
ANNALS OF ECONOMICS AND FINANCE 13-1, 189–210 (2012)

A Semiparametric Time Trend Varying Coefficients Model: With

An Application to Evaluate Credit Rationing in U.S. Credit

Market

Qi Gao

The school of Public Finance and Taxation
Southwestern University of Finance and Economics

Wenjiang, Chengdu, China

Jingping Gu

Department of Economics, University of Arkansas
Fayetteville, Arkansas 72701-1201

E-mail: jgu@walton.uark.edu

and

Paula Hernandez-Verme*

Department of Economics & Finance
University of Guanajuato, UCEA-Campus Marfil

Guanajuato, GTO 36250 Mexico

E-mail: paulaherver@gmail.com

In this paper, we propose a new semiparametric varying coefficient model
which extends the existing semi-parametric varying coefficient models to allow
for a time trend regressor with smooth coefficient function. We propose to use
the local linear method to estimate the coefficient functions and we provide the
asymptotic theory to describe the asymptotic distribution of the local linear
estimator. We present an application to evaluate credit rationing in the U.S.
credit market. Using U.S. monthly data (1952.1-2008.1) and using inflation as
the underlying state variable, we find that credit is not rationed for levels of
inflation that are either very low or very high; and for the remaining values of
inflation, we find that credit is rationed and the Mundell-Tobin effect holds.

Key Words: Non-stationarity; Semi-parametric smooth coefficients; Nonlinear-

ity; Credit rationing.

JEL Classification Numbers: C14, C22, E44.

* The corresponding author.

189

1529-7373/2012

All rights of reproduction in any form reserved.



190 QI GAO, JINGPING GU, AND PAULA HERNANDEZ-VERME

1. INTRODUCTION

Nonparametric techniques have been widely used in estimation and test-
ing of econometric models. For example, Baltagi and Li (2002) propose to
use the nonparametric series method to estimate a semiparametric partial-
ly linear fixed effects panel data model, Racine et al (2005) propose using
a new smoothing method to estimate a multivariate conditional distribu-
tion function, Sun (2005) consider the problem of efficient estimation of
partially linear quantile regression model, Fan and Rilstone (2001) propose
a model specification test based on nonparametric kernel method. Recent-
ly, varying coefficient modeling techniques have attracted much attention
among econometricians and statisticians. For theoretical development of
varying coefficients model with independent and stationary data, see Cai,
Fan and Li (2000), Fan, Yao and Cai (2003), Li, Huang, Li and Fu (2002),
among others. The semiparametric varying coefficient model specification
has been used in various empirical studies. For example, Chou, Liu and
Huang (2004) examined health insurance and savings over the life cycle.
Savvides, Mamuneas and Stengos (2006) studied the problem of econom-
ic development and the return to human capital. Stengos and Zacharias
(2006) investigated the intertemporal pricing and price discrimination of
the personal computer market. Jansen, Li, Wang and Yang (2008) studied
the impact of U.S. fiscal policy on stock market performance.

In this paper, we propose a new method of estimation and inference that
extends the application of semiparametric smooth coefficients models to
the case where the dependent variable is non-stationary because it con-
tains a time trend regressor. Let Yt denote the non-stationary dependent
variable, and Xt be the set of stationary regressors. We also define Zt as
a stationary underlying state variable. To capture the time trend behavior
of Yt, we use a time trend, denoted by t, as part of the data generating
process. In this paper, we propose two alternative empirical specifications
of a semiparametric smooth coefficients model. These specifications vary
in their treatment of the time trend.

We consider a semiparametric model which includes a stationary vector
variableXt1 and a time trend as regressors, all of them have varying smooth
coefficients. The model is given by

Yt = XT
t β(Zt) + ut ≡ XT

t1β(1)(Zt) + t β(2)(Zt) + ut, (1)

where XT
t = (XT

t1, Xt2) = (Xt1, t) is of dimension 1× d, β(1)(·) and β(2)(·)
are smooth functions of Zt and they are of dimension (d−1)×1 and 1×1,
respectively. We assume that Xt1, Zt and ut are all stationary variables,
while Yt is non-stationary due to its time trend component.

Equation (1) differs from the varying coefficient model considered by Cai,
Li and Park (2009), and Xiao (2009) who consider the case thatXt contains
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integrated non-stationary regressors (i.e., regressors have unit roots), while
our model considers a time trend non-stationary regressor.

We also consider a simpler model in which the trend variable enters the
model linearly

Yt = XT
t1β(1)(Zt) + γ t+ ut, (2)

where γ is a constant coefficient.
We subsequently discuss and apply this new semiparametric specification

to evaluate empirically whether credit are rationed in the U.S. credit mar-
ket. We start with a simple model with frictions in credit markets. We use
general equilibrium techniques and consider a nonlinear structural model
that has the micro-foundations required for monetary growth economies.
We derive testable implications based on a reduced form model with respect
to whether credit is rationed or not in equilibrium. We go directly from
the model and its testable implications through estimation and inference.

The rest of the paper is organized as follows. In Section 2, we describe
our theoretical econometrics model and we propose to use a local linear
estimation method to estimate the coefficient functions. We derive the
asymptotic distribution for our proposed estimator. In Section 3 we first
present a theoretical model, then we study a reduced form model of credit
rationing, discuss its testable implication and then use a varying coefficient
specification to investigate whether US credit market is rationed. Section
4 concludes the paper. The proof of the asymptotic results is given in an
Appendix.

2. ESTIMATION OF A VARYING COEFFICIENTS MODEL

Our semiparmetric varying coefficient model is given by

Yt = XT
t β(Zt) + ut = XT

t1β(1)(Zt) + t β(2)(Zt) + ut, t = 1, ..., n, (3)

where Yt, Zt and ut are scalars, and Xt = (XT
t1, Xt2)

T = (XT
t1, t).

We only consider the scalar Zt case since the extension to multivariate
Zt involves fundamentally no new ideas but only complicated notations.

2.1. Local Linear Estimation

We use a local linear approximation to approximate the unknown coef-
ficient function. When Zt is close to z, we use β(z) + β′(z) (Zt − z) to
approximate β(Zt), where β′(z) = dβ(z)/dz. The local linear estimator is
defined via the following minimization problem.(

θ̂0
θ̂1

)
= argminθ0,θ1

n∑
t=1

[
Yt −XT

t θ0 − (Zt − z)XT
t θ1

]2
Kh(Zt − z), (4)
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where Kh(u) = h−1K(u/h), K(·) is a kernel function and h is the s-

moothing parameter. It is well known that θ̂0 = β̂(z) estimates β(z) and

θ̂1 = β̂′(z) estimates β′(z). (4) has the closed form expression for β̂(z) and

β̂′(z) and is given by(
β̂(z)

β̂′(z)

)
=

[
n∑

t=1

(
Xt

(Zt − z)Xt

)⊗2

Kh(Zt − z)

]−1

×
n∑

t=1

(
Xt

(Zt − z)Xt

)
Yt Kh(Zt − z), (5)

where A⊗2 = AAT . We present the asymptotic theory regarding β̂(z) in
the next subsection.

2.2. Asymptotic Properties

Recall that β̂(z) = (β̂(1)(z)
T , β̂(2)(z))

T , and that β̂(1)(z) and β̂(2)(z)

are the coefficients of X1t and t, respectively. We will show that β̂(1)(z)

and β̂(2)(z) have different convergence rates. To establish the asymptotic

properties of β̂(z), we define Dn =

(
Id−1 0
0 n

)
, where Id−1 is an identity

matrix of dimension d− 1. We also define M0(Zt) = fz(Zt)E(Xt1X
T
t1|Zt),

M1(Zt) = (1/2)fz(Zt)E(Xt1|Zt) and M2(Zt) = (1/3)fz(Zt), where fz(Zt)
is the density function of Zt. Finally we define

S(z) =

(
M0(z) M1(z)
M1(z)

T M2(z)

)
. (6)

We also make the following assumptions.
(A1) (i) (Xt1, Zt) is a strictly stationary β-mixing process with size −2(2+
δ)/δ for some δ > 0, ut is a martingale different process satisfying E(u2

t |Ft) =
E(u2

t ) = σ2
u, and E(u4

t |Ft) < ∞, where Ft is the sigma field generated by
{Xs1, Zs}ts=−∞. (iii) β(·) has a bounded and continuous third order deriva-
tive function.
(A2) (i) K(·) is a bounded symmetric density function with

∫
K(v)v2dv =

µ2(K) being a finite positive constant.
(ii) h → 0, nh2 → ∞ and nh7 = o(1) as n → ∞.

The above regularity conditions are quite standard and provide sufficient
conditions to establish our Theorem 1 below. However, they are not the
weakest possible conditions. For example, the conditional homoskedastic
error assumption can be relaxed to allow for conditional heteroskedastic
errors.
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Theorem 1. Under Assumptions A1 - A2 given above, we have

√
nhDn

[
β̂(z)− β(z)− h2µ2(K)β′′(z)

]
→ N(0,Σβ(z)) in distribution,

where µ2 =
∫
K(v)v2dv, β′′(z) = d2β(z)/dz2, N(0,Σβ(z)) denotes a nor-

mal distribution with mean zero and variance matrix given by Σβ(z) =
σ2
uν0(K)S(z)−1, ν0(K) =

∫
K2(v)v2dv , and S(z) is defined in (6).

A detailed proof of the above Theorem is provided in Appendix A.
Note that Theorem 1 shows that while the coefficient of Xt1 has the

standard rate of convergence: β̂(1)(z) − β(1)(z) = Op(h
2 + (nh)−1/2) be-

cause var(β̂(1)(z)) = O((nh)−1), the coefficient function of t has a much

faster rate of convergence: β̂(2)(z)− β(2)(z) = Op(h
2 + (n3h)−1/2) because

var(β̂(2)(z)) = O((n3h)−1) (due to the extra n factor at the lower diagonal
position in matrix Dn).

3. AN EMPIRICAL APPLICATION

3.1. Theory Background of Credit Rationing

In this section, we introduce the theory background of credit rationing.
This is a simplification and generalization of Hernandez-Verme (2004). In
this economy, there is an adverse selection problem in the credit market.We
let rt denote the real gross interest rate on loans. Borrowers and Lenders
each take rt as given.

We introduce reserve requirement as a first building block of the mon-
etary policy in this economy. In general, these required reserves must be
held in the form of currency, either domestic or foreign. It seems reason-
able to assume that the reserve requirement is binding, so henceforth we
suppose that this is the case.

The second building block is the evolution of the money supply. The
monetary authority directly control over the domestic money supply. The
evolution of the money supply Mt is given by

Mt = (1 + σ)Mt−1, (7)

where σ > −1 is the rate of money growth set exogenously by the Federal
Reserve System. We use πt = pt−pt−1

pt−1
to denote the domestic rate of

inflation at date t.
Clearing in the Credit Market with a binding reserve requirement and

the evolution of the money supply then requires that the equilibrium real
interest rate on loans rt is an increasing function of πt, the inflation rate
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at time t highlighting the role of the reserve requirement. 1 The intuition
behind this result is as follows: higher inflation rates reduce the return that
banks receive from their currency-reserves holdings, and rt must increase
for banks to be able to compete for deposits in the market.

3.1.1. General Equilibrium and Alternative Credit Regimes

There are two possible credit regimes that we discuss in detail below: a

Walrasian regime — where credit is not rationed — and a Private Infor-

mation regime — where credit is rationed.

A Walrasian Regime

We say that the economy is in a Walrasian regime at a particular point in

time when a Walrasian equilibrium occurs. Let kWt denote the per capita

capital stock when the economy is in a Walrasian equilibrium at date t.

The economy is in a Walrasian equilibrium when

f ′(kWt ) = rt, (8)

where f ′(k) = df(k)/dk. This condition is fairly common in standard

economic theory.

In this case, we say that credit is not rationed, since borrowers may

borrow as much as they can at the equilibrium interest rate rt.

In terms of comparative statics, we observe that when credit is not ra-

tioned, increases in rt translate into increases in the marginal product of

capital. Given standard decreasing marginal products, then, kWt = kW (rt)

is a decreasing nonlinear function of rt. This means also that yWt =

f
[
kW (rt)

]
, and, thus, output per capita in a Walrasian equilibrium is

also decreasing in rt. In summary, an increase in the equilibrium interest

rate on loans reduces output per capita in equilibria where credit is not

rationed.

A Private Information Regime

When a Private Information equilibrium occurs at a particular date, we

say that the economy is in a Private Information regime, and because of

adverse selection problem we observe that the link between the marginal

product of capital and the market interest rate on loans is broken. Let

kPt denote the capital stock per capita when the economy is in a Private

Information equilibrium at date t. The economy is in a Private Information

equilibrium when the following inequality holds:

f ′(kPt ) > rt. (9)

1See equation (3) in Hernandez-Verme (2004) for more details.
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When Condition (9) holds, borrowers are willing to borrow arbitrarily

large amounts at the market interest rate on loans rt. In such a situa-

tion, lenders keep interest rate lower to reduce the risk and avoid potential

default problems, and this causes Credit Rationing.

Under the circumstances mentioned above, an increase in rt increases the

amount of credit available and borrowed and, thus, kPt . Thus, k
P
t = kP (rt)

is an increasing nonlinear function of rt. This means that yPt = f
[
kP (rt)

]
,

and output in a Private Information equilibrium is also increasing in rt.

In summary, an increase in the equilibrium interest rate on loans increases

output when credit is rationed, and a short-run version of Mundell-Tobin

effect prevails.

3.1.2. Testable Implications of the Model

We can use a reduced-form equation that is consistent with the model

presented above and that can also be used to evaluate whether credit is ra-

tioned or not. In particular, for the sake of parsimony, we use the following

semi-parametric equation:

yt = β1(πt) + β2(πt) rt + β3(πt) t+ ut, (10)

where the underlying state variable is the inflation rate, while β1(πt), β2(πt)

and β3(πt) are smooth coefficient functions that depend on the inflation

rate πt. By using this flexible specification, we can evaluate whether credit

rationing is present or not, together with the region of the state-space for

which this is true. In particular, let β̂2(πt) denote the estimated function

of β2(πt) = ∂yt/∂rt. Then, the regions in which β̂2(πt) > 0 is associated

with Private Information equilibria and, thus, credit will be rationed. The

complementary regions in which β̂2(πt) < 0 is associated with Walrasian

equilibria and credit will not be rationed.

3.2. Econometric Methodology
3.2.1. Model Specification

We start from the simple linear regression model

Yt = XT
t β + ZT

t γ + ut, t = 1, 2, ..., n, (11)

where XT
t is 1×d vector with one component being 1, ZT

t is a 1×q vector,

and β and γ are constant parameter vectors with dimensions d × 1 and

q× 1, respectively. Equation (11) will be the benchmark against which we

will compare our results. The credit rationing example, the specific linear

model can be found in equation (16).
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Our choice of specification of the empirical model is consistent with the

simple theoretical framework that we presented in the previous section.

Thus, we propose to use the following semi-parametric varying coefficient

specification:

Yt = XT
t β(Zt) + ut, t = 1, 2, ..., n, (12)

where the coefficient function β(Zt) is a d× 1 vector of unspecified smooth

functions of the underlying state variable Zt. For credit rationing example,

the varying coefficient models we used can be found in equation (14) and

(15).

This model specification allows for a more flexible functional form and

also avoids the “curse of dimensionality” associated with a fully nonpara-

metric model. Under the assumption that model (12) is correctly specified,

E(ut|Xt, Zt) = 0. Pre-multiplying both sides of ( 12) with Xt, taking

conditional expectation E(·|Zt = z) , and then solving for β(z) yields

β(z) =
[
E(XtX

T
t |Zt = z)

]−1
E(XtYt|Zt = z). (13)

We next replace the conditional mean function in (13) by some nonpara-

metric estimator, say by the local linear kernel estimator, and we obtain a

feasible estimator of β(z).

In our model, the dependent variable is the industrial production per

capita, which we denote as Yt. Since the industrial production per capita

has an obvious time trend, the explanatory variable Xt includes the time

trend t. Xt also contains the growth rate of the real gross interest rate on

loans ∆ln(rt), since the real interest rate is nonstationary. The explanatory

state variable Zt is the inflation rate πt. Since the non-stationarity of

industrial production per capita is caught by the time trend, we redefine

the coefficient smooth function of πt associated with the time trend t as

β3(πt). So, we can rewrite the model in (12) as

Yt = β1(πt) + β2(πt)∆ln(rt) + β3(πt) t+ ut. (14)

The coefficient for the intercept, β1(πt), is a function of the underlying

state-variable πt (inflation rate), and so is the coefficient β2(πt) that mea-

sures the effect of the real interest rate on the industrial production per

capita at date t.

We obtain an alternative model specification when the time trend t enters

the model linearly, which means that the effect of the time trend is constant

and independent of the state variable πt. So, the smooth coefficient function
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of t, β3(πt), reduces to a constant parameter γ. Under these conditions,

the alternative nonlinear model with constant time trend becomes

Yt = γ t + β1(πt) + β2(πt)∆ln(rt) + ut (15)

The corresponding linear regression model (11) is given by,

Yt = β1,0 + β2,0 ∆ln(rt) + β3,0 t + β4,0 πt + ut, (16)

where βj,0s (j = 1, 2, 3, 4) are constant coefficients.

In the remainder of the paper we will refer the simple linear model in

(16) as model 1, the partially linear varying coefficient model (15) as model

2, and the general varying coefficient model in (14) as model 3.

3.2.2. Model Specification Testing

As is standard in the literature, we first test whether the varying co-

efficient models 2 and 3 represent the data significantly better than the

standard linear OLS model or model 1.

We start from the benchmark model 1, a linear regression model with

time trend, as described in (16). We use the Generalized Likelihood Ratio

(GLR) test as suggested by Cai, Fan and Yao (2000) to conduct model

specification tests. Particularly, we test whether the linear specification

model is adequate for the data, with the linear model as the null hypothesis

and one of the varying coefficient models as the alternative. We do so first

with model 3, and next with model 2. The test is based on the difference

of the sums of squared residuals between the two competing models as

follows:

GLR =

∑n
t=1 û

2
t −

∑n
t=1 ũ

2
t∑n

t=1 ũ
2
t

(17)

where ût is the residual from the null hypothesis linear model, and ũt

is the residual from the alternative smooth coefficient model. Typically,

one rejects the null hypothesis of linearity when large values for the GLR

statistic are obtained.

We now turn to explain the multiple steps involved in this test. Cai, Fan

and Yao (2000) suggest using a bootstrap approach to evaluate the p-value

of the test. In particular, they bootstrapped the centralized residuals from

the nonparametric fit instead of the linear fit, because the nonparametric

estimate of the residuals is consistent under both the null and alternative

hypotheses. We use u∗
t to denote the bootstrap error - which is obtained

following the fitted residual from the varying coefficient model. The boot-

strap error u∗
t follows the ‘wild’ bootstrap distribution conditions (see Cai
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et al (2000) for more details). We then obtain the GLR statistics and

critical values via the following five steps:

Step 1: For each t = 1, 2, ..., n, we generate values for u∗
t that satis-

fies the ‘wild’ bootstrap distribution conditions. We then compute y∗t =

XT
t β̂(πt) + u∗

t , where XT
t = ( 1, ∆ln(rt), t ) for t = 1, 2, ..., n.

Step 2: We obtain the least square estimator by using the bootstrap

sample

β̂∗
ols =

(
n∑

t=1

X̃tX̃
T
t

)−1 n∑
t=1

X̃ty
∗
t , (18)

where X̃T
t = ( 1, ∆ln(rt), t, πt ) for t = 1, 2, ..., n. Next, we obtain the

estimated bootstrap OLS residuals by using û∗
t = y∗t − X̃T

t β̂
∗
ols.

Step 3: We obtain the kernel estimator of β̂∗(πt) using the bootstrap

sample, as

β̂∗(πt) =

 n∑
j=1

XjX
T
j K

(
πj − πt

h

)−1
n∑

j=1

Xjy
∗
jK

(
πj − πt

h

)
. (19)

Then, we proceed to calculate the estimated bootstrap residuals using ũ∗
t =

y∗t −XT
t β̂

∗(πt).

Step 4: We compute the bootstrap statistic using

GLR∗
n =

∑n
t=1 û

∗2
t −

∑n
t=1 ũ

∗2
t∑n

t=1 ũ
∗2
t

(20)

Step 5: We repeat steps 1- 4 a number of times, say B times, and

obtain the empirical distribution of the B test statistics of {GLR∗
n,j}Bj=1.

Let GLR∗
n,(α) denote the α

th percentile of the bootstrap statistics. We then

reject the null hypothesis at the significance level α if GLRn > GLR∗
n,(α)

obtains.

3.3. Empirical Results
3.3.1. Data

In order to focus on the short run relationships described by our theo-

retical model, we use monthly data. The following variables were obtained

from the FRED data set of the Federal Reserve Bank of St. Louis: the

industrial production index (IPt), the bank prime loan rate (It), the CPI

(Pt), and population (POPt ). The data spans from January 1952 to Jan-

uary 2008 with a total of 673 monthly observations. We calculate the series
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of industrial production per capita, IPPt, by using the industrial produc-

tion index and population series as follows,

IPPt =
IPt

POPt
× 1, 000. (21)

The population is expressed in thousands of inhabitants. Therefore,

IPPt is an index of industrial production per million people, and we found

it to be nonstationary. It is stationary after detrending. We calculated the

inflation rate (πt) from the CPI, by using πt =
(

Pt

Pt−1
− 1
)
×100. Next, we

adjusted the Bank Prime Loan Rate series (It) by the inflation rate (πt),

obtaining the real gross interest rate rt, by using the formula rt = 1+It
1+πt

.

We found the real gross interest rate, rt, to be nonstationary. However,

this estimation method requires stationary covariates, and we proceeded to

find a stationary representation of this series. Thus, accordingly, we took

the log difference of the real gross interest rate, ∆ln(rt) = ln(rt)− ln(rt−1)

and found ∆ln(rt) to be stationary.

3.3.2. Results of Model Specification Tests

For the model specification test, we use the methodology introduced in

section 3.2.2. The null hypothesis of the GLR test is that the linear model,

model 1, fits the data best. We use different types of nonlinear models as

alternative hypothesis: model 2 and model 3.

In the Table 1 below, we present the bootstrap critical values in columns

two through five. In the sixth column, we display the the GLR statistics,

and column seven reports the p-values. The p-value for the linear model

against model 3 is less than 0.001, while the p-value for the linear model

against model 2 equals 0.003. The testing results indicate the existence of

strong nonlinearities in the output, inflation and interest rate relationship.

TABLE 1.

Results of Model Specification Tests

Models Critical Values GLR Prob.

1% 5% 10% 20%

Models 1 v.s. 2 0.041 0.036 0.033 0.029 0.046 0.003

Models 1 v.s. 3 0.053 0.049 0.045 0.040 0.088 0.000

Our comparisons of model 2 and model 3 each against the linear model

have thus verified the presence of strong nonlinearity. However, we also

need to take a step further: to treat model 2 as the null model and test it

against the more generalmodel 3. To do so, we used a test statistic that was
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based on a similar GLR methodology (and a bootstrap procedure). The

testing result shows that we cannot reject the null hypothesis that model 2

is adequate against model 3 at any conventional significant level. Therefore,

our econometrics analysis will be based on the more parsimonious model 2

in the remaining parts of this paper.

3.3.3. Estimation Results

In this section, we discuss the main traits of the estimated coefficient

functions as well as the economic intuition behind them. We present em-

pirical evidence on the scope for credit rationing in the U.S. credit market.

The Estimated Coefficient Functions

We present the estimation results of the partially linear varying coef-

ficients model 2. Here, we focus on the nonlinearities displayed by the

estimated coefficient functions with respect to the inflation rate. Figure 1

displays the estimated coefficient functions of model 2. Recall that mod-

el 2 is represented by (15). We will denote the corresponding estimated

functions by γ̂, β̂1(πt) and β̂2(πt). The estimated value for the constant

parameter γ is γ̂ = 0.0004, with an associated standard error of 2.77×10−6.

So that γ̂ is (highly) significantly different from zero. This is expected be-

cause there is an obvious trend in the output data.

The first panel in Figure 1 displays β̂1(πt). In this model, β̂1(πt) repre-

sents the varying intercept. In a standard linear regression, this coefficient

would be constant and independent of the inflation rate: its diagram would

take the form of a perfectly horizontal line for all values of πt. However,

we observe that the shape of β̂1(πt) is somewhat closer to a V shape with

β̂1(πt) taking positive values between 0.095 and 0.118. Thus, β1(πt) is a

nonlinear function in πt is supported by Figure 1.

−1 −0.5 0 0.5 1 1.5 2
0.095

0.1

0.105

0.11

0.115

0.12

π

β 1(π
)

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

π

β 2(π
)

FIG. 1. Coefficients of Model 2, Local Linear Estimator
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The second panel in Figure 1 displays the estimated coefficient function

β̂2(πt) and it is of particular importance to our analysis. One of the main

hypotheses from our simple theoretical model is that the interest rate on

loans having a nonlinear effect on output per capita and this effect depend-

ing on the level of the inflation rate. It is apparent that our hypothesis was

verified and that the effect of rt on Yt varies significantly for different values

of πt, giving rise to threshold-effects. One can see that the second panel in

Figure 1 looks (roughly) like an inverse U (or V) shape showing an obvious

sign of nonlinearity.

Notice that the following transpires: for πt ∈ (−1,−0.6) and for πt ∈
(1.3, 1.8], the effect of the interest rate on output per capita is negative.

The economy is in Walrasian regime. Credit is not rationed.

When πt ∈ (−0.6, 1.3), the effect of the interest rate on output per

capita is positive. The economy is in Private Information regime. Credit

is rationed.

Evidence on the Scope for Credit Rationing

Most of the previous research on credit rationing in the U.S. credit mar-

ket has focused on the micro perspective. For example, Berger and Udell

(1992) is based on the information of commercial bank loan contracts; Pet-

rick (2005) is based on the household data; Duca and Rosenthal (1991)

investigates credit rationing in the mortgage market.

In this paper, we supply a new perspective of how to look at the credit

market at the aggregate level, one that allows for private information and

expectations to effectively constrain this market. As we will show next,

we find that the empirical evidence supports this opinion. In particular,

we estimate the Walrasian region and Private Information region based on

short-run macro data.

Our results from Figure 2 indicates that there exist two threshold, πL

and πH , for inflation. The estimated values of πL and πH are −0.6% and

1.3%, respectively. Only when the monthly inflation rate is sufficiently low

(i.e. πt < −0.6%) or high enough (i.e. πt > 1.3%,) and thus credit need

not be rationed. However, for monthly inflation rates between −0.6% and

1.3%, the incentive compatibility constraint bind and reducing the amount

of credit available in the market. Moreover, the severity of the adverse

selection problem, seems to vary with the inflation rate as well, explaining

why the peaks occur in the function β̂2 (πt). As a final conclusion, we have

that the “indirect” effect of πt and Yt is nonlinear and non-monotonic, and

it varies significantly for different values of the monthly inflation rate indi-

cating to some extent the information problem in the U.S. credit market.
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The analysis of the effects of inflation on output per capita is also of

the utmost importance in Macroeconomics (see Fisher (1993), Bullard and

Keating (1995), Khan and Senhadji (2001), and Drukker et al (2008).) Our

approach differs from the standard in the use of semiparametric estimation

techniques, but our results are still comparable with the literature: we can

also obtain functions that describe the magnitude of the impact that πt

has on Yt, given the nonlinear effects of inflation.

Marginal Effects

We analyze the marginal effect of inflation as the partial derivative func-

tion of Yt with respect to πt keeping the interest rate rt at a fixed value.

When rt is fixed we have ∆ ln(rt) = 0. As a result, the marginal effects

function for Model 2 is given by

∂Yt

∂πt
|rt fiexed =

∂β̂1(πt)

∂πt
. (22)

One advantage of using the local linear estimation method is that, one

also obtains the derivative estimates at the same time which we plot in Fig-

ure 2. From Figure 2, we can observe the marginal effects vary nonlinearly

with the inflation rate. For example, when the initial inflation rate belongs

to the interval [−0.8%,−0.5%), an increase of inflation of one percent point

reduces absolute output by 0.03 percentage points on average. However,

as the initial inflation rate changes and it belongs, say, to the intervals

[0.0%, 0.5%) or [0.5%, 1.0%), the effect on output is an increase of 0.0075

and 0.012 percentage points on average, respectively.

We can make three points from these results. First, the partial marginal

effects increase with the inflation rate. Second, negative partial marginal

effects are associated with rates of inflation that are low enough. And,

third, positive partial marginal effects are observed for rates of inflation

that are sufficiently high.

4. CONCLUSIONS

In this paper, we extend the standard semiparametric smooth coefficients

model to allow for nonstationary dependent variables by introducing a time

trend among the regressors. We find the varying coefficient associated with

the time trend t and other stationary regressors have different convergence

rates. We establish the asymptotic properties of the new estimation.

We applied this new technique of estimation and inference to evaluate

whether credit rationing is present in the U.S. credit market. We directly

test the following hypotheses: 1) Inflation is a key state variable that has
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FIG. 2. Marginal Effects with Fixed Interest Rate

nonlinear effects on output per capita; 2) The real interest rate on loans

has significant effects on output per capita that are nonlinear as well; 3)

The nonlinear coefficient associated with the interest rate can help detect

the presence of credit rationing in the U.S. market.

We found that the estimated smooth varying coefficients displayed strong

nonlinearities with respect to the inflation rate, verifying the adequacy of

having used a semiparametric smooth coefficient model, and also confirming

our hypotheses. We showed that, in general, the marginal effects of inflation

on output per capita can be either positive or negative. Moreover, the

marginal effect function is a monotonically increasing and concave function

of πt which display positive values when the monthly inflation rate is high

enough, but negative values otherwise.

APPENDIX A

Proof of Theorem 1

First, note that the right hand side of (5) has the form of A−1
1nA2n, where

A1n =

[
n∑

t=1

(
Xt

(Zt − z)Xt

)⊗2

Kh(Zt − z)

]
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and

A2n =
n∑

t=1

(
Xt

(Zt − z)Xt

)
Yt Kh(Zt − z).

Define Hn =

(
1 0
0 h

)
⊗Dn. Then we can write

HnA
−1
1nA2n = HnA

−1
1nHnH

−1
n A2n = [H−1

n A1nH
−1
n ]−1H−1

n A2n.

Thus, β̂(z) and β̂′(z) can be re-expressed as follows:

Hn

(
β̂(z)

β̂′(z)

)
= Sn(z)

−1 n−1
n∑

t=1

Kh(Zt − z)Yt

(
1

Zt,z,h

)
⊗
(
D−1

n Xt

)
,

(A.1)

where Sn = H−1
n AnH

−1
n , Zt,z,h = (Zt − z)/h. By adding and subtracting

terms we obtain

Yt = XT
t β(Zt) + ut, 1 ≤ t ≤ n,

= XT
t (β(z) + β′(z)(Zt − z) + β(Zt)− β(z)− β′(z)(Zt − z)) + ut.

(A.2)

Plug (A.2) into (A.1), and we have,

Hn

(
β̂(z)

β̂′(z)

)
= Hn

(
β(z)
β′(z)

)
+ Sn(z)

−1 n−1
n∑

t=1

Kh(Zt − z)(
1

Zt,z,h

)
⊗
(
D−1

n Xt

) [
XT

t (β(Zt)− β(z)− β′(z)(Zt − z)) + ut

]
= Hn

(
β(z)
β′(z)

)
+ Sn(z)

−1 n−1
n∑

t=1

Kh(Zt − z)(
1

Zt,z,h

)
⊗
(
D−1

n Xt

) [
XT

t (β(Zt)− β(z)− β′(z)(Zt − z))
]

+ Sn(z)
−1 n−1

n∑
t=1

Kh(Zt − z)

(
1

Zt,z,h

)
⊗
(
D−1

n Xt

)
ut,

and

Sn(z) = H−1
n A1nH

−1
n

= n−1
n∑

t=1

Kh(Zt − z)

(
1

Zt,z,h

)⊗2

⊗
(
D−1

n Xt

)⊗2
=

(
Sn,0(z) Sn,1(z)
Sn,1(z) Sn,2(z)

)
,
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where for j = 0, 1, 2, we use the notation

Sn,j(z) =
1

n

n∑
t=1

Kh(Zt − z)Zj
t,z,h

(
D−1

n Xt

)⊗2
.

Now, to facilitate the analysis of Sn,j(z), we first express Sn(z) as

Sn,j(z) =

(
Fn,j,0(z) Fn,j,1(z)
Fn,j,1(z)

T Fn,j,2(z)

)
, (A.3)

where (since (D−1
n Xt)

T = (XT
t1, t/n))

Fn,j,0(z) =
1

n

n∑
t=1

Zj
t,z,h Xt1 X

T
t1 Kh(Zt − z),

Fn,j,1(z) =
1

n

n∑
t=1

Kh(Zt − z)Zj
t,z,h Xt1 (t/n),

and

Fn,j,2(z) =
1

n

n∑
t=1

Zj
t,z,h Kh(Zt − z)

(
t2/n2

)
.

Define

M0(Zt) = fz(Zt)E(Xt1X
T
t1|Zt), M1(Zt) = (1/2)fz(Zt)E(Xt1|Zt)

and M2(Zt) = (1/3)fz(Zt).

By noting that Xt1 and Zt are stationary and using the standard change-

of-variable and a Taylor’s expansion argument, we know that n−2
∑n

t=1 t =

(1/2)+O(n−1) and n−3
∑n

t=1 t
2 = (1/3)+O(n−1). By the law of iterative

expectation, we have

E[Fn,j,0(z)] = E
[
Zj
t,z,h Xt1 X

T
t1 Kh(Zt − z)

]
= E

[
Zj
t,z,h E

(
Xt1 X

T
t1|Zt

)
Kh(Zt − z)

]
=

1

h

∫ (
Zt − z

h

)j

fz(Zt)E
(
Xt1 X

T
t1|Zt

)
Kh(Zt − z)dZt

=

∫
vj M0(z)K(v)dv + O(h2)

= M0(z)µj(K) +O(h2),
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where µj(K) =
∫
vjK(v)dvas defined before.

According to the same step as above, we have

E[Fn,j,1(z)] = M1(z)µj(K) +O(h2), (A.4)

E[Fn,j,2(z)] = M2(z)µj(K) +O(h2). (A.5)

By the kernel theory for the stationary mixing case (see Theorem 1 of

Cai, Fan and Yao (2000) for details) one can easily show that for l = 0, 1, 2

and j = 0, 1, 2,

Var [Fn,j,l(z)] = O((nh)−1).

Therefore,

Fn,j,l(z) = Ml(z)µj(K) +Op(h
2 + (nh)−1/2). (A.6)

We have defined S(z) earlier. Recall equation (6):

S(z) =

(
M0(z) M1(z)
M1(z)

T M2(z)

)
.

By definition of S(z) above, together with equation (A.6), (A.4), ( A.5)

and (A.3), we have

Sn,j(z) = µj(K)S(z) + op(δn), (A.7)

where δn = h2 + (nh)−1/2. By noting that µ0(K) = 1 and µ1(K) = 0,

we immediately obtain from the definition of Sn(z) (A.3), (A.6) and (A.7)

that

Sn(z) =

(
1 0
0 µ2(K)

)
⊗ S(z) +Op(δn). (A.8)

From (A.8), we immediately obtain that

Sn,0(z)
−1 = S(z)−1 + op(δn). (A.9)

Sn,0(z) is the upper-left corner d×d matrix of Sn(z). From (A.1), we have

Dn

[
β̂(z)− β(z)

]
≡ L1n + L2n, (A.10)

where

L1n = Sn,0(z)
−1 Bn(z), (A.11)
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with

Bn(z) = n−1
n∑

t=1

Kh(Zt − z)D−1
n XtX

T
t {β(Zt)− β(z)− (Zt − z)β′(z)},

and

L2n = Sn,0(z)
−1 n−1

n∑
t=1

Kh(Zt − z)ut D
−1
n Xt.

Define,

Gn,0(z) = n−1
n∑

t=1

Kh(Zt − z)Xt1X
T
t1 {β(1)(Zt)− β(1)(z)− (Zt − z)β′

(1)(z)},

Gn,1(z) =
n∑

t=1

Kh(Zt − z)Xt1 (t/n) {β(2)(Zt)− β(2)(z)− (Zt − z)β′
(2)(z)},

Gn,2(z) = n−1
n∑

t=1

Kh(Zt − z) (t/n)XT
t1 n{β(1)(Zt)− β(1)(z)− (Zt − z)β′

(1)(z)},

Gn,3(z) = nn−1
n∑

t=1

Kh(Zt−z) (t2/n2)n{β(2)(Zt)−β(2)(z)−(Zt−z)β′
(2)(z)},

so that

Bn(z) =

(
Gn,0(z) +Gn,1(z)
Gn,2(z) +Gn,3(z)

)
. (A.12)

Similar to (A.6), (A.4) and (A.5), by the kernel theory and an application

of Taylor’s expansion, it is easy to show that

E[Gn,0(z)] = h2 M0(z)

[
µ2(K)

2
β′′
(1)(z)

]
{1 +O(h)}

and Var[Gn,0(z)] = O((nh2)−1), so that

Gn,0(z) = h2 M0(z)

[
µ2(K)

2
β′′
(1)(z)

]
{1 +Op(γn)},

where γn = h + (nh2)−1/2. Further, following the proof above, we can

easily show that

Gn,1(z) = nh2 M1(z)

[
µ2(K)

2
β′′
(2)(z)

]
{1 +Op(γn)},

Gn,2(z) = h2 M1(z)

[
µ2(K)

2
β′′
(1)(z)

]
{1 +Op(γn)},
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and

Gn,3(z) = nh2M2(z)

[
µ2(K)

2
β′′
(2)(z)

]
{1 +Op(γn)}.

Plugging the above results into (A.12), we obtain

Bn(z) = h2 S(z)Dn

[
µ2(K)

2
β′′(z)

]
{1 +Op(γn)}. (A.13)

Substituting (A.13) into (A.11) and using (A.9) lead to

L1n = Dn h
2 µ2(K)β′′(z) {1 +Op(γn)},

Therefore,

D−1
n L1n = h2µ2(K)β′′(z) +Op(h

2γn). (A.14)

Finally, we consider L2n. Define

Tn(z) =

√
h

n

n∑
t=1

Kh(Zt − z)ut D
−1
n Xt =

(
Tn,1(z)
Tn,2(z)

)
with

Tn,1(z) =

√
h

n

n∑
t=1

Kh(Zt − z)ut Xt1

and

Tn,2(z) =

√
h

n

n∑
t=1

(t/n)Kh(Zt − z)ut.

By combining the above expressions with (A.10) and (A.14), we obtain

√
nh Dn

[
β̂(z)− β(z)− h2µ2(K)β′′(z) +Op(h

3)
]
= Sn,0(z)

−1 Tn(z).

(A.15)

To prove the asymptotic normality of the left hand side of (A.15), it suffices

to establish the asymptotic normality of Tn(z). Note that Tn,1 only involves

stationary variables. Hence, by the kernel estimation theory for stationary

mixing data (see Theorem 2 of Cai, Fan and Yao (2000) for details) we

have

Tn,1(z)
d→ N(0, σ2

uν0(K)M0(z) ). (A.16)

where ν0(K) =
∫
K2(v)v2dv. Also, we have

Tn,2(z)
d→ N(0, σ2

uν0(K)M2(z) ) = N(0, ν0(K)M2(z) ). (A.17)
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The covariance matrix is given by

Cov(Tn,1, Tn,2) = σ2
uh

−1E[Kh(Zt − z)Xt1(t/n)] = σ2
uν0(K)M1(z) +O(h).

Therefore, a combination of (A.16) and (A.17) leads to

Tn(z)
d→ N(0, V ),

where

V = ν0(K)

(
M0(z) M1(z)
M1(z)

T M2(z)

)
= ν0(K)S(z).

Therefore, by Slusky’s theorem, we have

√
nh Dn

[
β̂(z)− β(z)− h2µ2(K)β′′(z)

]
d→ N(0, ν0(K)S(z)−1).
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