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We use heterogeneous autoregressive (HAR) model with high-frequency da-
ta of Hu-Shen 300 index to investigate the volatility-volume relationship via
the volatility decomposition approach. Although we find that the continu-
ous component of daily volatility is positively correlated with trading volume,
the jump component reveals a significant and robust negative relation with
volume. This result suggests that the jump component contains some “pub-
lic information” while the continuous components are more likely driven by
“private information”. Discussion of the intertemporal relationship support-
s the information-driven trading hypothesis. Lagged realized skewness only
significantly affects the continuous component.
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1. INTRODUCTION

Why do people trade and how do prices move? The trading volume and
volatility are two key concepts in finance. By using high frequency data
for Hu-Shen 300 index, we investigate the relationship between the trading
volume and volatility in the Chinese stock market. The empirical results
found in this paper shed light on the discussion of different finance theories
on trading volume.
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Since Black and Scholes (1973), the price process for a financial asset has
often been modeled as a continuous diffusion process. However, the intra-
day data shows sharp price changes in some trading days. Those sharp
changes are usually called price jumps since they cannot be described by a
continuous process. Barndorff-Nielsen (2004) developed a rigorous theory
based on semi-martingale processes and pointed out that daily volatility,
known as quadratic variation, can be easily decomposed into a continuous
component due to small price changes and a jump component contributed
by large price movements. There have been plenty of researches discussing
those two components themselves, but studies on the relationship between
different volatility components and other financial variables are quite limit-
ed. Among those variables, we focus on trading volume which can provide
great deal of information on price movement (Wang (2002)).
Studies since 1970’s have indicated a strong positive contemporal corre-

lation between volume and volatility1, e.g. Karpoff (1987), Gallant et al.
(1992), Zhao and Wang (2003), Yin (2010) etc. However, two very recent
papers challenged this stylized fact using the volatility decomposition tech-
nique. Giot et al. (2010) finds that only the continuous component shows a
positive contemporal volume-volatility relation, while the jump component
shows negatively correlation. Amatyakul (2010) also presents the evidence
showing similar negative correlation. To our best knowledge, there exists
no such research on China’s stock market. Using high-frequency data for
Hu-Shen 300 index2, we also find a significant and robust negative con-
temporal correlation between the jump component and trading volume,
consistent with the finding for the US market.
Although researchers tend to agree that jumps have “information” im-

plications, there is no clear conclusion on which type of information lies
behind it. The negative correlation above provides a piece of empirical ev-
idence which implies that the information behind price jump has “public”
nature. This “public information” could be the release of macroeconom-
ic information (Andersen et al. (2007)) or important market information
exposure(Wang et al. (2011)). Even price jump itself can be a “public
information”, given market participants believe that there is important in-
formation to back it up. For the first type of information, such as a large
deviation between expected and actual CPI, traders might have a consis-
tent opinion on the valuation of influenced stocks resulting in a quick and

1Various theories have been proposed to explain this phenomenon such as mixed
distribution hypothesis by Clark (1973), Tauchen and Pitts (1983), Andersen (1996);
asymmetric information hypothesis by Kyle (1985) and Wang (1994); divergence of
opinion hypothesis by Varian (1985).

2Hu-Shen 300 index is selected because:1)It is composed with large, high liquidity
stocks from both Shanghai and Senzhen stock exchange which makes it a good repre-
sentation of China’s stock market; 2)It is the underline asset of index futures, therefore
its data is much more reliable and available.
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sharp price change without much trade. Hence there is a negative correla-
tion. For the second type of information, such as a sharp drop or rise in
stock price in the middle of the day, traders might temporarily stop trading
to revaluate their portfolios. Such actions also result a negative correla-
tion. On the contrary, if “private information” could provoke jumps, we
are more likely to find a positive correlation, because “private information”
needs large trading volume to reveal itself3.
Besides the contemporal relations, we have also discussed the intertem-

poral volume-volatility relationship. Those results will provide evidence
which can distinguish different driving forces behind trading 4. Assume
there are two kinds of traders. One of them (referred as “information trad-
er”) uses information (price, macroeconomic information, etc.) as a guide
of their portfolio selection and the other (referred as “liquidity trader”)
trades only in need of liquidity. When liquidity traders sell their stocks
due to exogenous reasons (such as an investing opportunity outside the
stock market), people who are willing to take over those stocks require a
compensation for loss of liquidity. This compensation is archived (in e-
quilibrium) in a form of a lower current price and a higher future return.
Since price movements in conjunction periods are opposite, the volatili-
ty is higher. Higher liquidity demand is followed by larger compensation
and larger volatility in the following period. Therefore, as Campbell et al.
(1993) showed, a positive correlation between current volatility and lagged
trading volume is likely to be observed in liquidity trading. When informed
traders trade their stocks due to private information, that information will
spread over the market through price signal. For example, informed traders
buy stock due to a piece of private good news and the stock price will rise.
Other traders observe it and buy the same stock, resulting in a price rise
afterwards. Since price movements in conjunction periods are in the same
direction, the volatility is lower. The more the information exposed in the
current period (means a higher volume), the lower the change in price in the
following period and the lower the volatility accordingly. Therefore, when
information-driven trading is dominated, we expect to observe a negative
correlation between current volatility and lagged trading volume5. Wang

3Our result also shows a positive correlation between the continuous component and
contemporary trading volume indicating that the continuous component is a result of
“private information” spillover between traders.

4Most papers on the intertemporal relationship concentrate on forecasting, i.e.
Tauchen et al. (1996), Rui et al. (2003),Chen et al. (2001). In this paper, we only
focus on the logic behind this phenomena and leave the forecast implication for future
research.

5Here is a numerical example. Assume there is no information. The stock price is
100 and volatility is 0. When there only exist liquidity trading, the current price drops
to 98 and the following price returns to 100 (results a liquidity compensation equals 2).
The following period’s volatility is 2/98 > 0. If the liquidity demand is stronger, we
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(2004) refers the first scenario as the liquidity-driven trading hypothesis
(LTD), while the second scenario is referred as the information-driven trad-
ing hypothesis (IDT). Our results indicate a significant negative correlation
between current volatility and lagged trading volume after controlling dy-
namics of volatility itself and contemporal volume-volatility relation. This
suggests that IDT is supported at least for our sample, Hu-Shen 300 index.
Furthermore, we decompose daily volatility into continuous and jump

components using Hu-Shen 300 index high-frequency data and discuss the
intertemporal relationship for different parts. Results show that only the
continuous component and trading volume have a significant negative in-
tertemporal correlation. As we have pointed out that the continuous com-
ponent volatility is provoked by “private information”, we conclude that
“private information-driven trading” dominates the trading.
Our empirical analysis is based on the following building blocks. The

volatility decomposition technique follows Barndorff-Nielsen and Shephard
(2006). The volatility dynamics is modeled by heterogenous autoregressive
model (HAR) proposed by Corsi (2009). Return’s leverage effect is modeled
by the same setup in Bollerslev et al. (2009). The treatment of trading
volume is referred to Wang (2004).
We add a new term - “realized skewness” of return in our model. As

earlier studies on return skewness usually use daily returns, they can only
discuss skewness on the weekly, monthly or even quarterly frequency. U-
tilizing high-frequency data, we are able to discuss it on daily frequency.
Realized skewness is included in our model since it reflects whether the
price movement is “large rises and small drops” or “small rises and large
drops”, or more intuitively, the “market sentiment”. Our results show
skewness is negatively correlated with the total and continues component.
It is irrelevant with the jump component. Therefore, the downside market
sentiment will raise future volatility only through continues component.
As an attempt of using high frequency trading volume data, we utilized

a simple notion of mean excess (intra-day) trading volume to characterize
its dynamics around jumps. The results show that no significant illiquid or
overliquid before jumps and a substantial and persistent volume shrinkage
after jumps.
This paper differs from earlier studies on this issue in several ways. First,

we use high-frequency data to calculate nonparametric volatility measures,

expect a sharper drop, say to 96, then the following period’s volatility is 4/96, which is
higher than 2/98. On the contrary, if there exist informational trading, the stock price
will eventually rise to 104. However, since information is revealed by price change, the
current price will not jump to 104 directly. It will jump to a smaller one, say to 102, then
move to 104 in the following period. If the information is revealed more in the current
period, the price will change more in the current period, say to 103, which leaves the
return equals 1/103 < 2/102 in the following period. In terms of volatility, it is smaller.
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which are more accurate and leads to more reliable results. Second, we
use volatility decomposition technique and discuss the volume-volatility
relationship for both continuous and jump components. Although volatil-
ity decomposition technique has been applied to Chinese stock market by
some researchers, no study has focused on the relationship between differ-
ent components and other financial variables yet. Third, our econometric
model is more flexible and capable to discuss the intertemporal correla-
tion while controlling for volatility dynamics and price effect. Fourth, we
have discussed realized skewness on daily frequency using high-frequency
data. Last, a preliminary discussion using high frequency trading volume
is provided.
The rest of the paper is organized as follows. Section 2 provides a brief

introduction to volatility decomposition; section 3 discusses the data we
used; section 4 focuses on model setups; section 5 summarizes main result-
s and section 6 concludes.Selected nonlinear relationships and robustness
check are also discussed.

2. VOLATILITY DECOMPOSITION

Volatility decomposition is based on quadratic variation theory. The
instant price change dpt follows a geometric Brownian motion with jumps.

pt =

∫ t

0

μ(s)ds+

∫ t

0

σ(s)dW (s) +

N(t)∑
i=1

κ(sj)

μ(t) is a continuous process with finite variance, σ(t) > 0 is a càdlàg instant
volatility process,W (t) is a Brownian motion and N(t) is a poisson process
with time varying intensity λ(t), κ(sj) is the magnitude of j’th jump. The
quadratic variation process [pt] is defined as:

[pt] = plim

n−1∑
j=0

(pτj+1 − pτj)
2 →

∫ t

0

σ2(s)ds+

N(t)∑
j=1

κ2(sj) n→ ∞

where τjn is a partition of [0, t]. When n → ∞, supj{pτj+1 − pτj} → 0,
the limit result provides us a new view of volatility. The first part is
called integrated variance, which reflects the contribution of variation from
the continuous price process. The second part is the sum of square of
jumps’ magnitude, which reflects the contribution of variation from the
jump process. The second part will be zero in the absence of price jump.
In practice, price process can be sampled by different methods such as

sampling with every k seconds (calendar time sampling, CTS), sampling
with every k trades (tick time sampling, TTS) etc. We use CTS for this
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paper. Let rt,j = pt−1+j/M − pt−1+(j−1)/M , where M is the size of daily
sample. The sample counterpart of the above limit is

RVt =

M∑
j=1

r2t,j →
∫ t

t−1

σ2(s)ds+

N(t)∑
j=N(t−1)+1

κ2(sj) M → ∞

Literature documented this statistic as realized quadratic variation or re-
alized variation(RV ). RV converges to quadratic variation as sampling
frequency increased or equivalently sampling interval goes to zero. RV is
the sum of the continuous component and the jump component. We refer
it as total variance that is equivalent to traditional volatility measures such
as squared return, absolute return(Chow and Lawler (2003)) and GARCH
type filtered volatility(Fabozzi et al. (2004)).
Barndorff-Nielsen (2004) proposed a consistent integrated variance esti-

mator called bipower variation (BV ):

BV = μ−2
1

M∑
j=2

|rt,j ||rt,j−1| →
∫ t

t−1

σ2(s)ds M → ∞

where μ1 =
√
π/2. When sampling frequency increases, price jump will

not affect BV since at least one of |rt,j | and |rt,j−1| will shrink to zero as
sampling interval shrinks to zero.
The natural implication from above is that the jump component can

be measured non-parametrically by the difference between RV and BV .
According to the simulation study by Huang and Tauchen (2005), the log-
arithm of RV and BV will deliver more stable results. Therefore, we use
Jt = {ln(RVt)− ln(BVt)} as the jump measure.
In theory, Jt cannot be negative. Since the sampling interval cannot

approach to zero, it is possible to get a negative Jt. There are two possible
methods to deal with it. One of then is to take Jt < 0 as measurement
error (i.e. Bollerslev et al. (2009)). The other way is to determine jumps
according to a critical threshold from the statistical distribution of Jt.
Barndorff-Nielsen and Shephard (2006) show that:

Zt =

√
M√

(μ−4
1 + 2μ−2

1 − 5)IQtBV
−2
t

{ln(RVt)− ln(BVt)} → N(0, 1)

where IQt is estimated via Quad-power variation:

IQt =Mμ−4
1

M∑
i=4

|rt,i||rt,i−1||rt,i−2||rt,i−3| →
∫ t

t−1

σ2(s)ds
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Therefore, we define J∗
t = {Jt|Zt > α} as the continuous component,

where α is the critical value. The limit results also indicate that Jt is a
heteroskedastistic truncated normally distributed variable.
With non-truncated data, we can use the whole sample and it is free

from selecting a critical value for jump test. Truncated data enables us to
focus on statistically significant jumps but it will be subject to severe data
loss. We use non-truncated data first then use truncated data to confirm
results.

3. DATA

The raw data in this paper is Hu-Shen 300 index (SZ399300) 1 minute
high-frequency data ranging from 01/04/2007 to 12/31/2010. The data
source is Hexun database. After eliminating trading days with missing
data, the final dataset contains 947 days.
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FIG. 1. Volatility signature plot for Hu-Shen 300 index (2007-2010)

In theory, sampling frequency should be as high as possible in order to
accurately estimate RV . However, in the existence of microstructure noise,
high sampling frequency will induce strong noise interference. Here, we use
volatility signature plot to determine the optimal sampling frequency.
Specifically, we calculate RV , BV and J using sampling interval ranging

from 1 to 12 minutes and present the result in Figure 1. All of the three
variables are stable when the sampling intervals are larger than 5 minutes.
Therefore, we use “5 minutes” for our sampling interval which is consistent
with existing literatures. However, since the Hu-Shen 300 index is a non-
tradeable asset, the signature plot is upward sloped, unlike the downward
sloped curve for individual stocks. Similar results for S&P 500 cash index
can be found in Huang et al. (2007). See Hansen and Lunde (2006) for
further discussions. We also use the “rule of thumb” optimal (equal space)
sample size proposed by Bandi et.al.(2008) to confirm the optimal sampling
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frequency. Specifically, the optimal sample size m∗ is:

m̂∗
t =

⎧⎨⎩mL

3

mL∑
j=1

r̂4j,t

(∑T
t=1

∑m
j=1 r̂

2
j,t

Tm

)−2
⎫⎬⎭

1/3

where T is number of days in the sample, m is number of data points each
day mL correspond with a lower frequency. Bandi et al. (2008) suggests
using “15 minutes” for mL

6. Substituting data into the formula, we have
the optimal sampling frequency on average is 4.6782.
Before the opening of the morning market, there is a “call auction” period

which is different from “continuous auction” used for the rest of the day.
Therefore, we eliminate the first 1 minute from the first 5 minutes and
leave the other 5 minutes’ data intact, this procedure also eliminates the
impact of overnight return on the calculation of realized measure 7. Using
volatility decomposition method mentioned above, we decompose Hu-Shen
300 index volatility into the continuous component (measured by BV ) and
the jump component (measured by J). The corresponding time series are
plotted in Figure 2 and basic statistics are listed in Table 1.

TABLE 1.

Basic statistics of different volatility components

Series mean variance median skewness kurtosis Ljung-Box(10) ADF(10) p

ln(BVt) -8.3036 0.6956 -8.3216 0.1804 2.9039 2470.01 0.0003

ln(RVt) -8.1832 0.6552 -8.2190 0.1813 2.8237 2484.75 0.0004

Jt 0.1204 0.0238 0.1050 0.6717 3.8956 52.56 0.0000

rt 0.0004 0.0006 0.0025 -0.1805 5.6466 13.81 0.0000

ln(Vt) 1.7799 0.2250 1.8253 -0.2302 2.4469 5412.71 0.0100

From basic statistics, we find that compared with RV and BV , the log
version of them are not far from normal distribution in terms of skewness
and kurtosis8. The mean and median of ln(RV ) are larger than ln(BV )
which is consistent with theory. ln(RV ) and ln(BV ) have strong persistent
features while J is far less persistence, indicated by Ljung-Box statistics.
Such feature was also documented in Bollerslev et al. (2009), Chen and
Wang (2010). The fact that the jump component is less persistent implies
that it is much more difficult to predict it.

6Bandi et al. (2008) show that the optimal sampling frequency is (Qt/(E(ε2t ))
2)1/3,

where Qt =
m
3

∑m
j=1

ˆr4j,t and suggest using 15 minutes for estimation.
7Lunch break is different from morning opening since it is much shorter and does not

involve call auction.
8Other benefits of taking logarithm can be found in Barndorff-Nielsen and Shephard

(2005).
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FIG. 2. Time series plot for data
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Gallant et al. (1992) used dummies and time trends to preprocess trading
volume series, since they found nonstationary components in the data. Our
pre-test on stationary shows in our sample period, Hu-Shen 300 index is
stationary at 2% level. Therefore, we leave trading volume intact.

4. MODEL SPECIFICATION

4.1. Volatility modeling

In this section, we use Corsi (2009) and Bollerslev et al. (2009) as build-
ing blocks with trading volume and realized skewness9 to model volatility.
Specifically, we model trading volume and its leverage effect as:

G(Vt, Vt−1, ...Vt−m) =
m∑

k=0

(φ1,k ln(Vt−k) + φ2,k ln(Vt−k)I{rt−k < 0})

According to mixed distribution hypothesis (MDH), both price move-
ments and trading volume are results of “information arrival” and litera-
tures often treat trading volume as a proxy of information intensity. The
second term is the leverage effect which enables our model to respond to
trading volume associated with price rise or drop differently. It is common
to consider a price rise as the result of “good news” and a price drop as the
result of “bad news”. When combined with trading volume, this leverage
effect is a much more direct measure of “good news” and “bad news” than
just return leverage.
Since the realized variance (total volatility) and the continuous com-

ponent have fairly similar statistical properties, we use the same model
to discuss both series. Here we take the continuous component volatility
for example. Corsi (2009) proposes a simple heterogeneous autoregressive
model (HAR) to model the long memory property of volatility dynamics.
We add a GARCH structure in the residual of HAR model to make it more
flexible.

ln(BV )t = α0 + αd ln(BV )t−1 + αw ln(BV )t−5:t−1 + αm ln(BV )t−22:t−1

+θ1
|rt−1|√
RVt−1

+ θ2I{rt−1 < 0}+ θ3
|rt−1|√
RVt−1

I{rt−1 < 0}
+θ4RSt−1 +G(Vt, Vt−1, ...Vt−m) + εt

εt =
√
htut

ht = exp(λ0 +
∑s

j=1 λj ln(BVt−j)) +
∑p

j=1 γjht−j +
∑q

j=1 βjε
2
t−j

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(MBV )

10

9Trading volume is a measures of trading intensity. Since we are using index data,
we do not have other trading intensity measure (such as the number of trades, average
number of shares traded per trade etc.(Jones et al. (1994), Chan and Fong (2000))) than
trading volume.

10For the model of total volatility, we replace BV for RV and name it as MRV

correspondingly.
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Where ut follows generalized error distribution (GED). Compared with
normal distribution, GED does better in fitting ln(BV )’s unconditional
distribution’s tail thickness.
The mean equation contains three parts: the first part (terms associ-

ated with αd, αw, αm) is the traditional HAR model terms of ln(BV ).
Specifically:

ln(BV )t+1−k:t =
1

k

k∑
j=1

ln(BVt−j)

By adding those terms, this model can capture the long memory proper-
ty of ln(BVt) indicated by Ljung-box statistic. We set k equals 5 and 22
for weekly and monthly average volatility respectively. The second part
(terms associated with θ1, θ2, θ3, θ4) captures varieties of return effects. It
includes: return level (θ1) known as the scale effect measuring the effect of
the lagged absolute return on current volatility, leverage effect (θ2, θ3) cap-
turing the asymmetric effects of positive and negative returns on volatility,
and realized skewness11 effect (θ4). The realized skewness is defined as:

RSt =
M∑
t=1

(
rt,j√
RVt

)3

It measures the asymmetry of intra-day returns. Considering “5 minutes”
returns in a certain trading day, if the absolute value of ups are larger than
the absolute value of downs, then there are a “fast rise, slow drop” scenari-
o and a positive realized skewness. On the contrary, if the absolute value
of downs are larger than the absolute value of ups, we have a “fast drop,
slow rise” scenario and a negative realized skewness. In this sense, realized
skewness is a measure of market sentiment. If market sentiment is opti-
mistic, the skewness is positive and if the market sentiment is pessimistic,
the skewness is negative. The last part (G(·)) captures trading volume’s
effect on volatility.
Barndorff-Nielsen and Shephard (2005) points out that volatility-of-volatility

is related with the magnitude of volatility. Therefore, we add ln(BV ) into
the variance equation. Unlike Bollerslev et al. (2009), we use multiplicative
heteroskedasticity rather than additive heteroskedasticity for the stability
of the solution since it guarantees a positive variance.
We model the jump component with HAR model rather than the simple

autoregressive model used in Bollerslev et al. (2009) because the significant
lags in AR(22) model all lie outside one week. HAR structure will make

11Here we use original moment rather than central moment to measure skewness since
the mean of 5 minutes returns are close to zero. The t-statistics for mean zero in all
trading days never exceeded 0.6. Amaya and Vasquez (2010) also uses this definition.
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the model more concise. Specifically:

ln
(
RV
BV

)
t
= δ0 + δd ln

(
RV
BV

)
t−1

+ δw ln
(
RV
BV

)
t−5:t−1

+ δm ln
(
RV
BV

)
t−22:t−1

+θ1
|rt−1|√
RVt−1

+ θ2I{rt−1 < 0}+ θ3
|rt−1|√
RVt−1

I{rt−1 < 0}
+θ4RSt−1 +G(Vt, Vt−1, ...Vt−m) + νt

⎫⎪⎬⎪⎭ (MJ)

where

ln(
RV

BV
)t+1−k:t =

1

k

k∑
j=1

ln(
RV

BV
)t−j

Since ln
(

RVt

BVt

)
’s distribution has heteroskedasticity, we use HSK robust

standard error for inference. Like the continuous component’s model, there
are also three parts in mean equation: the first part captures serial corre-
lations; the second part contains scale, leverage and skewness effects; the
third part contains trading volume terms.

4.2. Calender effect on volatility

Amatyakul (2010) points out the importance of considering calender ef-
fect in the research in volume-volatility relationship. Extensive literatures
have cast interest on “calender effect” in China’s stock market, Zhou and
Chen (2004) shows that the volatility on Monday is higher than the average
level on Shanghai stock market. Gao and Kling (2005) found Fridays are
profitable in term of returns in Shanghai stock market. Zhang et al. (2005)
show that the calender effect changes violently through time depending on
whether traders formulate their portfolios based on calender effect or not.
Since former researches show that calender effects are highly time and asset
sensitive, we briefly discuss it in this section.
By adding dummy in simple HAR model, we have:

ln(BVt) = α0 + αd ln(BV )t−1 + αw ln(BV )t−5:t−1

+αm ln(BV )t−22:t−1 + δDJ,t + μt

ln(
RV

BV
)t = δ0 + δd ln

(
RV

BV

)
t−1

+ δw ln

(
RV

BV

)
t−5:t−1

+δm ln

(
RV

BV

)
t−22:t−1

+ δDJ,t + νt

where J ={Mon,...,Fri}. Based on rolling window estimation with a win-
dow set to 250 days, we present t-statistics for corresponding daily effect
in Figure 3. The dot line is ±1.64 which corresponds to significant level
equals 10%.
We only report weekdays that have t-statistics cross significant bound-

aries. For the continuous component, only Monday and Tuesday’s dummies



RELATIONSHIP BETWEEN VOLATILITY AND TRADING VOLUME 223

0 100 200 300 400 500 600 700
−3

−2

−1

0

1

2

3

B
V

 W
ee

kl
y 

D
um

m
y 

t−
st

at

0 100 200 300 400 500 600 700
−3

−2

−1

0

1

2

3

J 
W

ee
kl

y 
D

um
m

y 
t−

st
at

FIG. 3. Rolling windows estimation (U:Continuous component,L:Jump component)

cross the significant boundaries for a considerable period of time and nev-
er change sign during the sample period. For total volatility RV , we use
the same setup as BV and replace BV with RV . Since the results are
almost the same as BV ’s, we do not include them for saving space. On the
contrast, the jump component does not have recognizable calendar effect
although some dummies cross significant boundaries occasionally (but all of
which cross boundaries change signs during sampling period). Therefore,
we include Monday and Tuesday dummies in the continuous component
and total volatility model, and do not include any weekday dummy in the
jump component model.

5. ESTIMATION RESULTS

In this section, we focus on results of the continuous component’s mod-
el MBV and the jump component’s model MJ . Since results of the to-
tal volatility model MRV is consistent with former literatures (e.g. Wang
(2004)) and similar to the continuous component’s model, we only report
results related to dynamics volume-volatility relation.

5.1. MBV (The continuous component) model

There are four order parameters in this model: the lag order of trading
volume m, the lag order of GARCH model (p, q) and the lag order of
ln(BV ) in variance equation s. Here, we set m equals to 1 and 2 to discuss
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contemporal and intertemporal volume-volatility relation. For given m,
BIC criteria shows (p, q, s) = (1, 1, 1) as a reasonable and concise choice.
Results are presented in Table 2 with t-statistics in parentheses. (1), (2)
and (3) are models without calender effect dummies while (1

′
), (2

′
) and

(3
′
) are models with calender effect dummies.

TABLE 2.

Volume-volatility relation: the continuous component

(1) (1
′
) (2) (2

′
) (3) (3

′
)

α0 -0.942 (3.95) -0.899 (3.79) -1.260 (5.63) -1.253 (5.63) -1.268 (5.66) -1.243 (5.56)

αd 0.427 (10.78) 0.428 (10.51) 0.374 (10.26) 0.374 (10.19) 0.501 (14.54) 0.500 (14.45)

αw 0.317 (5.64) 0.315 (5.60) 0.328 (6.52) 0.328 (6.48) 0.273 (5.95) 0.274 (5.95)

αm 0.159 (3.32) 0.162 (3.38) 0.233 (5.08) 0.233 (5.10) 0.160 (3.69) 0.161 (3.70)

θ1 0.086 (3.27) 0.077 (2.91) 0.061 (2.51) 0.052 (2.13) 0.079 (3.42) 0.075 (3.19)

θ2 -0.097 (1.84) -0.099 (1.90) -0.065 (1.33) -0.061 (1.23) 0.246 (2.20) 0.237 (2.11)

θ3 0.152 (3.45) 0.155 (3.51) 0.233 (5.66) 0.236 (5.72) 0.233 (6.07) 0.234 (6.05)

θ4 -0.616 (3.53) -0.592 (3.40) -0.306 (1.88) -0.255 (1.58) -0.515 (3.27) -0.496 (3.15)

φ1,0 0.235 (6.39) 0.238 (6.46) 0.963 (14.87) 0.964 (14.77)

φ2,0 0.194 (11.49) 0.191 (11.29) 0.220 (13.20) 0.217 (13.03)

φ1,1 -0.734 (10.50) -0.736 (10.45)

φ2,1 -0.187 (3.12) -0.181 (3.00)

λ0 -8.882 (4.02) -8.865 (3.96) -7.665 (3.69) -7.651 (3.65) -9.845 (3.89) -9.693 (3.83)

λ1 -0.545 (2.40) -0.540 (2.35) -0.404 (1.93) -0.401 (1.91) -0.521 (2.00) -0.503 (1.95)

β1 0.068 (2.60) 0.064 (2.50) 0.065 (2.35) 0.063 (2.27) 0.036 (2.79) 0.035 (2.75)

γ1 0.882 (21.26) 0.887 (21.06) 0.875 (16.52) 0.878 (16.27) 0.942 (45.99) 0.943 (45.48)

ln(ν) 0.419 (6.87) 0.418 (6.83) 0.406 (6.46) 0.400 (6.33) 0.566 (8.62) 0.571 (8.76)

BIC 1492.1 1498.8 1349.3 1258.6 1235.5 1246.0

LogL. -701.7 -698.2 -623.4 -621.3 -559.7 -558.1

Absolute t statistics in parentheses

Firstly, αd, αw and αm are significantly positive indicating a highly per-
sistent feature which is consistent with Ljung-Box statistics. Secondly, the
autocorrelation is declining along with time, i.e. αd > αw > αm which is
different from US market’s results (αw is larger than αw and αm) reported
in Bollerslev et al. (2009). Furthermore, the coefficient of lagged monthly
average volatility is much larger than it is in US market indicating the
“long memory” in Hu-Shen 300 index is stronger.
Secondly, we focus on return effects on volatility through θ1, θ2, θ3.

θ1 is positively significant at 5% level suggesting that a higher current
absolute return will result in a higher future volatility even after controlling
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the dynamics of volatility by HAR structure12. θ2 is not significant in
most models and changes sign occasionally. Therefore, the “sign” effect is
not stable. θ3 measures the traditional leverage effect and it is positively
significant, which coincides with extensively documented leverage effect in
literatures.
θ4 indicates how lagged skewness affects current volatility. It is significant

at 12% level when we only control contemporal trading volume and it is
significant at 1% under all other settings. The negative coefficient means
that an increase in lagged skewness will reduce current volatility while a
decrease in lagged skewness will increase current volatility. As we discussed
above, skewness is an indicator of relative speed between ups and downs,
that is related to market sentiment. If traders are in high sprite, the market
price will move up shapely and drop slowly, that results in an increase in
skewness and a decrease in volatility.
φ1,0 and φ2,0 capture trading volume and its leverage term’s effect on

the continuous component volatility. Results suggest both of them are
positively significant at 1% level. The positive relation highlighted by φ1,0
confirms long standing literature on contemporal volume-volatility relation.
φ2,0 indicates a significant leverage effect even when we have controlled
conventional leverage effect defined on returns.
The most interesting part is the dynamic volume-volatility relation sum-

marized in φ1,1 (volume level) and φ2,1 (volume leverage). Results indicate
that at least on 1% both of them are negatively significant, which means
higher lagged trading volume will reduce current volatility. And volume
related to price drop will reduce volatility more than it will when associated
with price rise. This also indicates volatility is more sensitive to negative
price movement.

5.2. MRV (total volatility) model results

The orders selection result is the same forMRV which supports (p, q, s) =
(1, 1, 1). Results can be found in Table 3. We only report mean equation
to save space. Model (1) does not contain weekday dummies while model
(2) does.
Like BV models, we still have αd, αw and αm positively significant with

decreasing order αd > αw > αm indicating a decrease in autocorrelation.
We also find a positive contemporal volume-volatility relation as well as a
negative relation between skewness and volatility. Importantly, the current
volatility is negatively correlated with lagged trading volume after control-

12Generally specking, absolute return is a noisy proxy of daily volatility. The fact
that θ1 is significant, even after we control lagged volatility indicates that “noise” also
contains information in volatility. We also add lagged jump components in our model
and find θ1 remains significant, which means θ1 is significant not just because it is
correlated with jumps.
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TABLE 3.

Total variance and trading volume

(1) (2)

α0 -1.193 (5.49) -1.169 (5.41)

α1 0.517 (14.71) 0.515 (14.64)

αw 0.262 (5.53) 0.263 (5.53)

αm 0.158 (3.64) 0.159 (3.46)

θ1 0.090 (3.69) 0.086 (2.07)

θ2 0.230 (2.15) 0.223 (5.39)

θ3 0.212 (5.43) 0.213 (4.26)

θ4 -0.665 (4.33) -0.655 (4.26)

φ1,0 0.888 (13.70) 0.886 (13.59)

φ2,0 0.218 (13.42) 0.216 (13.26)

φ1,1 -0.681 (9.73) -0.682 (9.67)

φ2,1 -0.177 (3.05) -0.172 (2.95)

BIC 1158.4 1168.2

LogL -521.16 -519.23

Absolute t statistics in parentheses

ling volatility dynamics and contemporal trading volume. According to
Wang (2004), this result suggests that the driving force behind Hu-Shen
300 stocks is mainly information. This result, combined with similar re-
sults in the continuous component volatility and results being presented
in section 5.3, indicates no significant intertemporal volume-volatility rela-
tion in the jump component, we conclude that “private information” is the
information which drives Hu-Shen 300 trading.

5.3. Nonlinear dynamic volume-volatility relationship

Barclay and Warner (1993) proposed “stealth trading hypothesis” con-
cluding that informed trader will use median trading volume to maximize
their private information’s value. The logic lies that heavy trading volume
will expose their favored information too quickly while light trading volume
will induce high transaction cost. Therefore, if the information-driven trad-
ing hypothesis holds, we expect to find a more negative relation in median
trading volume. We use MRV and MBV model to test this implication13.
Specifically, we re-define G(·) as:

φ1,0 ln(Vt) + φ1,1 ln(Vt−1) + φ2,1 {ln(Vt−1)}2

13Since no dynamic volume-jump volatility is found, we do not discuss nonlinear
relation between them.
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In Table 4, (1) is for total volatility and (2) is for the continuous component
volatility.

TABLE 4.

Nonlinear volume-volatility relation

(1) (2)

α0 -0.317 (12.89) -0.321 (1.17)

α1 0.499 (5.07) 0.493 (12.97)

αw 0.271 (3.41) 0.273 (5.32)

αm 0.163 (2.90) 0.167 (3.51)

θ1 0.084 (1.57) 0.075 (2.70)

θ2 -0.073 (4.42) -0.077 (1.58)

θ3 0.189 (3.93) 0.206 (4.86)

θ4 -0.648 (10.90) -0.541 (3.12)

φ1,0 0.761 (6.91) 0.827 (11.92)

φ1,1 -1.397 (4.09) -1.482 (7.14)

φ2,1 0.230 (2.29) 0.239 (4.09)

BIC 1318.7 1385.5

LogL -597.9 -631.3

Absolute t statistics in parentheses

Results show that both volatilities have significantly positive coefficients
on lagged quadratic trading volume, which means there exists a minimum
variance trading volume. This reinforces stealth trading hypothesis and
information-driven trading.

5.4. MJ (The jump component) model

There is only one order parameter needed to be chosen in MJ model and
as before, we set m equals 1 and 2. We do not include any calender dummy
in MJ model since there is no recognizable calender effect. Furthermore,
we use HSK robust standard error for inference in model (1)-(3) because of
the heteroskedasticity in ln(RV/BV ). In model (4), we use the jackknife
standard error as a robustness check to guard against large jumps (outliers).
See Table 5 for results.
δd, δw and δm capture the autocorrelation in the jump component volatil-

ity. Among them, δm is the only significant coefficient since it is signifi-
cantly larger than the others. Similar results can be found in Bollerslev
et al. (2009), Chen and Wang (2010). This phenomena indicates that the
volatility clustering of the jump component is much weaker than the con-
tinuous component and it is unlikely to observe two large jumps happening
in conjunction days.
Return effects illustrated by {ψ1, . . . , ψ4} are all insignificant suggest-

ing that (at least in our sample) return information is not informative for
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TABLE 5.

Jump component and trading volume

(1) (2) (3) (4)

ψ0 0.048 (3.36) 0.113 (4.50) 0.125 (3.89) 0.125 (3.78)

δd 0.004 (0.12) 0.005 (0.13) 0.009 (0.23) 0.009 (0.22)

δw -0.026 (0.26) -0.050 (0.50) -0.052 (0.51) -0.052 (0.50)

δm 0.557 (4.40) 0.554 (4.46) 0.564 (4.49) 0.564 (4.46)

θ1 0.003 (0.36) 0.006 (0.63) 0.006 (0.64) 0.006 (0.64)

θ2 0.020 (1.26) 0.016 (1.01) -0.021 (0.52) -0.021 (0.52)

θ3 -0.008 (0.51) -0.015 (0.99) -0.017 (1.08) -0.017 (1.04)

θ4 0.022 (0.40) 0.001 (0.01) 0.005 (0.09) 0.005 (0.09)

φ1,0 -0.031 (2.84) -0.064 (2.60) -0.064 (2.57)

φ2,0 -0.005 (0.89) -0.006 (1.04) -0.006 (1.05)

φ1,1 0.027 (0.95) 0.027 (0.93)

φ2,1 0.021 (0.98) 0.021 (0.98)

adj. R2 0.027 0.034 0.035 0.035

Absolute t statistics in parentheses

predicting the next period’s jump component. Former researches show con-
tradictory results on return terms: Bollerslev et al. (2009) found a negative
ψ1 for S&P500 future index while Chen and Wang (2010) found a positive
ψ1 in Hu-Shen 300 index during 2006-2008. Therefore, we conclude that
return effects on the next period’s jump component are unstable.
φ1,0 and φ2,0 capture current trading volume and its leverage effect. The

former is negatively significant at least 5% level showing that higher trading
volume will reduce the current jump component volatility. The latter is
insignificant indicating there is no leverage effect in volume on the jump
component. φ1,1 and φ2,1 are insignificant suggesting that lagged trading
volume is non-informative. Negative contemporal volume-volatility in the
jump component is contradictory to traditional results. Such results are
not unique in China. Giot et al. (2010) reported such negative relation in
the largest 100 S&P 500 stocks. Although results depend on model setups,
the worth case still shows 76% negatively significant relations and only 4%
is positively significant.

5.5. Dynamics of trading volume around jumps

The negative correlation between jump component and trading volume
seems contradictory to common sense. How can price move without sub-
stantially increase in trading volume? The answer, we believe, lies in the
high frequency dynamics of trading volume around jumps. Since the jump
test proposed by Barndorff-Nielsen and Shephard (2006) can not identify
exactly which 5min return in a day contains jump (intra-day jumps), here
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we use truncation based jump test with Time-of-Day (TOD) volatility pat-
tern as benchmark to identify them:

TODj =
M
∑T

t=1 |rt,j |21
(|rt,j | ≤ τ

√
BVt ∧RVtM−�

)∑
t,j |rt,j |21

(|rt,j | ≤ τ
√
BVt ∧RVtM−�

)
Where j = 1, . . . ,M , τ > 0 and � ∈ (0, 0.5), and truncation threshold is

αt,j = τ
√
(BVt ∧RVt)× TODjM−�

A 5min return rt,j is “jump” when |rt,j | > αt,j. In practice, we use τ = 2.5
and � = 0.49 suggested by Bollerslev et al. (2011).
After identified intra-day jumps, we calculate the mean 5min trading

volume before and after jumps across trading days. When we enter the
intra-day level, empirical evidence show that trading volume exhibits a
U-shape patten during opening hours. Therefore, meaningful comparison
relay on a reasonable estimator of local level of volume. We define a simple
volume pattern estimator as:

Vpatten =
1

T (j)

T∑
t=1

lnVt,j × 1(|rt,j | ≤ αt,j)

Where T (j) = #{lnVt,j �= 0|t = 1, . . . , T }.
Also we define the trading volume 5× k minutes apart from jumps as:

l̃nV t,j(k) = lnVt,j × 1(|rt,j+k| > αt,j+k,

No jumps between j and j + k, j + k ∈ [1, 48])

This simply means that a 5min trading volume satisfies: 1) 5× k minutes
from a jump in the corresponding day, 2) there is no other jumps in this
5 × k minutes interval. The second criteria rules out possible compound
effect when there is more than one jump in a single day.
We measure the dynamics using mean excess trading volume (MEV)

defined as:

MEV (k) =
1

N(k)

T∑
t=1

M∑
j=1

(
l̃nV t,j(k)

Vpatten(j)
− 1

)
× 100%

Where N(k) = #{l̃nV t,j �= 0|t = 1, . . . , T ; j = 1, . . . ,M}.
Since stock market opens 4 hours a day, we plot this measure in Figure 4

for k ∈ [−24, 24]. The patten is quite clear: 1) Before jump, MEV is close to
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FIG. 4. Volume dynamics around jumps (T-120min to T+120min)

zero and there is no deterministic sign of illiquid or liquidity dry out. 2) At
jump, MEV indicates a sharp increase in trading volume which is coincide
with common sense that volume goes hand in hand with volatility. 3) After
jumps, trading volume shrinks substantially for at least half trading day
and such shrinkage is responsible for the negative correlation between jump
volatility and trading volume.
Amatyakul (2010) proposed three possible mechanisms for this negative

correlation: 1)Lack of liquidity: stocks are considered illiquid when trading
volume is light. In that situation where there are extremely few trades, al-
most every price movement will be detected as jumps. 2)Trader’s behavior:
people might halt their trading activities to reevaluate their investing op-
tions after seeing large price movements, therefore a negative correlation.
3)Public information-driven trading: if there is a piece of public informa-
tion in the market and traders hold a similar opinion of the effect of this
information (therefore, the similar opinion of the price of stock), the price
change will be done in short time without a lot of trade. Hence, we will
observe a negative correlation between the two.
In the light of intra-day volume dynamics around jumps, the first mech-

anism is not supported. Also, Hu-Shen 300 index is formulated based on
large and liquid stocks, it is hard to believe they are illiquid as a whole.
The other two are not exclusive. As “public information” is not clearly
defined, macroeconomic information release and important market infor-
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mation release (explanation 3), even price jump itself (explanation 2) will
serve as “public information”. Both of them suggests a volume shrinkage
after jumps which coincides with the patten presented in Figure 4.
Evidence on the first channel relies on research on traders and cannot be

fully investigated with aggregate index data. More appropriate data is high
frequency data for individual stocks or even for traders’ actions. Direct ev-
idence on the second channel is also inadequate and we only have indirect
evidence. Andersen et al. (2007) found that the jump component volatility
rises around the release of macroeconomic information which implies that
at least some jumps are related to public information release. Similar re-
search in China’s market can be found in Wang et al. (2011) which pointed
out a high correlation between some large jumps and important market
information exposure on Shanghai stock exchange index during 2007-2008.

6. ROBUSTNESS CHECK OF RESULTS

6.1. Subsample estimation

In this section, we divide full sample into two subsamples: sample A
(Jan/2007 - Dec/2008) and Sample B (Jan/2009 - Dec/2010).

TABLE 6.

Subsample estimations

(1a) (1b) (2a) (2b)

α0 -2.510 (4.94) -2.961 (7.00) δ0 0.143 (3.30) 0.260 (4.01)

αd 0.476 (10.04) 0.441 (7.62) δd 0.078 (1.42) -0.070 (1.41)

αw 0.294 (4.73) 0.289 (4.22) δw -0.142 (0.97) -0.014 (0.10)

αm -0.005 (0.06) 0.103 (1.85) δm 0.550 (3.26) 0.233 (1.20)

θ1 0.042 (1.31) 0.049 (1.38) θ1 0.023 (1.66) -0.005 (0.43)

θ2 -0.057 (0.36) 0.474 (2.31) θ2 -0.017 (0.30) 0.002 (0.02)

θ3 0.338 (7.40) 0.104 (1.73) θ3 -0.043 (1.91) 0.009 (0.35)

θ4 -0.585 (2.65) -0.346 (1.18) θ4 -0.022 (0.31) 0.025 (0.29)

φ1,0 1.063 (11.76) 0.104 (9.34) φ1,0 -0.075 (2.10) -0.080 (2.17)

φ2,0 0.260 (9.17) 0.048 (9.76) φ2,0 -0.006 (0.60) -0.008 (1.21)

φ1,1 -0.829 (8.82) -0.059 (3.61) φ1,1 0.011 (0.25) 0.013 (0.34)

φ2,1 0.051 (0.51) -0.007 (2.06) φ2,1 0.033 (0.89) -0.005 (0.16)

DM,T Y Y N N

LogL -269.9 -245.5 adj.R2 0.046 0.027

Absolute t statistics in parentheses

Table 6 presents the results on the continuous as well as the jump com-
ponent volatility in which (1) represents the continuous component model,
(2) represents the jump component model, (a) represents the sub-sample A
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and (b) represents the sub-sample B. To save space, we only report mean
equations. The following results are sub-sample robust.
For the continuous component volatility: 1)αd > αw > |αm| still holds.

2)contemporal volume-volatility relation is still significantly positive. 3)in-
tertemporal volume-volatility relation is still significantly negative. For the
jump component volatility: 4)contemporal volume-volatility relation is still
significantly negative.
The following results are sub-sample unstable. For the continuous com-

ponent volatility: 1)Lagged monthly volatility is insignificant in the first
sub-sample and even the sign changes between two sub-samples indicating
volatility is more persistent in the second sub-sample. 2)The leverage ef-
fect in the second sub-sample is insignificant while the skewness effect is
significant only in the first sub-sample. No significant serial correlation is
found in the second sub-sample.
Figure 7 shows results on the nonlinearity between volatility and trading

volume in sub-samples. Again, we only report mean equation. (1), (2), (a),
(b) are the same as above.

TABLE 7.

Nonlinearity dynamic volume-volatility relation: sub-sample estimation

(1a) (1b) (2a) (2b)

α0 -1.334 (2.41) -0.900 (1.51) -1.699 (2.89) -0.914 (1.48)

αd 0.524 (9.76) 0.413 (6.71) 0.521 (10.60) 0.387 (6.12)

αw 0.245 (3.41) 0.339 (4.33) 0.240 (3.71) 0.347 (4.26)

αm 0.068 (0.85) 0.081 (1.33) 0.028 (0.35) 0.096 (1.50)

θ1 0.079 (1.80) 0.034 (0.86) 0.063 (1.64) 0.025 (0.59)

θ2 -0.095 (1.47) 0.037 (0.57) -0.100 (1.56) 0.039 (0.55)

θ3 0.261 (4.47) 0.064 (0.84) 0.283 (5.54) 0.077 (0.94)

θ4 -0.749 (3.36) -0.560 (2.14) -0.622 (2.62) -0.463 (1.65)

φ1,0 0.840 (8.53) 0.687 (6.67) 0.941 (10.11) 0.793 (7.03)

φ1,1 -1.183 (3.58) -1.697 (4.15) -1.346 (4.03) -1.855 (4.09)

φ2,1 -0.177 (1.67) -0.348 (3.46) 0.206 (1.92) 0.371 (3.29)

LogL -302.8 -264.8 -305.7 -291.6

Absolute t statistics in parentheses

In both samples, the quadratic form of lagged trading volume is sig-
nificantly positive at 10% level. This indicates the existence of minimum
volatility trading volume in both sub-sample. The results are more signif-
icant in the second sub-sample. Also, the results are more significant in
the continuous component volatility than in total volatility since there is
no significant relation between the jump component and trading volume.
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6.2. Truncated jump component

Former discussion is based on the non-truncated jump component ln
(

RVt

BVt

)
which treats negative value as measurement error. In this section we use
jump test proposed by Barndorff-Nielsen and Shephard (2006) (Z statistic)
to identify statistically significant jumps (critical value set as α = 0.05) and
re-defined the jump component volatility as:

Jt = {ln(RVt)− ln(BVt)}I{Zt > cα}

The benefit of this is to ensure the nonnegativity of the jump component
volatility, but the results may depend on the selection of the critical value
of the test. Since the newly defined the jump component is truncated, we
use Tobit model following Giot et al. (2010)14.

TABLE 8.

Tobit model results

(1) (2) (3)

δ0 -0.113 (1.23) -0.176 (1.31) 0.263 (1.72)

δd 0.031 (0.30) 0.194 (1.14) -0.096 (0.74)

δw -0.416 (1.55) -0.542 (1.24) -0.400 (1.18)

δm 1.286 (3.05) 1.063 (1.47) 0.683 (1.27)

ψ1 0.014 (0.57) 0.053 (1.36) -0.002 (0.06)

ψ2 0.026 (0.22) 0.026 (0.15) 0.007 (0.04)

ψ3 -0.029 (0.70) -0.061 (1.02) -0.018 (0.29)

ψ4 -0.008 (0.05) 0.044 (0.20) -0.109 (0.49)

φ1,0 -0.133 (1.97) -0.152 (1.47) -0.198 (2.10)

φ2,0 -0.011 (0.67) 0.001 (0.05) -0.021 (1.13)

φ1,1 0.075 (0.99) 0.073 (0.62) 0.032 (0.31)

φ2,1 0.036 (0.59) 0.026 (0.24) -0.000 (0.00)

σ 0.355 (29.89) 0.383 (19.21) 0.326 (23.27)

Log likelihood. -457.5 -222.5 -225.3

Absolute t statistics in parentheses

The regression equation of latent variable is the same asMJ with truncat-
ed J instead of non-truncated J . Table 8 includes three models depending
on different samples: model (1) is for full sample, model (2) is for sub-
sample A and model (3) is for sub-sample B. In the full sample, although
it is not as significant as the linear model, Tobit model shows a signif-
icantly positive lagged monthly jump component volatility. Contemporal

14It is worth pointing out Tobit model is sensitive to HSK and non-normality of the
latent variable. Therefore, we suggest that the results gained by linear regression model
is at least equally important.
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negative volume-volatility relation on the jump component volatility is also
pronounced at 5% level in full and the second sub-sample. It is significant
at 15% level in the first sub-sample. No significant trading volume effect
is found on the jump component volatility.

7. CONCLUSION

We use the heterogenous autocorrelation (HAR) model to investigate
the volume-volatility relationship in China’s stock market via the volatil-
ity decomposition technique. Results suggest that the total volatility and
the continuous component volatility are positively correlated with current
trading volume, which coincides with the findings in the long lasting liter-
atures. However, the jump component volatility reveals a significant and
robust negative correlation with current trading volume. Considering the
data we use, this phenomena implies that the jump component contains
some kind of “public information” such as the macroeconomic news, mar-
ket information release or (given the common knowledge “jump contains
information”) price jump itself. Evidence from intra-day trading volume
suggests that jumps is unlikely provoked by liquidity dry out. The dynam-
ics patten of mean excess intra-day trading volume around jumps coincides
with “public information” implications.
Results about the intertemporal relationship shows that the total volatili-

ty is negatively correlated with lagged trading volume even after controlling
the volatility dynamics and contemporal volume. Such findings support the
information driven trading (IDT) hypothesis discussed in Wang (2004).
More detailed discussion shows that negative intertemporal correlation can
only be found for the continuous component volatility. It indicates “private
information” is the information that drives Hu-Shen 300 trading. We also
find that the lagged price skewness is only negatively correlated with the
total and continuous volatility. This shows that market sentiment has in-
fluential power on volatility only through the continuous volatility. Jumps
are not affected by market sentiment.
A potential research topic is to discuss the volume-volatility relationship

for individual stocks as well as portfolios. By doing this, we can discuss how
characteristics of stocks affect the current findings. Relationship between
trading volume and other trading intensity measures is also an interesting
topic that is worth investigating.
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