2), 1F1 is the hypergeometric
function with two matrix arguments, and D = Diag(Tω1, Tω2). Under the
null hypothesis, the joint density function of λ1 and λ2 simplifies to

f(λ1, λ2) =
N − 1

4B(N,T −K −N)

[
2∏

i=1

λ
N−3

2
i

(1 + λi)
T−K+1

2

]
(λ1 − λ2). (42)

To understand why λ1 and λ2 are essential in testing the null hypothesis,
note that the null hypothesis H0 : Θ = 02×N can be equivalently written
as H0 : ω1 = ω2 = 0. This is because HĜ−1 is a zero matrix if and only
if H is a zero matrix, and this is true if and only if Θ = 02×N since Σ is
nonsingular. Therefore, tests of H0 can be constructed using the sample
counterparts of ω1 and ω2, i.e., λ1 and λ2. In theory, distributions of all
functions of λ1 and λ2 can be obtained from their joint density function
(41). However, the resulting expression is numerically very difficult to
evaluate under alternative hypotheses because it involves the evaluation of
a hypergeometric function with two matrix arguments. Instead of using
the exact density function of λ1 and λ2, the following proposition helps
us to obtain the small sample distribution of functions of λ1 and λ2 by
simulation.

Proposition 1. λ1 and λ2 have the same distribution as the eigenval-
ues of AB−1 where A ∼ W2(N, I2, D) and B ∼ W2(T − K − N + 1, I2),
independent of A.
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With this proposition, we can simulate the exact sampling distribution
of any functions of λ1 and λ2 as long as we can generate two random
matrices A and B from the noncentral and central Wishart distributions,
respectively. In the proof of Proposition 1 (in the Appendix), we give
details on how to do so by drawing a few observations from the chi-squared
and the standard normal distributions.

Before getting into the specific results, we first make some general obser-
vations on the power of the three tests. It can be shown that the power is a
monotonically increasing function in Tω1 and Tω2.

15 This implies that, as
expected, the power is an increasing functions of T . The more interesting
question is how the power is determined for a fixed T . For such an analysis,
we need to understand what the two eigenvalues of HĜ−1, ω1 and ω2, rep-
resent. The proof of Lemma 2 works also for the population counterparts
of Ĥ, so we can write

H =

[
∆a ∆b
∆b ∆c

]
=

[
a− a1 b− b1
b− b1 c− c1

]
, (43)

where a = µ′V −1µ, b = µ′V −11N+K , c = 1′N+KV −11N+K , a1 = µ′
1V

−1
11 µ1,

b1 = µ′
1V

−1
11 1K , and c1 = 1′KV −1

11 1K are the population counterparts of
the efficient set constants. Therefore, H is a measure of how far apart
the ex ante minimum-variance frontier of K benchmark assets is from the
ex ante minimum-variance frontier of all N +K assets. Conditional on a
given value of Ĝ, the further apart the two frontiers, the bigger the H, the
bigger the ω1 and ω2, and the more powerful the three tests. However, for
a given value of H, the power also depends on Ĝ, which is a measure of the
ex post frontier of K benchmark assets. The better is the ex post frontier
of K benchmark assets, the bigger the Ĝ, and the less powerful the three
tests. This is expected because if Ĝ is large, we can see from (18) that the
estimates of α and δ will be imprecise and hence it is difficult to reject the
null hypothesis even though it is not true.

In Figure 4, we present the power of the likelihood ratio test as a function
of ω∗

1 = Tω1/(T −K − 1) and ω∗
2 = Tω2/(T −K − 1) for N = 2 and 10,

and for T − K = 60 and 120, when the size of the test is 5%. Figure 4
shows that for fixed ω∗

1 and ω∗
2 , the power of the likelihood ratio test is

an increasing function of T −K and a decreasing function of N . The fact
that the power of the test is a decreasing function of N does not imply
we should use fewer test assets to test the spanning hypothesis. It only

15It is possible for the Lagrange multiplier test that its power function is not mono-
tonically increasing in Tω1 and Tω2 when the sample size is very small. (See Perlman
(1974) for a discussion of this.) However, for the usual sample sizes and significance
levels that we consider, this problem will not arise.
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suggests that if the additional test assets do not increase ω1 and ω2 (i.e.,
the additional test assets do not improve the frontier), then increasing the
number of test assets will reduce the power of the test. However, if the
additional test assets can improve the frontier, then it is possible that the
power of the test can be increased by using more test assets.

FIG. 4. Power Function of Likelihood Ratio Test
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The figure plots the probability of rejecting the null hypothesis of mean-
variance spanning as a function of ω∗

1 and ω∗
2 using the likelihood ratio test

when the size of the test is 5%, where (T −K−1)ω∗
1 and (T −K−1)ω∗

2 are
the eigenvalues of the noncentrality matrix THĜ−1. The four plots are for
two different values of N (number of test assets) and two different values
of T −K (number of time series observations minus number of benchmark
assets). The likelihood ratio test is an F -test, which has a central F -
distribution with 2N and 2(T −K −N) degrees of freedom under the null
hypothesis.

The plots for the power function of the Wald and the Lagrange multiplier
tests are very similar to those of the likelihood ratio test, so we do not
report them separately. For the purpose of comparing the power of these
three tests, we report in Table 2 the probability of rejection of the three
tests for N = 10 and T − K = 60 under different values of ω∗

1 and ω∗
2 .

Although the difference in the power between the three tests is not large,
a pattern emerges. When ω2 ≈ 0, the Wald test is the most powerful
among the three. However, when ω1 ≈ ω2, the Lagrange multiplier test
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is more powerful than the other two. There are only a few cases where
the likelihood ratio test is the most powerful one. The pattern that we
observe in Table 2 holds for other values of N and T − K. Therefore,
which test is more powerful depends on the relative magnitude of ω1 and
ω2. The following lemma presents two extreme cases that help to identify
alternative hypotheses with ω2 ≈ 0 or ω1 ≈ ω2.

Lemma 3. Define

µz = argmin
r

[
θ2(r)− θ21(r)

]
=

∆b

∆c
. (44)

Under alternative hypotheses, we have (i) ω2 = 0 if and only if c = c1 or
θ2(µz) = θ21(µz), (ii) ω1 = ω2 if and only if

c− c1
ĉ1

=
θ2(µz)− θ21(µz)

1 + θ̂21(µz)
. (45)

The first part of the lemma suggests that when there is a point at which
the two ex ante minimum-variance frontiers are very close, then we have
ω2 ≈ 0. The second part of the lemma suggests that if the percentage
reduction of the inverse of the variance of the global minimum-variance
portfolio is roughly the same as the percentage increase in one plus the
square of the slope of the tangent line (when the y-intercept of the tangent
line is µz), then we will have ω1 ≈ ω2.

As discussed earlier in the single test asset case, the effect of a small
improvement of the standard deviation of the global minimum-variance
portfolio is more important than the effect of a large increase in the slope
of the tangent lines. Therefore, if we believe that the test assets could
allow us to reduce the standard deviation of the global minimum-variance
portfolio by even a small amount under the alternative hypothesis, then
we should expect ω1 to dominate ω2 and the Wald test should be slightly
more powerful than the other two tests.

4. A STEP-DOWN TEST

For reasonable alternative hypotheses, as shown earlier, the distance be-
tween the standard deviations of the two global minimum-variance port-
folios is the primary determinant of the power of the three spanning tests
whereas the distance between the two tangency portfolios is relatively u-
nimportant. This is expected because the test of spanning is a joint test of
α = 0N and δ = 0N and it weighs the estimates α̂ and δ̂ according to their
statistical accuracy. Since δ does not involve µ (recall that δ is propor-
tional to the weights of the N test assets in the global minimum-variance
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TABLE 2.

Comparison of Power of Three Tests of Spanning Under Normality

Likelihood Ratio Test

ω∗
2 = 0.0 ω∗

2 = 0.3 ω∗
2 = 0.6 ω∗

2 = 0.9 ω∗
2 = 1.2 ω∗

2 = 1.5

ω∗
1 = 0.0 0.0500

ω∗
1 = 0.3 0.0823 0.1251

ω∗
1 = 0.6 0.1226 0.1752 0.2338

ω∗
1 = 0.9 0.1724 0.2307 0.2952 0.3612

ω∗
1 = 1.2 0.2260 0.2913 0.3596 0.4257 0.4913

ω∗
1 = 1.5 0.2834 0.3533 0.4228 0.4897 0.5533 0.6127

Wald Test

ω∗
2 = 0.0 ω∗

2 = 0.3 ω∗
2 = 0.6 ω∗

2 = 0.9 ω∗
2 = 1.2 ω∗

2 = 1.5

ω∗
1 = 0.0 0.0500

ω∗
1 = 0.3 0.0825 0.1243

ω∗
1 = 0.6 0.1241 0.1735 0.2292

ω∗
1 = 0.9 0.1739 0.2289 0.2901 0.3546

ω∗
1 = 1.2 0.2299 0.2905 0.3547 0.4193 0.4834

ω∗
1 = 1.5 0.2902 0.3538 0.4195 0.4829 0.5450 0.6042

Lagrange Multiplier Test

ω∗
2 = 0.0 ω∗

2 = 0.3 ω∗
2 = 0.6 ω∗

2 = 0.9 ω∗
2 = 1.2 ω∗

2 = 1.5

ω∗
1 = 0.0 0.0500

ω∗
1 = 0.3 0.0820 0.1260

ω∗
1 = 0.6 0.1216 0.1754 0.2362

ω∗
1 = 0.9 0.1685 0.2314 0.2981 0.3650

ω∗
1 = 1.2 0.2199 0.2902 0.3617 0.4296 0.4962

ω∗
1 = 1.5 0.2731 0.3496 0.4234 0.4930 0.5589 0.6195

The table presents the probabilities of rejection of Wald, likelihood ratio, and La-
grange multiplier tests of spanning in 100,000 simulations under the alternative hy-
potheses when the number of test assets (N) is equal to 10 and the number of time
series observations less the number of benchmark assets (T −K) is equal to 60. The
size of the tests is set at 5% and the alternative hypotheses are summarized by two
measures ω∗

1 and ω∗
2 , where (T −K − 1)ω∗

1 and (T −K − 1)ω∗
2 are the eigenvalues of

the noncentrality matrix THĜ−1. Numbers that are boldfaced indicate the test has
the highest power among the three tests.

portfolio of all N + K assets), it can be estimated a lot more accurately

than α. Therefore, tests of spanning inevitably place heavy weights on δ̂
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and little weights on α̂. Although this practice is natural from a statisti-
cal point of view, it does not take into account the economic significance
of the departure from the spanning hypothesis. A small difference in the
global minimum-variance portfolios, while statistically significant, is not
necessarily economically important. On the other hand, a big difference
in the tangency portfolios can be of great economic importance, but this
importance is difficult to detect statistically.

The fact that statistical significance does not always correspond to e-
conomic significance for the three spanning tests suggests that researchers
need to be cautious in interpreting the p-values of these tests. A low p-value
does not always imply that there is an economically significant difference
between the two frontiers, and a high p-value does not always imply that
the test assets do not add much to the benchmark assets. To mitigate this
problem, we suggest researchers should examine the two components of the
spanning hypothesis (α = 0N and δ = 0N ) individually instead of joint-
ly. Such a practice could allow us to better assess the statistical evidence
against the spanning hypothesis.

To be more specific, we suggest the following step-down procedure to
test the spanning hypothesis.16 This procedure is potentially more flexible
and provides more information than the three tests discussed earlier.

The step-down procedure is a sequential test. We first test α = 0N ,
and then test δ = 0N but conditional on the constraint α = 0N . To test
α = 0N , similar to the GRS F -test, denote

F1 =

(
T −K −N

N

)(
|Σ̄|
|Σ̂|

− 1

)
=

(
T −K −N

N

)(
â− â1
1 + â1

)
, (46)

where Σ̂ is the unconstrained estimate of Σ and Σ̄ is the constrained es-
timate of Σ by imposing only the constraint of α = 0N . Under the null
hypothesis, F1 has a central F -distribution with N and T −K−N degrees
of freedom. Now to test δ = 0N conditional α = 0N , we use the following
F -test

F2 =

(
T −K −N + 1

N

)(
|Σ̃|
|Σ̄|

− 1

)

=

(
T −K −N + 1

N

)[(
ĉ+ d̂

ĉ1 + d̂1

)(
1 + â1
1 + â

)
− 1

]
, (47)

16See Section 8.4.5 of Anderson (1984) for a discussion of the step-down procedure.
It should be noted that the step-down procedure there applies to each of the test assets
but not to each component of the hypothesis as in our case.
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where Σ̃ is the constrained estimate of Σ by imposing both the constraints
of α = 0N and δ = 0N . In the Appendix, we show that under the null
hypothesis, F2 has a central F -distribution with N and T − K − N + 1
degrees of freedom, and it is independent of F1.

Suppose the level of significance of the first test is α1 and that of the
second test is α2. Under the step-down procedure, we will accept the
spanning hypothesis if we accept both tests. Therefore, the significance
level of this step-down test is 1 − (1 − α1)(1 − α2) = α1 + α2 − α1α2.

17

There are two benefits of using this step-down test. The first is that we can
get an idea of what is causing the rejection. If the rejection is due to the first
test, we know it is because the two tangency portfolios are statistically very
different. If the rejection is due to the second test, we know the two global
minimum-variance portfolios are statistically very different. The second
benefit is flexibility in allocating different significance levels to the two tests
based on their relative economic significance. For example, knowing that it
does not take a big difference in the two global minimum-variance portfolio
to reject δ = 0N at the traditional significance level of 5%, we may like to set
α2 to a smaller number so that it takes a bigger difference in the two global
minimum-variance portfolios for us to reject this hypothesis. Contrary to
the three traditional tests that permit the statistical accuracy of α̂ and δ̂ to
determine the relative importance of the two components of the hypothesis,
the step-down procedure could allow us to adjust the significance levels
based on the economic significance of the two components. Such a choice
could result in a power function that is more sensible than those of the
traditional tests.

To illustrate the step-down procedure, we return to our earlier example
of two benchmark assets in Figure 3. For T −K = 60 and a level of signif-
icance of 5%, we show that the three traditional tests reject the spanning
hypothesis with probability 0.79 for a test asset that merely reduces the
standard deviation of the global minimum-variance portfolio from 4.8% to
4.5%, whereas for a test asset that doubles the slope of the asymptote from
0.0998 to 0.1996, the three tests can only reject with probability 0.20. In
Table 3, we provide the power function of the step-down test for these two
cases, using different values of α1 and α2 while keeping the significance
level of the test at 5%.18 For different values of α1 and α2, the step-down
test has different power in rejecting the spanning hypothesis. However, in
order for the step-down test to be more powerful in rejecting the test asset
that doubles the slope of the asymptote, we need to set α2 to be less than

17Alternatively, one can reverse the order by first testing δ = 0N and then testing
α = 0N conditional on δ = 0N . In choosing the ordering of the tests, the natural choice
is to test the more important component first.

18Under the alternative hypotheses, F1 and F2 are not independent. Details on the
computation of the power of the step-down test are available upon request.
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0.0001. Note that if we wish to accomplish roughly the same power as the
traditional tests, all we need to do is to set α1 = α2 = 0.02532. While
choosing the appropriate α1 and α2 is not a trivial task, it is far better
to be able to have control over them than to leave them determined by
statistical considerations alone.

5. TESTS OF MEAN-VARIANCE SPANNING UNDER
NONNORMALITY

5.1. Conditional Homoskedasticity

Exact small sample tests are always preferred if they are available. The
normality assumption is made so far to derive the small sample distribu-
tions. These results also serve as useful benchmarks for the general non-
normality case. In this section, we present the spanning tests under the
assumption that the disturbance ϵt in (9) is nonnormal. There are two cas-
es of nonnormality to consider. The first case is when ϵt is nonnormal but it
is still independently and identically distributed when conditional on R1t.
The second case is when the variance of ϵt can be time-varying as a function
of R1t, i.e., the disturbance ϵt exhibits conditional heteroskedasticity.

For the first case that ϵt is conditionally homoskedastic, the three tests,
(23)–(26), are still asymptotically χ2

2N distributed under the null hypoth-
esis, but their finite sample distributions will not be the same as the ones
presented in Section II. Nevertheless, those results can still provide a very
good approximation for the small sample distribution of the nonnormality
case. To illustrate this, we simulate the returns on the test assets under
the null hypothesis but with ϵt independently drawn from a multivariate
Student-t distribution with five degrees of freedom.19 In Table 4, we present
the actual probabilities of rejection of the three tests in 100,000 simulation-
s, for different values of K, N , and T , when the rejection decision is based
on the 95th percentile of the exact distribution under the normality case.
As we can see from Table 4, even when ϵt departs significantly from nor-
mality, the small sample distribution derived for the normality case still
works amazingly well. Our findings are very similar to those of MacKinlay
(1985) and Zhou (1993), in which they find that when ϵt is conditionally
homoskedastic, nonnormality of ϵt has little impact on the finite sample
distribution of the GRS test even for T as small as 60. Therefore, if one
believes conditional homoskedasticity is a good working assumption, one
should not hesitate to use the small sample version of the three tests de-

19Due to the invariance property, it can be shown that the joint distribution of λ1

and λ2 does not depend on Σ when ϵt has a multivariate elliptical distribution. Details
are available upon request.
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TABLE 3.

Power of Step-Down Test of Spanning Under Normality

Probability of Rejection

Significance Levels ∆a = 0.0299 ∆a,∆b = 0

α1 α2 ∆b,∆c = 0 ∆c = 67.16

0.00000 0.05000 0.05117 0.87457

0.02532 0.02532 0.19930 0.80914

0.04040 0.01000 0.23996 0.70256

0.04905 0.00100 0.25889 0.42230

0.04914 0.00090 0.25908 0.41071

0.04924 0.00080 0.25927 0.39798

0.04933 0.00070 0.25946 0.38385

0.04943 0.00060 0.25966 0.36794

0.04952 0.00050 0.25985 0.34971

0.04962 0.00040 0.26004 0.32829

0.04971 0.00030 0.26023 0.30217

0.04981 0.00020 0.26041 0.26823

0.04990 0.00010 0.26060 0.21800

0.04995 0.00005 0.26070 0.17710

0.04996 0.00004 0.26071 0.16578

0.04997 0.00003 0.26073 0.15240

0.04998 0.00002 0.26075 0.13574

0.04999 0.00001 0.26077 0.11254

0.05000 0.00000 0.26068 0.05000

The table presents the probabilities of rejection of step-
down test for two different alternatives, conditional on
the frontier of two benchmark assets is given in Figure 3.
The first alternative (∆a = 0.0299) is a test asset that
doubles the slope of the asymptote to the efficient hy-
perbola of the two benchmark assets. The second al-
ternative (∆c = 67.16) is a test asset that reduces the
standard deviation of the global minimum-variance port-
folio of the two benchmark assets from 4.8%/month to
4.5%/month. The step-down test is a sequential test.
The first test is an F -test on α = 0N and the second
test is an F -test of δ = 0N conditional on the restric-
tion of α = 0N . The null hypothesis of spanning is only
accepted if we accept both tests. α1 and α2 are the
significance levels for the first and the second F -test,
respectively. The number of time series observations is
62.

rived in Section II even though ϵt does not have a multivariate normal
distribution.20

20For some distributions of ϵt, Dufour and Khalaf (2002) provide a simulation based
method to construct finite sample tests in multivariate regressions. Their methodology
can be used to obtain exact tests of spanning under multivariate elliptical errors.
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TABLE 4.

Sizes of Small Sample Tests of Spanning Under Nonnormality of Residuals

Actual Probabilities of Rejection

K N T W LR LM

2 2 60 0.048 0.048 0.048

120 0.049 0.050 0.050

240 0.051 0.051 0.051

10 60 0.047 0.047 0.047

120 0.046 0.046 0.046

240 0.047 0.049 0.050

25 60 0.046 0.047 0.047

120 0.046 0.046 0.046

240 0.047 0.048 0.048

5 2 60 0.049 0.048 0.048

120 0.051 0.051 0.051

240 0.051 0.051 0.051

10 60 0.047 0.047 0.047

120 0.048 0.048 0.048

240 0.049 0.049 0.048

25 60 0.046 0.046 0.047

120 0.046 0.046 0.046

240 0.048 0.048 0.048

10 2 60 0.050 0.049 0.049

120 0.049 0.049 0.049

240 0.051 0.051 0.051

10 60 0.048 0.048 0.048

120 0.049 0.049 0.049

240 0.049 0.049 0.049

25 60 0.048 0.048 0.048

120 0.047 0.047 0.047

240 0.047 0.047 0.047

The table presents the probabilities of rejection of Wald (W ), like-
lihood ratio (LR), and Lagrange multiplier (LM) tests of spanning
under the null hypothesis when the residuals follow a multivariate
Student-t distribution with five degrees of freedom. The rejection
decision is based on 95th percentile of their exact distributions un-
der normality and the results for different values of the number of
benchmark assets (K), test assets (N), and time series observa-
tions (T ) are based on 100,000 simulations.
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5.2. Conditional Heteroskedasticity

When ϵt exhibits conditional heteroskedasticity, the earlier three test
statistics, (23)–(26), will no longer be asymptotically χ2

2N distributed under
the null hypothesis.21 In this case, Hansen’s (1982) GMM is the common
viable alternative that relies on the moment conditions of the model. In
this subsection, we present the GMM tests of spanning under the regression
approach. This is the approach used by Ferson, Foerster, and Keim (1993).

Define xt = [1, R′
1t]

′, ϵt = R2t − B′xt, the moment conditions used by
the GMM estimation of B are

E[gt] = E[xt ⊗ ϵt] = 0(K+1)N . (48)

We assume Rt is stationary with finite fourth moments. The sample mo-
ments are given by

ḡT (B) =
1

T

T∑
t=1

xt ⊗ (R2t −B′xt) (49)

and the GMM estimate of B is obtained by minimizing ḡT (B)′S−1
T ḡT (B)

where ST is a consistent estimate of S0 = E[gtg
′
t], assuming serial uncor-

relatedness of gt. Since the system is exactly identified, the unconstrained
estimate B̂, and hence Θ̂, does not depend on ST and remains the same as
their OLS estimates in Section II. The GMM version of the Wald test can
be written as

Wa = Tvec(Θ̂′)′ [(AT ⊗ IN )ST (A
′
T ⊗ IN )]

−1
vec(Θ̂′)

A∼ χ2
2N , (50)

where

AT =

[
1 + â1 −µ̂1V̂

−1
11

b̂1 −1′K V̂ −1
11

]
. (51)

Since both the model and the constraints are linear, Newey andWest (1987)
show that the GMM version of the likelihood ratio test and the Lagrange
multiplier test have exactly the same form as the Wald test, even though
one needs the constrained estimate of B to calculate the likelihood ratio
and Lagrange multiplier tests. Therefore, all three tests are numerically
identical if they use the same ST . In practice, different estimates of ST are
often used for the Wald test and the Lagrange multiplier test. For the case
of the Wald test, ST is computed using the unconstrained estimate of B
whereas for the Lagrange multiplier test, ST is usually computed using the

21It can be shown that under the null hypothesis, the asymptotic distribution of the
three test statistics is a linear combination of 2N independent χ2

1 random variables.
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constrained estimate of B. Since the constrained estimate of B depends
on the choice of ST , a two-stage or an iterative approach is often used
for performing the Lagrange multiplier test. Despite using different ST ,
the two tests are still asymptotically equivalent under the null hypothesis.
For the rest of this section, we focus on the GMM Wald test because its
analysis does not require a specification of the initial weighting matrix and
the number of iterations.

5.3. A Specific Example: Multivariate Elliptical Distribution

To study the potential impact of conditional heteroskedasticity on test-
s of spanning, we look at the case that the returns have a multivariate
elliptical distribution. Under this class of distributions, the conditional
variance of ϵt is in general not a constant, but a function of R1t, unless the
returns are multivariate normally distributed. The use of the multivariate
elliptical distribution to model returns can be motivated both empirically
and theoretically. Empirically, Mandelbrot (1963) and Fama (1965) find
that normality is not a good description for stock returns because stock
returns tend to have excess kurtosis compared with the normal distribu-
tion. This finding has been supported by many later studies, including
Blatteberg and Gonedes (1974), Richardson and Smith (1993) and Zhou
(1993). Since many members in the elliptical distribution like the multi-
variate Student-t distribution can have excess kurtosis, one could better
capture the fat-tail feature of stock returns by assuming that the returns
follow a multivariate elliptical distribution. Theoretically, we can justify
the choice of multivariate elliptical distribution because it is the largest
class of distributions for which mean-variance analysis is consistent with
expected utility maximization.

For our purpose, the choice of multivariate elliptical distribution is ap-
pealing because the GMM Wald test has a simple analytical expression in
this case. This analytical expression allows for simple analysis of the GMM
Wald tests under conditional heteroskedasticity. The following proposition
summarizes the results.22

Proposition 2. Suppose Rt is independently and identically distributed
as a non-degenerate multivariate elliptical distribution with finite fourth
moments. Define its kurtosis parameter as

κ =
E[((Rt − µ)′V −1(Rt − µ))2]

(N +K)(N +K + 2)
− 1. (52)

22We thank Chris Geczy for suggesting the use of kurtosis parameter in this proposi-
tion. See Geczy (1999) for a similar conditional heteroskedasticity adjustment for tests
of mean-variance efficiency under elliptical distribution.
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Then the GMM Wald test of spanning is given by

W e
a = T tr(ĤĜ−1

a )
A∼ χ2

2N , (53)

where Ĥ defined in (22) and

Ĝa =

[
1 + (1 + κ̂)â1 (1 + κ̂)b̂1

(1 + κ̂)b̂1 (1 + κ̂)ĉ1

]
, (54)

where κ̂ is a consistent estimate of κ.23

We use the notation W e
a here to indicate that this GMM Wald test is

only valid when Rt has a multivariate elliptical distribution, whereas the
GMM Wald test Wa in (50) is valid for all distributions of Rt. Note that
when returns exhibit excess kurtosis, Ĝa − Ĝ is a positive definite matrix,
so the regular Wald test W = T tr(ĤĜ−1) is greater than the GMM Wald
test W e

a .
24 Since Ĝa − Ĝ does not go to zero asymptotically when κ > 0,

using the regular Wald test W will lead to over-rejection problem when
returns follow a multivariate elliptical distribution with excess kurtosis. In
the following, we study a popular member of the multivariate elliptical dis-
tribution: the multivariate Student-t distribution.25 To assess the impact
of the multivariate Student-t distribution on tests of spanning, we perfor-
m a simulation experiment using the same two benchmark assets given in
Figure 3. For different choices of N , we simulate returns of the benchmark
assets and the test assets jointly from a multivariate Student-t distribu-
tion with mean and variance satisfying the null hypothesis. In Table 5,
we present the actual size of the regular Wald test W and the two GMM
Wald tests Wa and W e

a , when the significance level of the tests is 5%. The
results are presented for two different values of degrees of freedom for the
multivariate Student-t distribution, ν = 5 and 10.

As we can see from Table 5, the regular Wald tests reject far too of-
ten. The over-rejection problem is severe when N is large and when the
degrees of freedom are small. In addition, the over-rejection problem does
not go away as T increases. For the GMM Wald test under the elliptical
distribution (W e

a ), it works reasonably well except when N is large and
T is small, and its probability of rejection gets closer to the size of the

23In our empirical work, we use the biased-adjusted estimate of the kurtosis parameter
developed by Seo and Toyama (1996).

24It can be shown that −2/(N+K+2) < κ < ∞ for multivariate elliptical distribution

with finite fourth moments. Therefore, Ĝa cannot be too much smaller than Ĝ when
the total number of assets (N + K) is large, but Ĝa can be much bigger than Ĝ when
the return distribution has fat tails.

25For multivariate Student t-distribution with ν degrees of freedom, we have κ =
2/(ν − 4).
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TABLE 5.

Sizes of Spanning Tests Under Multivariate Student-t Returns

Actual Probabilities of Rejection Average Average

N T W Wa W e
a W/Wa W/W e

a

Degrees of Freedom = 5

2 60 0.195 0.166 0.091 1.141 1.474

120 0.197 0.113 0.078 1.305 1.564

240 0.204 0.084 0.070 1.452 1.648

10 60 0.555 0.832 0.231 0.685 1.424

120 0.469 0.536 0.112 0.962 1.519

240 0.459 0.309 0.073 1.191 1.609

25 60 0.979 1.000 0.844 0.138 1.386

120 0.851 0.995 0.346 0.569 1.480

240 0.756 0.870 0.137 0.892 1.570

Degrees of Freedom = 10

2 60 0.116 0.134 0.090 1.003 1.136

120 0.101 0.090 0.071 1.070 1.148

240 0.095 0.070 0.063 1.113 1.156

10 60 0.373 0.747 0.243 0.677 1.142

120 0.239 0.399 0.121 0.878 1.155

240 0.183 0.201 0.079 0.998 1.162

25 60 0.942 1.000 0.871 0.157 1.136

120 0.636 0.982 0.402 0.583 1.151

240 0.406 0.724 0.172 0.826 1.160

The table presents the probabilities of rejection of using regular Wald test
(W ) and two GMM Wald tests (Wa and W e

a ) of spanning under the null
hypothesis when the returns follow a multivariate Student-t distribution with
five and with ten degrees of freedom. The number of benchmark assets is two
and they are chosen to have the same characteristics as the value-weighted
and equally weighted market portfolios of the NYSE. The rejection decisions
of the Wald tests are based on 95th percentile of χ2

2N . The table also presents
the average ratios of the regular Wald tests to the GMM Wald tests. Results
for different values of number of test assets (N) and time series observations
(T ) are based on 100,000 simulations.

test as T increases. However, for the general GMM Wald test (Wa), it
does not work well at all except when N is very small. In many cases,
it over-rejects even more than the regular Wald test. Such over-rejection
is due to the fact that Wa requires the estimation of a large S0 matrix
using ST , which is imprecise when N is relatively large to T . While Wa

is asymptotically equivalent to W e
a under elliptical distribution, the poor

finite sample performance of Wa suggests that it is an ineffective way to
correct for conditional heteroskedasticity when N is large.
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Table 5 also reports the average ratios of W/Wa and W/W e
a . To un-

derstand what values these average ratios should take, we note that the
limit of the expected bias of the regular Wald test under the multivariate
Student-t distribution is

lim
T→∞

E

[
W

Wa

]
− 1 = lim

T→∞
E

[
W

W e
a

]
− 1 ≈ κ

2
=

1

ν − 4
, (55)

when the square of the slope of the asymptote to the sample frontier of the
K benchmark assets, θ̂21(µ̂g), is small compared with one (which is usually
the case for monthly data). Therefore, when ν = 5, the limit of the ex-
pected bias is about 100%, and when ν = 10, the limit of the expected bias
is about 16.7%. The magnitude of this bias is much greater than the one
reported by MacKinlay and Richardson (1991) for test of mean-variance
efficiency of a given portfolio. They find that when ν = 5, the bias of the
regular Wald test is less than 35% even when the squared Sharpe ratio of
the benchmark portfolio is very large, and is negligible when the squared
Sharpe ratio is small. To resolve this difference, we note that the test
of mean-variance efficiency of a given portfolio is a test of α = 0N . The
asymptotic variance of α̂ with and without the conditional heteroskedastic-

ity adjustment are
[
1 +

(
ν−2
ν−4

)
a1

]
Σ and (1 + a1)Σ, respectively.

26 When

the squared Sharpe ratio of the benchmark portfolio, a1, is small compared

with one, 1 + a1 is very close to 1 +
(

ν−2
ν−4

)
a1, and hence the impact of

the conditional heteroskedasticity adjustment on test of α = 0N is minimal.
For the case of test of spanning, it is a joint test of α = 0N and δ = 0N . The
asymptotic variance of δ̂ with and without the conditional heteroskedas-

ticity adjustment are
(

ν−2
ν−4

)
c1Σ and c1Σ, respectively, and the ratio of

the two is always equal to (ν − 2)/(ν − 4). Hence, when ν is small, the
asymptotic bias of W could still be very large even when the asymptotic
variance of α̂ is almost unaffected. Therefore, conditional heteroskedastic-
ity has potentially much bigger impact on tests of spanning than on tests
of mean-variance efficiency of a given portfolio, and it is advisable not to
ignore such adjustment for tests of spanning. In finite samples, Table 5
shows that for ν = 5, W e

a is only about 60% but not 100% larger than W ,
even when T = 240. For ν = 10, the average ratio of W/W e

a is roughly
1.16 and it is very close to the limit of 1.167. As for the average ratios of
W/Wa, they are far away from its limit and often less than one. This again
suggests that we should be cautious in using Wa to adjust for conditional
heteroskedasticity when N is large.

26The asymptotic variance of α̂ is given in (A.32) of the Appendix. For the special
case of K = 1, this expression is given in MacKinlay and Richardson (1991).
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Besides its impact on the size of the regular Wald test, multivariate
Student-t distribution also has significant impact on the power of the s-
panning test. This is because when returns follow a multivariate Student-t
distribution, the asymptotic variances of α̂ and δ̂ are higher than the nor-
mality case. As a result, departures from the null hypothesis become more
difficult to detect. Nevertheless, the power reduction is not uniform across
all alternative hypotheses. For test assets that improve the tangency port-
folio (i.e., α ̸= 0N ), we do not expect a significant change in power because
the asymptotic variances of α̂ under multivariate Student-t and multivari-
ate normality are almost identical. However, for test assets that improve
the variance of the global minimum-variance portfolio (i.e., δ ̸= 0N ), we
expect there can be a substantial loss in power when returns follow a mul-
tivariate Student-t distribution. This is because the asymptotic variance
of δ̂ under multivariate Student-t returns is much higher than in the case
of multivariate normal returns, especially when the degrees of freedom is
small.

In Figure 5, we plot the power function ofW e
a under multivariate Student-

t returns for these two types of alternative hypotheses. We use the same
two benchmark assets as in Figure 3 and a single test asset constructed
under different alternative hypotheses. Since we do not have the analyti-
cal expression for the power function of W e

a under multivariate Student-t
returns, the power functions are obtained by simulation. In addition, the
power functions are size-adjusted so that W e

a has the correct size under
the null hypothesis. The two plots on the left hand side are for the power
function of a test asset that has α ̸= 0. For both T = 60 and 120, we
can see from Figure 5 that the power function for a test asset that has
nonzero α does not change much by going from multivariate normal re-
turns to multivariate Student-t returns. However, for a test asset that has
δ ̸= 0, the two plots on the right hand side of Figure 5 show that there is a
substantial decline in the power of W e

a when returns follow a multivariate
Student-t distribution, as compared with the case of multivariate normal.
While there is a substantial reduction in the probability for W e

a to rejec-
t nonzero δ when the returns follow a multivariate Student-t distribution
with a low degrees of freedom, we still find that small difference in the
global minimum-variance portfolio is easier to detect than large difference
in the tangency portfolio. Therefore, just like the regular Wald test in the
normality case, we cannot easily interpret the statistical significance in the
GMM Wald test W e

a . To better understand the source of rejection, we can
construct a GMM version of the step-down test similar to the one for the
case of normality. For the sake of brevity, we do not present the GMM
step-down test here but details are available upon request.
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FIG. 5. Power Function of GMM Wald Test Under Multivariate Student-t Returns
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The figure plots the probability of rejecting the null hypothesis of mean-
variance spanning for two different types of alternative hypotheses using
the GMM Wald test. The plots on the left hand side are for alternative
hypotheses with nonzero α, where (α/σ)2 is the improvement of the square
of the slope of the tangent line with a y-intercept equals to zero. The
plots on the right hand side are for alternative hypotheses with nonzero δ,
where (δ/σ)2 is the improvement of the reciprocal of the variance of the
global minimum variance portfolio. T is the length of time series observa-
tions used in the GMM Wald test. The significance level of the test is 5%
and the rejection decision is based on the empirical distribution obtained
from 100,000 simulations under the null hypothesis. For each one of the
alternative hypotheses, returns on two benchmark assets and one test as-
set are generated using a multivariate Student-t distribution with five or
ten degrees of freedom and the probability of rejection in 100,000 simula-
tions is plotted. The figure also plots the power function for the case of
multivariate normal returns for comparison.

6. AN APPLICATION

In this section, we apply various spanning tests to investigate if there are
benefits for international diversification for a US investor who has an exist-
ing investment opportunity set that consists of the S&P 500 index and the
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30-year U.S. Treasury bond. We assume the investor is considering invest-
ing in the equity markets of seven developed countries: Australia, Canada,
France, Germany, Italy, Japan, and U.K. To address the question whether
there are benefits for international diversification for this U.S. investor, we
rely on monthly data over the period January 1970 to December 2007.
Monthly data for all the return series are obtained the Global Financial
Data, and they are all converted into U.S. dollar returns.

In Figure 6, we plot the ex post opportunity set available to the U.S.
investor from combining the S&P 500 index and the 30-year U.S. Treasury
bond. The sample return and standard deviation of the other seven de-
veloped countries are also indicated in the figure. From Figure 6, we can
see that over the 38-year sample period, the U.K. equity market had the
highest average return (14.5%/year), whereas the 30-year U.S. Treasury
bond had the lowest average return (9.2%/year). Although we observe
that some international equity markets (France, U.K. and Australia) lie
outside the frontier formed by the U.S. bond and equity, it is possible that
this occurs because of sampling errors, and a U.S. investor may not be able
to expand his opportunity set reliably by introducing some foreign equity
into his portfolio.

In Table 6, we report two mean-variance spanning tests on each of the
seven foreign equity indices as well as a joint test on all seven indices. The
first test is the corrected HK F -test and the second test is the step-down
test. The tests are performed using monthly data over the 38-year sam-
ple period and its two subperiods. Both tests are exact under normality
assumption on the residuals. Results from the entire period show that
the traditional F -test rejects spanning at the 5% level for all the countries
except for Canada. The joint test also rejects spanning for all seven coun-
tries. While we can reject spanning using the traditional F -test, it is not
entirely clear how to interpret the results. For example, since we can reject
spanning for Australia but not for Canada, does it mean the former is a
better investment than the latter for the U.S. investor? Without knowing
where the rejection comes from, one cannot easily answer this question.
The step-down test can help in this case. There are two components in the
step-down test, F1 and F2. F1 is a test of α = 0N whereas F2 is a test of
δ = 0N conditional on α = 0N . From Table 6, the F1 tests can only reject
α = 0N at the 5% level for Australia and Japan but the F2 tests can reject
δ = 0N for all cases except for Canada. In addition, the joint test cannot
reject α = 0N for all seven countries but the evidence against δ = 0N is
overwhelming. By separating the sources of the rejection, we can conclude
that there is strong evidence that the global minimum-variance portfolio
can be improved by the seven foreign equity indices, but there is weaker
evidence that the tangency portfolio can be improved.
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FIG. 6. Average Return and Standard Deviation of U.S. and International Invest-
ments
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The figure plots the average return and sample standard deviation (in an-
nualized percentage) of S&P 500 index, 30-year U.S. Treasury bond, and
seven international equity indices, computed using monthly data over the
period January 1970 to December 2007. The figure also plots the opportu-
nity set from combining the S&P 500 index and the 30-year U.S. Treasury
bond.

The subperiod results are not very stable. Although we can jointly reject
spanning for the seven equity indices in each subperiod, the evidence again
is limited to rejection of δ = 0N but not to rejection of α = 0N . Overall,
the first subperiod offers more rejections of the spanning hypothesis than
the second subperiod. One could interpret this as evidence that the glob-
al equity markets are becoming more integrated in the second subperiod,
hence reducing the benefits of international diversification.

Given that returns exhibit conditional heteroskedasticity and fat-tails,
the spanning tests in Table 6 which based on the normality assumption
may not be appropriate. To determine the robustness of the results, we
present in Table 7 some asymptotic spanning tests that do not rely on the
normality assumption. We report two regression based Wald W e

a (which
is only valid when returns follow a multivariate elliptical distribution) and
Wa. Consistent with results in Table 5, we find that for the regression based
Wald tests, W e

a are mostly smaller than Wa, possibly due to Wa is inflated
in small sample. Keeping in mind that the reported p-values of these tests
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TABLE 6.

Mean-Variance Spanning Tests on Seven International Equity Indices
Under Normality

Step-Down Test

Country α̂ δ̂ F -test p-value F1 p-value F2 p-value

Entire Period: 1970/1—2007/12

Australia 0.00597 0.468 14.479 0.000 4.734 0.030 24.026 0.000

Canada 0.00130 0.116 2.132 0.120 0.549 0.459 3.718 0.054

France 0.00492 0.305 6.700 0.001 3.361 0.067 9.987 0.002

Germany 0.00349 0.439 17.083 0.000 2.222 0.137 31.858 0.000

Italy 0.00416 0.536 12.999 0.000 1.610 0.205 24.355 0.000

Japan 0.00619 0.561 18.376 0.000 4.560 0.033 31.943 0.000

U.K. 0.00461 0.244 4.534 0.011 2.973 0.085 6.070 0.014

All 5.161 0.000 1.262 0.267 9.314 0.000

First Subperiod: 1970/1—1988/12

Australia 0.00668 0.545 9.113 0.000 2.174 0.142 15.970 0.000

Canada 0.00128 0.113 1.206 0.301 0.245 0.621 2.174 0.142

France 0.00639 0.320 3.389 0.035 1.939 0.165 4.819 0.029

Germany 0.00362 0.511 14.798 0.000 1.199 0.275 28.372 0.000

Italy 0.00468 0.595 8.420 0.000 0.839 0.361 16.011 0.000

Japan 0.01555 0.580 19.600 0.000 17.449 0.000 20.275 0.000

U.K. 0.00658 0.220 1.831 0.163 1.877 0.172 1.778 0.184

All 4.575 0.000 2.580 0.014 6.718 0.000

Second Subperiod: 1989/1—2007/12

Australia 0.00455 0.329 4.273 0.015 2.215 0.138 6.297 0.013

Canada 0.00136 0.120 0.879 0.417 0.314 0.576 1.448 0.230

France 0.00332 0.271 3.504 0.032 1.459 0.228 5.538 0.019

Germany 0.00284 0.299 3.106 0.047 0.788 0.376 5.429 0.021

Italy 0.00319 0.420 3.745 0.025 0.607 0.437 6.894 0.009

Japan −0.00343 0.508 6.527 0.002 0.602 0.439 12.473 0.001

U.K. 0.00280 0.285 5.463 0.005 1.480 0.225 9.426 0.002

All 1.738 0.046 0.795 0.593 2.722 0.010

The table presents two sets of mean-variance spanning tests on seven international equity indices,
using the S&P 500 index and the 30-year U.S. Treasury bond as benchmark assets. The first test
is an F -test of H0 : α = 0N and δ = 0N . The second test is a step down test where F1 is an
F -test of α = 0N , and F2 is an F -test of δ = 0N conditional on α = 0N . The two tests are
performed on each international equity index as well as jointly on all seven international equity
indices. The reported p-values are exact under the normality assumption on the residuals. The
results are presented for the entire sample period as well as for its two subperiods.

are only asymptotic, we compare the test results in Table 7 with those in
Table 6. We find that once we correct for conditional heteroskedasticity
in the Wald tests, the evidence against rejection of spanning in Table 6 is
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further weakened, indicating that there could be over-rejection problems
in Table 6 due to nonnormality of returns. Nevertheless, the asymptotic
tests in Table 7 still can jointly reject spanning for the seven foreign equity
indices in almost every case, indicating the rejection in Table 6 is robust
to conditional heteroskedasticity in the returns.

In summary, we find that an U.S. investor with an existing opportunity
set of the S&P 500 index and the 30-year U.S. Treasury bond can expand
his opportunity set by investing in the equity indices of the seven developed
countries. However, the improvement is only statistically significant at the
global minimum-variance part of the frontier, but not at the part that is
close to the tangency portfolio. To the extent that the U.S. investor is not
interested in holding the global minimum-variance portfolio, there is no
compelling evidence that international diversification can benefit this U.S.
investor.

7. CONCLUSIONS

In this paper, we conduct a comprehensive study of various tests of mean-
variance spanning. We provide geometrical interpretations and exact dis-
tributions for three popular test statistics based on the regression model.
We also provide a power analysis of these tests that offers economic insights
for understanding the empirical performance of these tests. In realistic sit-
uations, spanning tests have very good power for assets that could improve
the variance of the global minimum-variance portfolio, but they have very
little power against assets that could only improve the tangency portfolio.
To mitigate this problem, we suggest a step-down test of spanning that
allows us to extract more information from the data as well as gives us the
flexibility to adjust the size of the test by weighting the two components
of the spanning hypothesis based on their relative economic importance.

As an application, we apply the spanning tests to study benefits of in-
ternational diversification for a U.S. investor. We find that there is strong
evidence that equity indices in seven developed countries are not spanned
by the S&P 500 index and the 30-year U.S. Treasury bond. However, the
data cannot offer conclusive evidence that there are benefits for interna-
tional diversification, except for those who are interested in investing in the
part of the frontier that is close to the global minimum-variance portfolio.

APPENDIX A

Proof of Lemma 1 and Lemma 2: We first prove Lemma 2. Denote β̂ =
V̂21V̂

−1
11 and Σ̂ = V̂22 − V̂21V̂

−1
11 V̂12. Using the partitioned matrix inverse
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TABLE 7.

Asymptotic Mean-Variance Spanning Tests on Seven International Equity Indices

Country W e
a p-value Wa p-value

Entire Period: 1970/1—2007/12

Australia 10.964 0.004 21.573 0.000

Canada 2.227 0.328 3.397 0.183

France 8.469 0.014 10.373 0.006

Germany 19.573 0.000 28.422 0.000

Italy 18.215 0.000 17.584 0.000

Japan 25.428 0.000 30.432 0.000

U.K. 3.090 0.213 8.641 0.013

All 33.718 0.002 57.608 0.000

First Subperiod: 1970/1—1988/12

Australia 6.859 0.032 15.149 0.001

Canada 1.288 0.525 1.925 0.382

France 4.646 0.098 6.055 0.048

Germany 22.291 0.000 25.391 0.000

Italy 12.648 0.002 11.872 0.003

Japan 34.102 0.000 31.163 0.000

U.K. 1.829 0.401 4.577 0.101

All 37.741 0.001 56.848 0.000

Second Subperiod: 1989/1—2007/12

Australia 7.080 0.029 7.801 0.020

Canada 1.114 0.573 1.614 0.446

France 5.303 0.071 6.320 0.042

Germany 3.773 0.152 5.378 0.068

Italy 6.405 0.041 6.095 0.047

Japan 10.644 0.005 14.761 0.001

U.K. 8.620 0.013 11.124 0.004

All 20.094 0.127 27.294 0.018

The table presents four mean-variance spanning tests on
seven international equity indices, using the S&P 500 index
and the 30-year U.S. Treasury bond as benchmark asset-
s. The two tests, W e

a and Wa, are regression based GMM
Wald tests. Wa is valid under general distribution whereas
W e

a is only valid when returns follow a multivariate elliptical
distribution. Both tests are performed on each internation-
al equity index as well as jointly on all seven international
equity indices, and they both have an asymptotic χ2

2N dis-
tribution, where N is the number of test assets, and the
reported p-values are asymptotic ones. The results are p-
resented for the entire sample period as well as for its two
subperiods.
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formula, it is easy to verify that

V̂ −1 =

[
V̂ −1
11 + β̂′Σ̂−1β̂ −β̂′Σ̂−1

−Σ̂−1β̂ Σ̂−1

]
=

[
V̂ −1
11 0K×N

0N×K ON×N

]
+

[
−β̂′

IN

]
Σ̂−1[−β̂ IN ]. (A.1)

Therefore,[
â b̂

b̂ ĉ

]
=

[
µ̂′

1′N+K

]
V̂ −1[µ̂ 1N+K ]

=

[
µ̂′

1′N+K

] [
V̂ −1
11 0K×N

0N×K 0N×N

]
[µ̂ 1N+K ] +

[
µ̂′

1′N+K

] [
−β̂′

IN

]
Σ̂−1[−β̂ IN ][µ̂ 1N+K ]

=

[
µ̂′
1

1′K

]
V̂ −1
11 [µ̂1 1K ] +

[
(µ̂2 − β̂µ̂1)

′

(1N − β̂1K)′

]
Σ̂−1[µ̂2 − β̂µ̂1 1N − β̂1K ]

=

[
â1 b̂1
b̂1 ĉ1

]
+ Ĥ. (A.2)

This completes the proof of Lemma 2.
For the proof of Lemma 1, we write

1 + θ̂2(r) = 1 + â− 2b̂r + ĉr2 = [1, −r]

[
1 + â b̂

b̂ ĉ

][
1

−r

]
, (A.3)

and similarly

1 + θ̂21(r) = 1 + â1 − 2b̂1r + ĉ1r
2 = [1, −r]

[
1 + â1 b̂1

b̂1 ĉ1

][
1

−r

]
. (A.4)

Therefore, we can write

1 + θ̂2(r)

1 + θ̂21(r)
− 1 =

[1, −r]

[
∆â ∆b̂

∆b̂ ∆ĉ

][
1

−r

]

[1, −r]

[
1 + â1 b̂1

b̂1 ĉ1

][
1

−r

] , (A.5)

and it is just a ratio of two quadratic forms in [1, −r]′. The maximum
and minimum of this ratio of two quadratic forms are given by the two
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eigenvalues of [
∆â ∆b̂

∆b̂ ∆ĉ

][
1 + â1 b̂1

b̂1 ĉ1

]−1

= ĤĜ−1, (A.6)

which are λ1 and λ2, respectively. This completes the proof of Lemma 1.
Proof of (30): Let ξ1 = λ1/(1 + λ1) and ξ2 = λ2/(1 + λ2). From Anderson
(1984, p.529) and using the duplication formula

Γ(k)Γ

(
k − 1

2

)
=

√
πΓ(2k − 1)

22k−2
(A.7)

when 2k is an integer, we can write the joint density function of ξ1 and ξ2
under the null hypothesis as

f(ξ1, ξ2) =
n+ 1

2B(2m+ 2, 2n+ 3)

[
2∏

i=1

ξmi (1− ξi)
n

]
(ξ1−ξ2) for 1 ≥ ξ1 ≥ ξ2 ≥ 0,

(A.8)
where m = (N − 3)/2 and n = (T −K −N − 2)/2.

Using a transformation a1 = ξ1 + ξ2 and a2 = ξ1ξ2, we have the joint
density function of a1 and a2 as

f(a1, a2) =
n+ 1

2B(2m+ 2, 2n+ 3)
am2 (1− a1 + a2)

n. (A.9)

Since a1 = (ξ1+ξ2) ≥ 2
√
ξ1ξ2 = 2

√
a2 and 1−a1+a2 = (1−ξ1)(1−ξ2) ≥

0, the probability for ξ1 + ξ2 ≤ v is equal to

P [a1 ≤ v]

=
n+ 1

2B(2m+ 2, 2n+ 3)

∫ v2

4

0

∫ min[v,1+a2]

2
√

a2

am
2 (1− a1 + a2)

nda1da2

=
n+ 1

2B(2m+ 2, 2n+ 3)

∫ v2

4

0

am
2

[
(1− a1 + a2)

n+1

n+ 1

]∣∣∣∣2
√

a2

min[v,1+a2]

da2

=
1

2B(2m+ 2, 2n+ 3)

∫ v2

4

0

am
2 (1−

√
a2)

2n+2da2 −
∫ v2

4

max[0,v−1]

am
2 (1− v + a2)

n+1da2


= I v

2
(2m+ 2, 2n+ 3)− 1

2B(2m+ 2, 2n+ 3)

∫ v2

4

max[0,v−1]

am
2 (1− v + a2)

n+1da2. (A.10)

This completes the proof.
Proof of (37) and (38): Since λ1 and λ2 are the two eigenvalues of ĤĜ−1,
they are the solutions to the following equation

|ĤĜ−1 − λI2| = 0, (A.11)
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or equivalently the solutions to

|Ĥ − λĜ| =
∣∣∣∣ ∆â− λ(1 + â1) ∆b̂− λb̂1

∆b̂− λb̂1 ∆ĉ− λĉ1

∣∣∣∣ = 0. (A.12)

Simplifying, we have

(ĉ1 + d̂1)λ
2 −

[
∆âĉ1 − 2∆b̂b̂1 +∆ĉ(1 + â1)

]
λ+

[
∆â∆ĉ− (∆b̂)2

]
= 0.

(A.13)
It is easy to see that

λ1 + λ2 =
∆âĉ1 − 2∆b̂b̂1 +∆ĉ(1 + â1)

ĉ1 + d̂1

=
∆â− 2∆b̂µ̂g1 +∆ĉµ̂2

g1

1 + d̂1

ĉ1

+
∆ĉ
(

1+â1

ĉ1
− µ̂2

g1

)
1 + d̂1

ĉ1

=
θ̂2(µ̂g1)− θ̂21(µ̂g1)

1 + θ̂21(µ̂g1)
+

∆ĉ

ĉ1
, (A.14)

where the last equality follows from the fact that

θ̂2(r)− θ̂21(r) = (â− 2b̂r + ĉr2)− (â1 − 2b̂1r + ĉ1r
2) = ∆â− 2∆b̂r +∆ĉr2.

(A.15)
For the Lagrange multiplier test, we define ξi = λi/(1+ λi) and we have

ξ1 and ξ2 as the two eigenvalues of Ĥ(Ĥ + Ĝ)−1, which are the solutions
to the following equation

|Ĥ − ξ(Ĥ + Ĝ)| =
∣∣∣∣ ∆â− ξ(1 + â) ∆b̂− ξb̂

∆b̂− ξb̂ ∆ĉ− ξĉ

∣∣∣∣ = 0. (A.16)

Comparing (A.12) with (A.16), the only difference is â1, b̂1, ĉ1 are replaced

by â, b̂, and ĉ. Therefore, by making the corresponding substitutions, ξ1+ξ2
takes the same form as (A.14). This completes the proof.
Proof of (41): Following Muirhead (1982), it is easy to show that Y ∗

1 =√
TĜ− 1

2 Θ̂ and Σ̂ are independent of each other. Furthermore, the eigenval-
ues of Y ∗

1 (T Σ̂)
−1Y ∗

1
′ = Ĝ− 1

2 Θ̂Σ̂−1Θ̂′Ĝ− 1
2 are the same as the eigenvalues

of Θ̂Σ̂−1Θ̂′Ĝ−1 = ĤĜ−1, so from Theorem 10.4.5 of Muirhead (1982), we
have the joint density function of the two eigenvalues of ĤĜ−1 as

f(λ1, λ2) = e−tr(Ω)/2
1F1

(
T −K + 1

2
;
N

2
;
Ω

2
, L(I2 + L)−1

)
×

N − 1

4B(N,T −K −N)

 2∏
i=1

λ
N−3

2
i

(1 + λi)
T−K+1

2

 (λ1 − λ2), (A.17)
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for λ1 ≥ λ2 ≥ 0, where L = Diag(λ1, λ2), 1F1 is the hypergeometric
function with two matrix arguments, and

Ω = TĜ− 1
2ΘΣ−1Θ′Ĝ− 1

2 . (A.18)

It is well known that the hypergeometric function only depends on the
eigenvalues of Ω, which is the same as the eigenvalues of THĜ−1. There-
fore, the joint density function of λ1 and λ2 depends only on the eigenvalues
of THĜ−1 and we can replace Ω with D. This completes the proof.
Proof of Proposition 1: Using Theorem 10.4.2 of Muirhead (1982), we can
find out the density function of the two eigenvalues of AB−1 is exactly
the same as (41). To generate B, we use the Bartlett’s decomposition
of central Wishart distribution (see Muirhead (1982), Theorem 3.2.14).

Define L a lower triangular 2 by 2 matrix with L11 ∼
√

χ2
T−K−N+1, L22 ∼√

χ2
T−K−N , L21 ∼ N( 0, 1), and they are independent of each other. Then

B = LL′ ∼ W2(T −K −N + 1, I2). To generate A, we generate a central
Wishart S ∼ W2(N − 2, I2) using the same procedure and a 2 by 2 matrix

Z where vec(Z) ∼ N(vec(D
1
2 ), I4), then we have Z ′Z ∼ W2(2, I2, D) and

A = S + Z ′Z ∼ W2(N, I2, D). This completes the proof.

Proof of Lemma 3: By replacing ∆â, ∆b̂, ∆ĉ by ∆a, ∆b, and ∆c, we have
from (A.14)

ω1 + ω2 =
∆c

ĉ1
+

θ2(µ̂g1)− θ21(µ̂g1)

1 + θ̂21(µ̂g1)
. (A.19)

Similarly, with the same replacement, we have from (A.13)

ω1ω2 =
∆a∆c− (∆b)2

ĉ1 + d̂1
=

(
∆c

ĉ1

)(
θ2(µz)− θ21(µz)

1 + θ̂21(µ̂g1)

)
, (A.20)

where the last equality follows from the fact that

θ2(µz)− θ21(µz) = ∆a− 2∆b

(
∆b

∆c

)
+∆c

(
∆b

∆c

)2

= ∆a− (∆b)2

∆c
. (A.21)

(i) Since under the alternative hypothesis, we have ω1 > 0. Therefore, from
(A.20), we can see that ω2 = 0 if and only if ∆c = 0 or θ2(µz) − θ21(µz).
(ii) Using the inequality (a + b)2 ≥ 4ab for a and b nonnegative and the
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definition of µz, we have

(ω1 + ω2)
2 =

[
∆c

ĉ1
+

θ2(µ̂g1)− θ21(µ̂g1)

1 + θ̂21(µ̂g1)

]2

≥ 4

(
∆c

ĉ1

)(
θ2(µ̂g1)− θ21(µ̂g1)

1 + θ̂21(µ̂g1)

)

≥ 4

(
∆c

ĉ1

)(
θ2(µz)− θ21(µz)

1 + θ̂21(µ̂g1)

)
= 4ω1ω2. (A.22)

For ω1 = ω2 > 0, we need the two inequalities to be equalities. This is
true if and only if

∆c

ĉ1
=

θ2(µ̂g1)− θ21(µ̂g1)

1 + θ̂21(µ̂g1)
(A.23)

and µ̂g1 = µz. Combining these two conditions, we prove the lemma.
Proof of the distribution of (46) and (47): The proof that under the null
hypothesis, F1 has a central F -distribution with N and T −K−N degrees
of freedom follows directly from Theorem 8.4.5 of Anderson (1984). For
F2, we have from Seber (1984, pp.412–413),

|Σ̄|
|Σ̃|

∼ UN,1,T−K (A.24)

under the null hypothesis, and hence from 2.42 of Seber (1984), we have

F2 =

(
T −K −N + 1

N

)(
|Σ̃|
|Σ̄|

− 1

)
∼ FN,T−K−N+1. (A.25)

The independence of F1 and F2 under the null hypothesis follows from
Corollary 10.5.4 of Muirhead (1982). This completes the proof.
Proof of (50): From Hansen (1982), the asymptotic variance of vec(B̂′) is
given by (D′

0S
−1
0 D0)

−1, where

D0 = E

[
∂ḡT (B)

∂vec(B′)′

]
= −E[xtx

′
t]⊗ IN . (A.26)

Since Θ̂ = AB̂ − C, the asymptotic variance of vec(Θ̂′) is given by

(A⊗ IN )(D′
0S

−1
0 D0)

−1(A′ ⊗ IN )

= (A⊗ IN )D−1
0 S0D

−1
0 (A′ ⊗ IN )

= (A(E[xtx
′
t])

−1 ⊗ IN )S0((E[xtx
′
t])

−1A′ ⊗ IN ). (A.27)
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Using the partitioned matrix inverse formula, we have

A(E[xtx
′
t])

−1 =

[
1 0′K
0 −1′K

] [
1 µ′

1

µ1 V11 + µ1µ
′
1

]−1

=

[
1 0′K
0 −1′K

] [
1 + µ′

1V
−1
11 µ1 −µ′

1V
−1
11

−V −1
11 µ1 V −1

11

]
=

[
1 + µ′

1V
−1
11 µ1 −µ1V

−1
11

1′KV −1
11 µ1 −1′KV −1

11

]
. (A.28)

Replacing S0 and A(E[xtx
′
t])

−1 by their consistent estimates ST and AT ,
we obtain (50). This completes the proof.
Proof of Proposition 2: When Rt follows a multivariate elliptical distribu-
tion, we have

E[R1tR
′
1t⊗ϵtϵ

′
t] = µ1µ

′
1⊗Σ+(1+κ)V11⊗Σ = (V11+µ1µ

′
1)⊗Σ+κV11⊗Σ,

(A.29)
using Corollary 3.2.1 and 3.2.2 in Mathai, Provost, and Hayakawa (1995).
It follows that

S0 = E[xtx
′
t]⊗ Σ+

[
0 0′K
0K κV11

]
⊗ Σ. (A.30)

Using this expression and (A.26), the asymptotic variance of vec(B̂′) is
given by

(D′
0)

−1S0D
−1
0 =

[
1 + a1 −µ′

1V
−1
11

−V −1
11 µ1 V −1

11

]
⊗Σ+κ

[
a1 −µ′

1V
−1
11

−V −1
11 µ1 V −1

11

]
⊗Σ.

(A.31)
Note that the first term is the asymptotic variance of vec(B̂′) under the
conditional homoskedasticity assumption, and the second term is the ad-
justment matrix due to the conditional heteroskedasticity. The asymptotic
variance of vec(Θ̂′) is then given by

(A⊗IN )(D−1
0 )′S0D

−1
0 (A′⊗IN ) =

[
1 + (1 + κ)a1 (1 + κ)b1

(1 + κ)b1 (1 + κ)c1

]
⊗Σ. (A.32)

By replacing a1, b1, c1, κ, Σ by their consistent estimates â1, b̂1, ĉ1, κ̂ and
Σ̂, the consistent estimate of the asymptotic variance of vec(Θ̂′) is Ĝa ⊗ Σ̂.
Therefore, the GMM Wald test is

Wa = Tvec(Θ̂′)′(Ĝ−1
a ⊗ Σ̂−1)vec(Θ̂′)

= Tvec(Θ̂′)′vec(Σ̂−1Θ̂′Ĝ−1
a ) = T tr(ĤĜ−1

a ), (A.33)
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where the last equality follows from the identity tr(AB) = vec(A′)′vec(B).
This completes the proof.
Proof of (55): Since Wa is asymptotically equivalent to W e

a , the limit of
E[W/Wa] is the same as the limit of E[W/W e

a ]. For W , we have from
(A.14),

W = tr(ĤĜ−1) =
θ̂2(µ̂g)− θ̂21(µ̂g)

1 + θ̂21(µ̂g)
+

∆ĉ

ĉ1
. (A.34)

Using a similar proof, we have

W e
a = tr(ĤĜ−1

a ) =
θ̂2(µ̂g)− θ̂21(µ̂g)

1 + (1 + κ̂)θ̂21(µ̂g)
+

∆ĉ

ĉ1(1 + κ̂)
≡ X1 +X2. (A.35)

Under the null hypothesis, the two terms X1 and X2 are asymptotically
independent of each other and distributed as χ2

N . When θ̂21(µ̂g) is small
compared with one, we have

tr(ĤĜ−1) ≈ X1 + (1 + κ)X2, (A.36)

and hence

lim
T→∞

W

W e
a

− 1 ≈ X1 + (1 + κ)X2

X1 +X2
− 1 = κ

(
X2

X1 +X2

)
. (A.37)

Asymptotically, X2/(X1 + X2) has a beta distribution and its expected
value is 1/2. Therefore, we have

lim
T→∞

E

[
W

W e
a

]
− 1 ≈ κ

2
. (A.38)

This completes the proof.
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