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This paper explicitly solves, in closed form, the optimal consumption and
portfolio choice for an ambiguity averse investor in a Merton-type two assets e-
conomy where a risk premium follows a mean-reverting process. The investor’s
preferences are represented by the recursive multiple priors utility model de-
veloped by Chen and Epstein (2002). The investor’s utility depends on both
intermediate consumption and terminal wealth. Under the assumption of com-
plete markets, I use the martingale method to solve the dynamic optimization
problem in continuous time. I find that ambiguity can decrease the optimal
consumption-to-wealth ratio, the intertemporal hedging demand and the op-
timal portfolio allocation, but magnifies the importance of hedging demand in
the optimal portfolio allocation. In addition, ambiguity also increases riskless
savings.
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1. INTRODUCTION

The seminal work of Merton (1971) examines dynamic portfolio choice
when investment opportunities are time varying. The optimal portfolio
allocation, in general, deviates from the mean-variance efficient allocation
that only depends on the current risk-return trade-off. For investors with
long horizons, the intertemporal hedging demand is induced to hedge a-
gainst time variation in the future investment opportunities. Along this
active line of research, a large body of literature has analyzed how investors
engage in intertemporal hedging of stochastic variation in investment op-
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portunities. Among them, several papers assume that the risk premium
of a risky asset follows a mean-reverting process in the light of the empir-
ical evidence that stock returns are predictable. For example, Campbell
and Viceira (1999), Kim and Omberg (1996) and Wachter (2002) find that
mean reversion in the risk premium can substantially increase the optimal
demand for stocks when the level of risk aversion is greater than that of
logarithmic utility. Another important finding is that hedging demand in-
creases in the length of the investment horizon. This is consistent with
the popular advice made by financial professionals that younger investors
should invest more than older investors do.

These papers usually postulate that investors completely trust the spec-
ified law of motion of asset returns, and that their beliefs are represented
by a single probability measure. In this paper, however, I consider a mul-
tiple priors model in which an investor’s beliefs are characterized by a set
of priors. I then examine optimal consumption and portfolio choice when
the risk premium follows a mean-reverting (Ornstein-Uhlenbeck) process.
Rather than relying on a single subjective prior, the investor considers a
set of priors that are relevant to his decision making. Multiplicity in beliefs
gives rise to ambiguity and ambiguity aversion. I assume that the utility
preferences are represented by recursive multiple priors utility (hereafter
RMPU) proposed by Chen and Epstein (2002), which is a continuous-time
extension of the multiple priors model axiomatized by Gilboa and Schmei-
dler (1989).1 In the RMPU model, utility is defined as the minimum of
expected utilities over the set of priors, where the minimum captures the
investor’s concern about model uncertainty. Thus, the multiple priors mod-
el provides one way to distinguish ambiguity from risk. Ambiguity refers
to the situation where the investor is uncertain about a set of probabili-
ty distributions that governs investment opportunities, whereas risk refers
to the situation where a probability distribution can be precisely known.
The distinction has a well-grounded decision theoretic basis in that it is
consistent with the Ellsberg-type behavior.

I assume a Merton-type two-asset economy and constant relative risk
aversion (CRRA) utility. The investor’s utility is defined over both inter-
mediate consumption and terminal wealth. By means of the martingale
method developed by Cox and Huang (1989), I solve the optimal portfo-
lio choice and the consumption-to-wealth ratio explicitly in closed-form,
which accommodates easy economic interpretation and intuition. In order
to explicitly solve the model, I further assume that the risk premium and
the stock return are perfectly negatively correlated. This implies that the
markets is complete. In this paper, the assumption of complete markets

1Epstein and Schneider (2003) provide the axiomatic foundation for RMPU in discrete
time. Epstein and Miao (2003) apply the RMPU model to study asset prices in general
equilibrium.
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can be justified in the light of the empirical evidence that the estimated
correlation is close to -1 for different samples of data.2

The analytical and numerical results suggest that in the recursive mul-
tiple priors model, ambiguity decreases both myopic demand and hedging
demand when the level of risk aversion exceeds that of logarithmic utility.
In particular, ambiguity decreases myopic demand by deteriorating the cur-
rent risk-return trade-off perceived by investors. Ambiguity mitigates the
intertemporal hedging demand via the precautionary savings effect. The
precautionary savings motive makes the consumption-to-wealth ratio less
responsive to the variation in investment opportunities. As a result, the
incentive of hedging against low-consumption states in the presence of un-
favorable investment opportunities is tempered under ambiguity aversion.
Although ambiguity lowers the magnitude of hedging demand, it magni-
fies the importance of hedging demand in the optimal portfolio allocation.
Thus, an ambiguity-averse investor behaves more “conservatively” not on-
ly by investing less in stocks but also by steering his portfolio composition
more toward the intertemporal hedging demand.

The multiple priors model is sharply different from the smooth ambigu-
ity model recently proposed and axiomatized by Klibanoff et al. (2005).
In the multiple priors model, the two concepts of ambiguity and ambiguity
aversion are tied together, whereas in the smooth ambiguity model, am-
biguity is reflected by multiple probability distributions while ambiguity
attitude is captured by the aversion toward any mean-preserving spread
of conditional expected utility induced by the probability distribution over
the set of different models. Therefore, the concepts of ambiguity and ambi-
guity aversion are disentangled in the smooth ambiguity model. One major
limitation of the multiple priors model is that the size of the set of priors
not only reflects the magnitude of ambiguity but also represents the degree
of ambiguity aversion, making the comparative statics results difficult to
interpret. Klibanoff et al. (2009) extends the static model of Klibanoff et
al. (2005) to the recursive formulation. Hayashi and Miao (2011) further
generalize the model to allow for the separation between risk aversion and
intertemporal substitution and also provides the axiomatic foundation. Ju
and Miao (2011) employ the generalized recursive smooth ambiguity model
to study asset prices in endowment economies. Jahan-Pavar and Liu (2011)
further extend the model of Ju and Miao (2011) to production economies.

This paper is closely related to several others studying portfolio choice
and ambiguity. Maenhout (2004) derives an explicit solution to the optimal
portfolio rule when investment opportunities are constant and investors are
ambiguity averse. Uppal and Wang (2003) consider investing in multiple
assets with different degrees of ambiguity attitude toward different assets.

2See Barberis (2000) for details on parameter values.
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Maenhout (2006) studies the effects of ambiguity in the presence of a mean-
reverting risk premium. Liu (2010) generalizes Maenhout (2006)’s model
to recursive preferences. Using the recursive multiple priors utility model,
both Miao (2009) and Liu (2011) investigate dynamic portfolio choice under
incomplete information and ambiguity aversion. Chen et al. (2011) use the
recursive smooth ambiguity model to examine dynamic portfolio decisions
when investors engage in learning about ambiguous predictability.

In a comparison of this paper to Maenhout (2006), several differences
are noteworthy. First, Maenhout assumes utility over terminal wealth only.
The consumption-savings decision, however, is another important aspect of
the multiperiod optimization problem and would also be incorporated into
the portfolio choice problem. Further, assuming utility over consumption
can allow us to relate hedging demand to the consumption-to-wealth ratio
in a way that the analysis assuming utility over terminal wealth cannot.
Second, Maenhout uses the robust control approach of Anderson et al.
(2003). To obtain a closed-form solution, he further assumes that levels
of ambiguity must be scaled by some function of the investor’s lifetime
utility and the relative risk aversion parameter. The explicit solution to
the optimal portfolio choice is derived by solving the Hamilton-Jacobi-
Bellman (HJB) equation resulting from the optimization problem. Third,
Maenhout finds that with regard to the impact on the optimal portfolio
choice, an increase in the degree of ambiguity aversion is equivalent to
an increase of the same magnitude in effective risk aversion. This result
implies a form of observational equivalence. Ambiguity, therefore, has a
second order effect on the optimal portfolio choice in Maenhout’s model.
In this paper, however, the effect of ambiguity is of the first order.

The remainder of this paper is organized as follows: Section 2 presents
the investor’s optimization problem and solves the model using the martin-
gale method. Section 3 derives the value function, the optimal consumption-
to-wealth ratio and the optimal portfolio choice. Section 3 also discusses
the effects of ambiguity and provides economic explanation. Section 4 con-
cludes. Appendices include proofs and some properties of the solution.

2. THE MODEL

2.1. Recursive Multiple Priors Utility

The investor’s utility is defined on a terminal wealthWT (a non-negative
random variable which is FT− measurable, where FT is the information
filtration at time T ) and a consumption process c. Suppose that the con-
sumption process is nonnegative, progressively measurable with respect to

the filtration {Ft} and square integrable with E[
∫ T
0
c2tdt] < ∞. Also as-

sume that terminal wealth satisfies E(|WT |2) < ∞. The RMPU process
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is defined on a set of priors P, which is constructed through {Ft}-adapted
density generators θ = (θt) ∈ Θ satisfying sup |θt| ≤ κ, where κ ≥ 0.
According to Chen and Epstein (2002), this specification is referred to
as κ-ignorance. It can be shown that regular technical conditions (e.g.
Novikov condition, rectangularity, etc.) are satisfied under the κ-ignorance
specification (see Section 2.4, Chen and Epstein (2002)). The parameter κ
can also be interpreted as an ambiguity aversion parameter. Each density
generator θ delivers a (P, {Ft})-martingale (zθt )

zθt = exp

(
−1

2

∫ t

0

|θs|2 ds−
∫ t

0

θsdBs

)
, 0 ≤ t ≤ T.

where (Bt) is a Brownian motion under P , which is the reference probability
measure. The set of priors is constructed as

P =

{
Qθ : θ ∈ Θ,

dQθ

dP
= zθT

}
Because zθt is a martingale, it follows that

dQθ

dP

∣∣∣∣
Ft

= zθt

In particular, the investor is ambiguous whether (Bt) is a Brownian motion
with respect to the investor’s information filtration. Girsanov’s Theorem
implies that BQt ≡ Bt+

∫ t
0
θsds is a Brownian motion under any alternative

probability measure Q. The multiplicity of the set of priors captures the
investor’s doubt on the true model governing investment opportunities.

The utility process V Qt under each probability measure Q is defined as

V Qt = EQ

[∫ T

t

αe−ρ(s−t)u(cs)ds+ (1− α)e−ρ(T−t)u(WT )

]
, 0 ≤ t ≤ T.

where α determines the relative importance of intermediate consumption
versus terminal wealth in the utility process, u(·) is the instantaneous utility
function, and ρ > 0 is the subjective discount rate.

The RMPU process Vt(c,WT ) is defined as:

Vt(c,WT ) = min
Q∈P

EQ

[∫ T

t

αe−ρ(s−t)u(cs)ds+ (1− α)e−ρ(T−t)u(WT ) | Ft

]
(1)

where the minimization operator is taken over the set of priors. RMPU is
denoted by V0(c,WT ). The standard expected utility model can be obtained
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by setting κ = 0. It can be shown that the utility process {Vt(c,WT )} is
dynamically consistent and satisfies the backward stochastic differential
equation (BSDE)3:

dVt = [−u(ct) + ρVt +max
θ∈Θ

θt × σVt ]dt+ σVt dBt, VT = (1− α)u(WT ).

where the volatility term σVt is endogenous and is part of the complete
solution to the BSDE. Further, the optimal density generator can be char-
acterized by the following equation

max
θ∈Θ

θt × σVt = θ∗t × σVt , where θ
∗
t = κ× sgn(σVt ) (2)

where sgn(xi) = |xi| /xi if xi ̸= 0 and = 0 otherwise. It follows from (2)
that the equilibrium value of ambiguity is given by θ∗t = κ if σVt > 0. In
this paper, I consider constant and positive levels of ambiguity (θ∗t = κ
∀t), which is crucial for me to obtain a closed-form solution. Although it is
difficult to verify this condition explicitly in analytical form, the condition
is indeed verified to be true in the numerical analysis that follows.

The constant relative risk aversion (CRRA) utility function is:

u(c) =


c1−γ

1− γ
γ ̸= 1

log(c) γ = 1

where γ is the coefficient of relative risk aversion. Thus, Vt(·) is continuous,
increasing and strictly concave.

2.2. The Investor’s Optimization Problem

Suppose two assets, a risky asset and a risk-free asset, are available for
investments. The price S of the risky asset follows the process

dSt
St

= µtdt+ σdBt

where B is Brownian under P . The risk premium (market price of risk) X
is given by

Xt =
µt − r

σ
where r is the risk-free interest rate. Following Wachter (2002), we assume
that X follows an Ornstein-Uhlenbeck process

dXt = −λX(Xt − X̄)dt− σXdBt.

3See Chen and Epstein (2002) and EI Karoui and Quenez (2001) for rigorous proofs
and detailed discussions.
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The parameters σ and σX are assumed to be constant and strictly positive,
and λX is assumed to be greater than or equal to zero. The stock price and
the state variable (Xt) are perfectly negatively correlated, implying that
that the market is complete.

The investor possesses multiple priors that exist in the neighborhood of
the reference probability measure P . Under certain distorted probability
measure Q, the state processes become

dSt
St

= µtdt+ σ(dBQt − θdt)

and

dXt = −λX(Xt − X̄)dt− σX(dBQt − θdt)

where BQ is Brownian underQ. Ambiguity thereby imputes two distortion-
s to the price process and the mean-reverting process of the risk premium.
Under Q, the risk premium is X − θ.

In the multiple-priors model, the investor’s optimization problem is given
by

max
ct,ψt

V0(c,WT ) (3)

s.t. dWt = [(ψt(µt − r) + r)Wt − ct] dt+ ψtσWtdBt

where V0 is the utility defined in the RMPU (1). When the set of priors
collapses to a singleton, that is when κ = 0, one can obtain the model of
Wachter (2002) with α = 1. In that case, ambiguity is ignored, and the
investor maximizes utility over intermediate consumption.

Since the market is complete, I use the martingale method of Cox and
Huang (1989) to solve the dynamic optimization problem. First, I transfor-
m the problem into a static one. As in Cox and Huang (1989) and Wachter
(2002), I formulate a linear partial differential equation to characterize the
solution by the no-arbitrage argument. Finally, I use the guess-verification
method to explicitly solve for the optimal consumption-to-wealth ratio and
the optimal portfolio choice.

2.3. The Martingale Method under Ambiguity Aversion

No-arbitrage and market completeness imply that a state price deflator
process (state density process) exists and is unique. When the Novikov’s
condition holds, that is

E

(
exp

{
1

2

∫ T

0

X2
t dt

})
<∞,
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the state price deflator process ξ is given by

dξt
ξt

= −rdt−XtdBt.

In the martingale formulation, the solution to Problem (3) is equivalent to
the solution of the following static problem:

max
c,XT

V0(c,WT ) (4)

subject to the static budget constraint

E

[∫ T

0

ξtctdt+ ξTWT

]
≤W0. (5)

The first-order conditions for the optimal consumption and terminal wealth
can be expressed in terms of the supergradients of utility defined over the
optimal ct and WT .

4 The first-order conditions are given by

αe−ρtu′(c∗t )z
θ∗

t = yξt

(1− α)e−ρTu′(W ∗
T )z

θ∗

T = yξT

where pt(c) = αe−ρtu′(c∗t )z
θ∗

t and pT (c) = (1 − α)e−ρtu′(c∗t )z
θ∗

t are the
utility supergradients. The optimal consumption c∗t and terminal wealth
W ∗
T are then given by

c∗t = (yξt/z
θ∗

t )−
1
γ e−

1
γ ρtα

1
γ (6)

W ∗
T = (yξT /z

θ∗

T )−
1
γ e−

1
γ ρT (1− α)

1
γ (7)

where the constant y is the Lagrange multiplier associated with the opti-
mization problem (4). The multiplicity in priors is captured by the term
zθ

∗
, which distorts the state density process ξ. The Lagrange multiplier

y can be derived by substituting the optimal policies c∗t and W ∗
T into the

complementary-slackness condition (5), and can be explicitly expressed as

y =

(
E

[∫ T

0

(ξt)
γ−1
γ (e−ρtzθ

∗

t )
1
γ dt+ (ξT )

γ−1
γ (e−ρT zθ

∗

T )
1
γ

]
/W0

)γ
.

Define a new variable Kt = (yξt)
−1zθ

∗

t . By Ito’s lemma, it follows that

dKt

Kt
= (r +Xt(Xt − θ∗)) dt+ (Xt − θ∗)dBt.

4See Chen and Epstein (2002) for the definition of the supergradient of utility.
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In the martingale formulation, the value of wealth at time t depends on
the state price density and the optimal consumption stream and terminal
wealth and is given by

Wt = ξ−1
t Et

[∫ T

t

ξsc
∗
sds+ ξTW

∗
T

]
.

Thus, Wt gives the discounted present value over time of the process
(c,WT ), where the discount factor is the state-price density. In deriving
a closed-form solution, I follow the approach proposed in Cox and Huang
(1989) and construct a candidate function for Wt explicitly in terms of
the state variables Xt and Kt. I verify that the function admits a closed-
form solution and indeed delivers the solution to the optimal portfolio and
consumption decisions. Define

F (Kt, Xt, t) ≡Wt. (8)

By the no-arbitrage condition, one can show that F (Kt, Xt, t) satisfies the
following partial differential equation (PDE)

LF +
∂F

∂t
+ α

1
γK

1
γ

t e
− 1

γ ρt =

(
∂F

∂K
Kt(Xt − θ∗)− ∂F

∂X
σX

)
Xt + rF (9)

where the operator LF is defined as

LF =
1

2

∂2F

∂2X
σ2
X +

1

2

∂2F

∂2K
K2(X − θ)2 − ∂2F

∂K∂X
K(X − θ)σX

+
∂F

∂X
(−λX(X − X̄)) +

∂F

∂K
K (r +X(X − θ))

and the boundary condition is

F (KT , XT , T ) = K
1
γ

T e
− 1

γ ρT (1− α)
1
γ .

The first two terms on the left-hand side of Eq.(9) gives the instantaneous
drift of wealthXt and the last term is the optimal consumption. As a result,
the left-hand side is the instantaneous expected return on the investor’s
wealth. On the right-hand side, the term

(
∂F
∂KKt(Xt − θ∗)− ∂F

∂X σX
)
gives

the diffusion term of the wealth process. Therefore, the right-hand side
also gives the instantaneous expected return on the investor’s wealth. The
no-arbitrage condition requires that both sides must be equal, leading to
Eq.(9). Once I obtain an explicit solution to the differential Eq.(9), the
optimal portfolio can be derived by matching the instantaneous variance
of the wealth dynamics to that of the portfolio value.
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The following proposition shows that if the level of ambiguity is constant,
the solution to Eq.(9) can be explicitly characterized by a system of ordi-
nary differential equations (ODEs), which admits a closed-form solution.

Proposition 1. If θ∗ is constant, the general form of the solution to
the PDE (9) is given by

F (Kt, Xt, t) = K
1
γ

t e
− 1

γ ρtH(Xt, t) (10)

H(Xt, t) =

[
α

1
γ

∫ T

t

Ĥ(Xt, τ)dτ + (1− α)
1
γ Ĥ(Xt, t)

]
(11)

Ĥ(Xt, τ) ≡ exp

{
1

γ

(
A1 (τ)

X2
t

2
+A2 (τ)Xt +A3 (τ)

)}
(12)

with the boundary conditions

A1 (T ) = A2 (T ) = A3 (T ) = 0

for a system of ordinary differential equations (ODEs)

dA1(t)

dt
= −b1A2

1(t)− b2A1(t)− b3 (13)

dA2(t)

dt
= −b1A2(t)A1(t)−

1

2
b2A2(t)− b4A1(t) + b3θ

∗ (14)

dA3(t)

dt
= −1

2
b1A

2
2(t)− b4A2(t)−

1

2
σ2
XA1(t)

− (1− γ)

(
(θ∗)

2

2γ
+ r

)
+ ρ (15)

where

b1 =
σ2
X

γ
(16)

b2 = 2

(
γ − 1

γ
σX − λX

)
(17)

b3 =
1− γ

γ
(18)

b4 =
σXθ

∗

γ
+ λXX̄ (19)
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When γ > 1, it can be shown that b22 − 4b1b3 > 0.5 The explicit solutions
to A1, A2 and A3 are given in the proof.

Proof. See Appendix A.1.

If κ is equal to zero, the solution above is very similar to those in Kim
and Omberg (1996) and Wachter (2002). Maenhout (2006) uses the ro-
bust control framework and assumes that the degree of ambiguity is scaled
by the value function and risk aversion to keep the desired homogeneity
property. This assumption results in observational equivalence, that is, an
increase in the degree of ambiguity aversion is equivalent to an increase
of the same magnitude in effective risk aversion. This is in contrast to
the solution shown in this paper. In the multiple priors model, ambiguity
directly affects how the investor perceives the risk premium rather than
changing the effective risk aversion. As a result, observational equivalence
does not hold in this paper.

The corollary below shows that constant ambiguity can be supported as
an optimum under certain condition. It is suggested in Eq.(2) that the
sign of the diffusion term of the utility process determines the optimal
density generator θ∗. In the proof of the following corollary, I also derive
the solution to the diffusion term of the utility process.

Corollary 1. If the following condition holds6

Xt − κ− γσX
1− γ

∂ lnHt

∂Xt
> 0

then the level of ambiguity is given by θ∗ = κ in the optimum.

Proof. See Appendix A.1.

In the numerical analysis below, I have verified that this condition does
hold for the parameter values given in Table 1. I at first simulate a large
number of sample paths over the horizon [0, T ] given a certain risk premium
at time 0, where the horizon T is set to 60 months. I then verify the
condition in Corollary 1 to be true for every grid point in the simulated
sample paths. The parameter values are taken from Barberis (2000), using
the methodology of mapping discrete-time parameter values to continuous-
time ones proposed by Wachter (2002). The mean reversion parameter λX

5This is also the condition for a “normal” solution to exist. See Kim and Omberg
(1996)

6In the numerical analysis below, I have verified that this condition does hold for a
large number of simulated sample paths given the empirical parameter values.
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is scaled to be higher than the empirical estimate considered by Wachter
(2002), for the condition in Corollary 1 to be numerically verified to be true.
A high λX implies strong tendency of mean reversion and low variation of
the risk premium.

TABLE 1.

Parameter values of the model

Parameter descriptions Parameter values

Rate of time preference ρ 0.0052

Riskless interest rate r 0.0014

Return volatility σ 0.0436

Volatility of risk premium σX 0.0189

Mean reversion parameter λX 0.0452

Unconditional mean of risk premium X̄ 0.0788

This table presents the parameter values used in the numerical ex-
amples of the paper. Parameters are calculated based on Barberis
(2000). The details of the calculation are provided in Appendix
D of Wachter (2002). The parameter value λX is the empirical
estimate scaled by 2.

3. FURTHER RESULTS AND DISCUSSION

In this section, I first use the key relations in the martingale formulation
to derive the value function, the optimal consumption-to-wealth ratio and
the optimal portfolio choice. I then perform numerical analysis to exam-
ine the impacts of ambiguity on the consumption-to-wealth ratio and the
optimal portfolio choice.

3.1. The Value Function and the Optimal Consumption-Wealth
Ratio

The value function (the indirect utility function) for RMPU can be de-
rived from the martingale solution obtained in the previous section. Al-
though the value function is a by-product in the martingale solution, it
can provide useful insights to understand the effects of ambiguity on the
consumption-to-wealth ratio and therefore the consumption-saving trade-
off.

Formally, the value function for RMPU is defined by

Jκ(Wt, Xt, t) = max
c,WT

min
Q∈P

EQ

[∫ T

t

αe−ρ(s−t)u(cs)ds+ (1− α)e−ρ(T−t)u(WT ) | Ft

]

where the superscript κ means that the value function is associated with
the worst-case prior Qκ.
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As shown by Cox and Huang (1989) and Wachter (2002), the value func-
tion Jκ and the function F (K,X, t) are related via the following formula,

∂Jκ

∂W
=

1

K
=

1

F−1(W,X, t)
(20)

where the inverse function F−1 is implicitly defined by F−1 (F (K,X, t), X, t) =
K. From (20), one can obtain the value function

Jκ(Wt, Xt, t) = e−ρt
W 1−γ
t

1− γ
(H (Xt, t))

γ

with the boundary condition

Jκ(WT , XT , T ) = (1− α)e−ρT
W 1−γ
T

1− γ

where H (Xt, t) is given in (11).
The value function for expected utility, denoted by J̄(Wt, Xt, t), is given

by

J̄(Wt, Xt, t) = max
c,WT

EP

[∫ T

t

αe−ρ(s−t)u(cs)ds+ (1− α)e−ρ(T−t)u(WT ) | Ft

]

where the expectation is taken under the reference probability measure
P ∈ P. It can be shown that J̄(Wt, Xt, t) is given by

J̄(Wt, Xt, t) = e−ρt
W 1−γ
t

1− γ

(
H̄ (Xt, t)

)γ
where the function H̄ (Xt, t) is obtained from H (Xt, t) by setting κ to zero.
In general, as shown below, the value function for RMPU is strictly less
the value function for expected utility for non-singleton P.

Proposition 2. (i) Suppose κ > 0, then the following relation holds:

Jκ(Wt, Xt, t) < J̄(Wt, Xt, t).

(ii) Given two values of κ, κ1 and κ2, and the corresponding sets of priors,
P1 and P2, suppose κ2 > κ1, then the following relation holds:

Jκ2(Wt, Xt, t) < Jκ1(Wt, Xt, t).
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Proof. See Appendix A.1

The definition of RMPU implies that given a consumption process, RM-
PU delivers the least utility value among all the utility values over the
set of priors. Built on this definition, the above proposition demonstrates
that when the optimal feedback controls account for ambiguity, the value
function for RMPU is still lower than that for expected utility. In fact,
the value function for RMPU is the minimum of all the value functions
associated with the corresponding priors in P. This implies that ambiguity
(or ambiguity aversion) can cause certain amount of welfare loss to the
investor. Further, the higher the magnitude of ambiguity, the more welfare
loss he is subject to. Intuitively, high levels of ambiguity represent highly
unfavorable investment opportunities perceived by the investor. In general,
when states deteriorate, it is impossible for the investor to achieve a even
higher welfare level. However, a similar result does not generally hold for
the multiplier formulation of the robust control problem (see Maenhout
(2006) for an example).7

Suppose α > 0, it follows from (6), (8) and (10) that the optimal wealth-

to-consumption ratio under the worst-case prior Qκ, denoted by Wt

ct

∣∣∣
Qκ

, is

given by

Wt

ct

∣∣∣∣
Qκ

= α− 1
γH (Xt, t) =

[∫ T

t

Ĥ (Xt, τ) dτ +

(
1− α

α

) 1
γ

Ĥ (Xt, t)

]

The optimal wealth-to-consumption ratio, denoted by, in the expected u-
tility model is given by

Wt

ct

∣∣∣∣
P

= α− 1
γ H̄ (Xt, t)

By Proposition 2, it is straightforward to derive a relationship between
the optimal consumption-to-wealth ratio for RMPU and that for expected
utility, which is summarized in the following corollary.

Corollary 2. (i) Suppose κ > 0, then the optimal consumption-to-
wealth ratio in the multiple priors model is strictly less than that in the
expected utility model:

ct
Wt

∣∣∣∣
P

>
ct
Wt

∣∣∣∣
Qκ

7In the multiplier formulation, the relative entropy appears to be an extra term in the
value function, which penalizes the distortion of alternative models relative to the refer-
ence model. This term may not lead to a counterpart of the result shown in Proposition
2.
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(ii) Given two values of the degree of ambiguity, κ1 and κ2, and the corre-
sponding sets of priors, P1 and P2, suppose κ2 > κ1, the optimal consumption-
to-wealth ratios for the two multiple priors models satisfy the following in-
equality:

ct
Wt

∣∣∣∣
Qκ1

>
ct
Wt

∣∣∣∣
Qκ

Proof. See Appendix A.1.

The above results on the consumption-to-wealth ratio can shed light on
the consumption-saving trade-off, which is another important aspect in the
multiperiod problem. As shown by Wachter (2002), the function Ĥ(Xt, τ)
gives the value of consumption in τ periods after being scaled by the current
consumption. Here, it is shown that ambiguity increases the scaled value
of future consumption stream. Thus, the current consumption-to-wealth
ratio becomes lower in the multiple priors model than in the expected utility
model. Moreover, the ratio decreases when the level of ambiguity increases.
The explanation is that as the level of ambiguity (or equivalently, the degree
of ambiguity aversion) increases, the investor has a more pessimistic view
about investment opportunities, which gives rise to two effects. The income
effect tends to decrease the current consumption and increase the future
consumption, while the substitution effect tends to increase the current
consumption because investment opportunities seem to be less attractive.
When γ > 1, the income effect dominates the substitution effect. As a
result, the consumption-to-wealth ratio decreases with ambiguity. This is
in contrast to previous results on the effect of risk aversion. Campbell and
Viceira (1999) and Wachter (2002) find that the consumption-to-wealth
ratio is non-monotonic in risk aversion. This relationship results from the
fact that for CRRA utility, the coefficient of relative risk aversion and the
elasticity of intertemporal substitution are reciprocals of each other. These
findings can be confirmed in Figure 1 and Figure 2 where numerical results
are computed using the parameter values in Table 1. Figure 1 reveals that
under expected utility the consumption-to-wealth ratio is non-monotonic
in γ, however, as shown in Figure 2, the consumption-to-wealth ratio is
monotonically decreasing in the level of ambiguity.

To see more clearly the effect of ambiguity on the substitution of the
current consumption and the investment in the risky asset, I next derive
the optimal portfolio choice and hedging demand taking into account am-
biguity.
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FIG. 1. Consumption-to-wealth ratio: different levels of risk aversion
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This figure plots the optimal consumption-to-wealth ratio for different levels of

risk aversion (γ). The risk premium, X, ranges from X̄ to X̄+2σX . The horizon

is 60 months.

FIG. 2. Consumption-to-wealth ratio: different levels of ambiguity
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This figure plots the optimal consumption-to-wealth ratio for different levels of

ambiguity (κ). The risk premium, X, ranges from X̄ to X̄ + 2σX . The horizon

is 60 months.

3.2. Optimal Portfolio Choice and Hedging Demand

The optimal portfolio allocation rule should make the instantaneous vari-
ance of the portfolio value be equal to that of the optimal wealth, leading
to the following equation:

ψtFσ =
∂F

∂K
Kt (Xt − θ∗)− ∂F

∂X
σX
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where θ∗ = κ if the condition in Corollary 1 holds. The equation can be
rewritten as

ψt =

(
∂F

∂K

K

F

)
Xt − κ

σ
−
(
∂F

∂X

1

F

)
σX
σ
. (21)

Substituting the function F given in (10) into (21) delivers a closed-form
solution for the optimal portfolio:

ψt =
µt − r

γσ2
− κ

γσ
− σX
γσ

×

α
1
γ
∫ T
t
Ĥ(Xt, τ) (A1(τ)Xt +A2(τ)) dτ + (1− α)

1
γ Ĥ(Xt, t) (A1(t)Xt +A2(t))

α
1
γ
∫ T
t
Ĥ(Xt, τ)dτ + (1− α)

1
γ Ĥ(Xt, t)

(22)

=
Xt − κ

γσ

−σX
γσ

α
1
γ
∫ T
t
Ĥ(Xt, τ) (A1(τ)Xt +A2(τ)) dτ + (1− α)

1
γ Ĥ(Xt, t) (A1(t)Xt +A2(t))

α
1
γ
∫ T
t
Ĥ(Xt, τ)dτ + (1− α)

1
γ Ĥ(Xt, t)

The first term in (22) is myopic demand, which is instantaneously mean-
variance efficient and would be optimal if the investor ignored future vari-
ation in investment opportunities and disregarded ambiguity as well. The
second term captures the effect of ambiguity about the current risk pre-
mium. This term reduces myopic demand by decreasing the risk premi-
um perceived by the investor. The first two terms together can be called
“ambiguity-adjusted” myopic demand. If σX is equal to zero, the invest-
ment opportunity set is constant and the optimal portfolio only contains
the first two terms. The third term is the optimal fraction of wealth allo-
cated to hedge against risk-premium uncertainty, which is also be affected
by ambiguity. However, it is difficult to separate a hedge component that
is solely attributed to ambiguity because κ appears implicitly in Ĥ(Xt, t),
A1(t) and A2(t). For logarithmic utility (γ = 1), the intertemporal hedge
component vanishes but the investor still hedges for ambiguity about the
current risk premium.

To further explore how ambiguity affects the hedge component for risk-
premium uncertainty, I first assume that the investor maximizes utility over
terminal wealth and then consider the more general case of intermediate
consumption. When α = 0, the optimal portfolio can be expressed as

ψt =
µt − r

γσ2
− κ

γσ
− σX
γσ

[A1(t)Xt +A2(t)] (23)

In the absence of ambiguity, both A1 and A2 have negative sign for γ >
1.8 This results in positive hedging demand, which increases the optimal

8See Appendix B in Wachter (2002) for a proof.
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demand for the risky asset over myopic demand. The intuition has been
well illustrated in, for example, Kim and Omberg (1996) and Campbell
and Viceira (1999). Because the risky asset returns and the risk premium
are perfectly negatively correlated, shocks to the risk premium are always
associated with better payoff of the risky asset and tend to increase the
investor’s wealth. To hedge against poor investment opportunities that are
associated with high marginal utility, the investor wants to hold a portfolio
that can produce more wealth when the risk premium is low. The risky
asset provides such hedging opportunities. Thus, the optimal demand for
the risky asset exceeds myopic demand.

Ambiguity also has an impact on intertemporal hedging of risk-premium
uncertainty. It can be shown that ambiguity affects hedging demand only
through the term A2(t).

9 In the expression of A2(t) (Eq. A.2 in Appendices
5.1), ambiguity affects the first term in the numerator and also gives rise to
the second term. Suppose σX < λX , it immediately follows that A2(t) is
decreasing in absolute value in the level of ambiguity provided that A2(t)
does not switch its sign. It might be helpful to decompose the optimal
portfolio into four components:

ψ =
µt − r

γσ2
− κ

γσ
+ hedgeEU + hedgeambiguity

where hedgeEU is the hedge component under expected utility, and hedgeambiguity

quantifies the impact of ambiguity on hedging demand. It is worth noting
that the term −κ/γσ accounts for the ambiguity adjustment to the current
risk premium. On the other hand, due to the negative correlation between
risk premium and asset returns, the hedge component hedgeambiguity has
a negative sign as the density generator also distorts the risk premium
process.

When 0 < α ≤ 1, the hedge component for risk-premium uncertainty in
(22) takes the form of a weighted average of hedge components in (23) for
different horizons, where the weights depend on the value of the function
Ĥ at different horizons. In the more general case of intermediate consump-
tion, the effect of ambiguity on hedging demand seems less obvious from
simply inspecting the analytical form of the optimal portfolio, since both
the averaged functions and the weights depend on the level of ambigui-
ty. In addition, the strength of the dependence may vary across horizons.

9See Appendices 5.1.
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Assuming α = 1, the optimal portfolio can be rewritten as

ψt =
µt − r

γσ2
− κ

γσ
− σX
γσ

∫ T

t

Ĥ(Xt, τ) (A1(τ)Xt +A2(τ))∫ T
t
Ĥ(Xt, τ)dτ

dτ

=
µt − r

γσ2
− κ

γσ
− σX
γσ

∫ T

t

ω(Xt, τ) (A1(τ)Xt +A2(τ)) dτ.

As suggested by Wachter (2002), the optimal portfolio choice problem with
utility over consumption can be viewed as a multiperiod problem in which
the investor applies the terminal wealth analysis to each future consumption
event. The overall portfolio allocation then takes the form of a weighted
average in which the averaged terms are the hedging terms for different
horizons in the terminal wealth analysis and the weights depend on the
values of Ĥ for different horizons. Unlike the terminal wealth analysis,
the impact of ambiguity on hedging demand when utility is defined over
consumption is not obvious by only inspecting the analytical form because
the nonlinear weights in the hedge term bring in complication. Thus, I
provide numerical examples to illustrate how ambiguity affects hedging
demand.

TABLE 2.

Results: optimal portfolio allocation

κ = 0 κ = 0.02 κ = 0.04 κ = 0.06

γ ψmyopic ψoptimal
ψhedge

ψoptimal
ψmyopic ψoptimal

ψhedge

ψoptimal
ψmyopic ψoptimal

ψhedge

ψoptimal
ψmyopic ψoptimal

ψhedge

ψoptimal

Panel A: X = X̄

1 1.8073 1.8073 0.0000 1.3486 1.3486 0.0000 0.8899 0.8899 0.0000 0.4312 0.4312 0.0000

2 0.9037 1.0496 0.1390 0.6743 0.7895 0.1459 0.4450 0.5293 0.1593 0.2156 0.2689 0.1982

5 0.3615 0.4705 0.2319 0.2697 0.3560 0.2424 0.1780 0.2414 0.2626 0.0862 0.1266 0.3191

10 0.1807 0.2460 0.2650 0.1349 0.1865 0.2767 0.0890 0.1269 0.2987 0.0431 0.0674 0.3591

Panel B: X = X̄ + σX
1 2.0241 2.0241 0.0000 1.5654 1.5654 0.0000 1.1067 1.1067 0.0000 0.8647 0.8647 0.0000

2 1.1204 1.3006 0.1385 0.8911 1.0408 0.1439 0.6617 0.7809 0.1526 0.4323 0.5207 0.1696

5 0.4482 0.5829 0.2313 0.3564 0.4686 0.2394 0.2647 0.3541 0.2525 0.1729 0.2395 0.2781

10 0.2241 0.3048 0.2648 0.1782 0.2454 0.2734 0.1323 0.1859 0.2878 0.0865 0.1264 0.3157

This table shows the optimal portfolio allocation to the risky asset, ambiguity-adjusted myopic demand and the
ratio of hedging demand to the optimal demand for the risky asset for different levels of risk aversion and ambiguity

aversion. Myopic demand (ambiguity-adjusted) is defined by ψmyopic =
µ− r

γσ2
−

κ

γσ
. Hedging demand is defined

by ψhedging = −
σX

γσ

∂ lnH

∂X
. The optimal demand for the risky asset is defined by ψoptimal = ψmyopic+ψhedging .

Panel A and B present the results for X = X̄ and X = X̄ + σX respectively. The horizon is 60 months. The
investor is assumed to maximize utility over consumption (α = 1).



40 HENING LIU

Table 2 presents the optimal portfolio allocation, myopic demand and the
fraction of hedging demand in the optimal portfolio allocation for different
levels of ambiguity. The risk premium is assumed to equal its long-run
mean (X̄) and X̄ + σX in, respectively, Panel A and Panel B. The table
shows that ambiguity decreases myopic demand and the optimal demand
for the risky asset but magnifies the importance of hedging demand in
the optimal demand. This result suggests that the effect of ambiguity
on hedging demand is proportionally smaller than the effect on myopic
demand. In addition, Table 2 reveals that a small level of ambiguity can
have a similar impact on the optimal portfolio as a significant increase
in the degree of risk aversion. For example, Panel A shows that under
expected utility, the optimal portfolio allocation is ψ = 0.47 when γ = 5
and ψ = 0.24 when γ = 10. On the other hand, when the level of ambiguity
is κ = 0.04, the optimal portfolio allocation is ψ = 0.24 even when γ = 5.

FIG. 3. Hedging demand: different levels of ambiguity
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This figure plots the optimal hedging demand for different levels of ambiguity.

The risk premium, X, ranges from X̄ to X̄ + 2σX . The horizon is 60 months.

Figure 3 and 4 plot, respectively, hedging demand and the optimal de-
mand for the risky asset against the risk premium, which ranges from X̄
to X̄ + 2σX , for different levels of ambiguity. Figure 5 plots the fraction
of hedging demand in the optimal demand. Not surprisingly, ambiguity
decreases the optimal allocation to the risky asset in all states of the econ-
omy. Since ambiguity also reduces the consumption-to-wealth ratio, the
amount of wealth invested in the riskless asset increases greatly. In other
words, ambiguity generates the substitution of current consumption and
investment in the risky asset with riskless savings. Although ambiguity
has a significant impact on the optimal portfolio choice, it has almost no
effect on the sensitivity of the optimal portfolio allocation and hedging de-
mand to the risk premium. Figure 3 and 4 show that the sensitivity of
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FIG. 4. Optimal portfolio demand: different levels of ambiguity
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This figure plots the optimal portfolio allocation for different levels of ambiguity.

The risk premium, X, ranges from X̄ to X̄ + 2σX . The horizon is 60 months.

FIG. 5. Fraction of hedging demand in the optimal portfolio demand: different
levels of ambiguity
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This figure plots the ratio of hedging demand in the optimal portfolio allocation

for different levels of ambiguity. The risk premium, X, ranges from X̄ to X̄+2σX .

The horizon is 60 months.

the optimal portfolio allocation and hedging demand to the risk premium
remains almost the same regardless of the level of ambiguity.

In the expected utility model, Wachter (2002), among others, points
out that the consumption-savings decision provides a mechanism to ex-
amine hedging demand when investment opportunities are time varying.
An increase in the risk premium affects the optimal current consumption
relative to wealth in two directions, giving rise to income effect and substi-
tution effect. The income effect allows for more consumption in the light of
better investment opportunities, which causes the consumption-to-wealth
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ratio to rise. The substitution effect tends to decrease the optimal current
consumption relative to wealth because investing seems more attractive.
When γ > 1, the income effect outweighs the substitution effect, causing
the consumption-to-wealth ratio to vary positively with investment oppor-
tunities. To smooth consumption across different states of the investment
opportunity set, the investor wants to hold a portfolio that can generate
more wealth when investment opportunities are unfavorable. Moreover,
due to the perfect negative correlation between the risk premium and asset
returns, the optimal demand for the risky asset exceeds myopic demand.

Turning to the effect of ambiguity on hedging demand when utility
is defined over intermediate consumption, I first investigate the optimal
consumption-to-wealth ratio as a function of the risk premium. Figure 2
shows that the consumption-to-wealth ratio varies less significantly for an
ambiguity-averse investor in response to changes in the risk premium than
for an expected utility investor. For instance, the investor with γ = 5
and κ = 0.06 has smoother consumption-to-wealth ratios for different val-
ues of the risk premium than the investor with γ = 5 and κ = 0. The
intuition lies in the precautionary savings motive. As the risk premium in-
creases, which represents an improvement of investment opportunities, the
ambiguity-averse investor has less willingness to consume but wants to save
more to hedge against the future adverse effect of ambiguity on investment
opportunities. Since the optimal consumption becomes more stable under
ambiguity as investment opportunities change, the incentive of hedging a-
gainst states with rather low consumption and high marginal utility has
been dampened. Thus, ambiguity leads to lower hedging demand.

When investment opportunities are time varying, the optimal portfolio
allocation depends on the investment horizon. As the horizon rises, hedg-
ing demand increases. For investors with utility over terminal wealth, the
horizon effect primarily relies on the derivatives of the functions A1(t) and
A2(t) with respect to the length of the horizon, as is obvious from (23).
Large absolute values of the derivatives of A1(t) and A2(t) imply strong
horizon effect, all else being equal. With regard to hedging demand, the
impact of ambiguity is manifested through the term A2(t). In Appendices
5.2, I show that ambiguity tempers the horizon effect by decreasing the
magnitude of the derivative of A2(t) with respect to the length of the hori-
zon. This analysis is further confirmed in the numerical example shown in
Figure 6. The leftmost panel of Figure 6 presents the case of utility over
terminal wealth. For the case of utility over intermediate consumption, it
is much more difficult to analytically derive the horizon effect on hedging
demand, again since both the averaged functions and the weights in the
optimal portfolio formula (22) depend on the level of ambiguity. Never-
theless, the rightmost panel of Figure 6 reveals that the horizon effect is
still mitigated under ambiguity when utility is defined over intermediate
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FIG. 6.

5 10 15 20 25 30 35 40 45 50 55 60

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Horizon in months

O
pt

im
al

 p
or

tfo
lio

 a
llo

ca
tio

n

Horizon effect: γ=5, α=0
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This figure plots the optimal portfolio allocation for different horizons ranging

from 1 month to 60 months respectively, under expected utility (κ = 0) and

RMPU (κ = 0.06). The leftmost panel shows the case of utility defined over

terminal wealth only. The rightmost panel shows the case of utility defined over

intermediate consumption.

consumption. Thus, an important implication derived from the analysis is
that younger investors, if they are ambiguity averse, should reduce aggres-
siveness in their investments not only by decreasing the total demand for
stocks but also by reducing the extent of the horizon dependence.

3.3. Calibrating ambiguity aversion parameter

The last issue to be dealt with is how to calibrate the level of ambiguity
given a sample of data. For constant ambiguity aversion, it is straightfor-
ward to employ the technique of detection-error probabilities developed by
Anderson et al. (2003). Maenhout (2004) applies the same technique to
calibrate the preference for robustness for i.i.d. returns.10 According to
Anderson et al. (2003), given a finite sample of data, a reasonable level of
ambiguity should render a set of candidate models statistically difficult to
distinguish from one another, and thus make the model selection problem
obscure to the decision-maker.

Two models P and Q are difficult to distinguish if the probability of
rejecting one model mistakenly in favor of the other is high. Specifically,
suppose the log of the Radon-Nikodym derivative of the distorted proba-

10Maenhout (2006) further develops a scheme for computing the detection error prob-
abilities for a mean-reverting risk premium in the robust control framework. There the
determination of the worst-case model relies on functions of the state variable and the
preference for robustness. Maenhout (2006) finds that the detection of model misspeci-
fication becomes easier for mean-reverting returns than for i.i.d. returns, which implies
less scope for model uncertainty.
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bility measure Q with respect to the probability measure P is

η1,t ≡ log(
dQ

dP
| FS

t ) = −
∫ t

0

θ∗sdB̂s −
1

2

∫ t

0

(θ∗s)
2ds

The log of the Radon-Nikodym derivative of the probability measure P
with respect to the probability measure Q is

η2,t ≡ log(
dP

dQ
| FS

t ) =

∫ t

0

θ∗sdB̂s +
1

2

∫ t

0

(θ∗s)
2ds

Given that model P is true, the decision maker will reject it mistakenly
in favor of model Q based on a finite sample with size N when η1,N > 0.
Conversely, if model Q is correct, it will be rejected erroneously when
η2,N > 0. Assuming an equal prior on each model, the detection error
probability εN (θ) based on a sample size N is defined as

εN (θ) = 0.5Pr(η1,N > 0 | P ) + 0.5Pr(η2,N > 0 | Q)

The detection error probability depends on κ in that as κ increases, models
P and Q are easier to distinguished statistically from each other and the
detection error probability shrinks. For constant ambiguity, it is easy to
show that εN (κ) is given by

εN (κ) = Pr
(
Z < −κ

2

√
N
)

where Z is from standard normal distribution. Table 3 tabulates the de-
tection error probabilities for κ = 0.01, 0.02, · · · , 0.06 for the sample period
Jan 1952–Dec 1995.

TABLE 3.

Detection error probabilities

κ 0.01 0.02 0.03 0.04 0.05 0.06

εN (κ) 0.4543 0.4090 0.3652 0.3228 0.2828 0.2451

This table tabulates the detection error probabilities corresponding
to different values of the ambiguity aversion parameter κ ranging
from 0.01 to 0.06. The sample is drawn from [?] (monthly returns
from 1952 to 1995) The detection error probability εN (κ) is comput-

ed as εN (κ) = Pr
(
Z < −κ

2

√
N
)
, where Z is from standard normal

distribution and N is the sample size.
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4. CONCLUSION AND FUTURE RESEARCH

In this paper, I have explicitly derived closed-form solutions to the opti-
mal portfolio choice and the consumption-to-wealth ratio in a continuous-
time setting where an investor has recursive multiple priors utility, and the
risk premium follows a mean-reverting process. Markets are assumed to be
complete. The analytical and numerical results show that ambiguity gen-
erates strong precautionary savings motive and lowers the consumption-
to-wealth ratio. With regard to the optimal portfolio choice, ambiguity
decreases the optimal demand for the risky asset and hedging demand,
while magnifies the relative importance of hedging demand in the optimal
portfolio allocation.

This paper can be extended in several directions. For example, one
would consider incomplete information and learning. The investor’s belief
dynamics could enrich the implication of learning and ambiguity on dy-
namic portfolio choice. Xia (2001) examined the effect of learning about
uncertain return predictability in the expected utility framework. Recently,
Chen et al. (2011) investigates the impact of ambiguity aversion, allowing
for model uncertainty and learning about predictability. This way of ex-
tension seems promising. However, explicit solutions are generally difficult
to obtain for these models. In addition, how to calibrate ambiguity and
quantify its impact would become an interesting but challenging topic.

APPENDIX A

A.1. PROOFS OF PROPOSITIONS, LEMMA AND
COROLLARIES

Proof of Proposition 1: To solve the PDE (9), define

F̂ (Kt, Xt, t) = K
1
γ

t e
− 1

γ ρtĤ(Xt, t)

where Ĥ is given in (12). I show below that F̂ satisfies another PDE, the
solution of which can be characterized in terms of a system of ODEs. Then
I show that the system of ODEs admits a closed-form solution for γ > 1.
Finally, it is shown that the same system of ODEs also characterizes the
solution to the PDE (9), and thus the proof is complete.

First, I observe that F̂ satisfies the following equation:

LF̂ +
∂F̂

∂t
− rF̂ =

(
∂F̂

∂K
Kt(Xt − θ∗)− ∂F̂

∂X
σX

)
Xt (A.1)
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with the boundary condition

F̂ (KT , XT , T ) = K
1
γ

T e
− 1

γ ρT
(
or Ĥ(XT , T ) = 1

)
.

To show this, by plugging

F̂ (Kt, Xt, t) = K
1
γ

t e
− 1

γ ρtĤ(Xt, t)

into (A.1) and matching the coefficients on the constant term, X and X2,
I obtain the ODEs for A1(t), A2(t) and A3(t) given in (13)—(15). Suppose
γ > 1, one can show that b22−4b1b3 > 0 (see Appendix A, Wachter (2002)).
Define

b̄ =
√
b22 − 4b1b3.

The explicit solution for A1(t) is standard and has been given in Kim and
Omberg (1996). In order to solve for A2(t), I conjecture that the solution
has the form

A2(t) =
1− γ

γ

a0 + a1e
−b̄(T−t)/2 + a2e

−b̄(T−t)

b̄
[
2b̄−

(
b2 + b̄

) (
1− e−b̄(T−t)

)] .
Substituting A2(t) into the ODE (14) and matching the coefficients, I ob-
tain

a0 = 4b4 + 2θ∗(b2 − b̄)

a1 = −4 (2b4 + θ∗b2)

a2 = 4b4 + 2θ∗(b2 + b̄).

Rearranging terms gives the solution to A2(t). Then A3(t) can be obtained
by integration. Thus, the explicit solution to the system of ODEs is given
by1

A1(t) =
2b3

(
1− e−b̄(T−t)

)
2b̄−

(
b2 + b̄

) (
1− e−b̄(T−t)

)

A2(t) =
1− γ

γ

4
(
λXX̄ + θ∗ (σX − λX)

) (
1− e−b̄(T−t)/2

)2
− 2θ∗b̄

(
1− e−b̄(T−t)

)
b̄
[
2b̄−

(
b2 + b̄

) (
1− e−b̄(T−t)

)]
(A.2)

1The explicit solution to A3 has a very complicated form and thus is not shown here.
The solution is available from the author upon request.
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A3(t) =

∫ T

t

[
−1

2
b1A

2
2(τ)− b4A2(τ)−

1

2
σ2
XA1(τ)− (1− γ)

(
(θ∗)

2

2γ
+ r

)
+ ρ

]
dτ.

Next, I prove that the solution to Eq. (9) can also be characterized by the
ODEs in (13)—(15).

By homogeneity, one can easily show that solving Eq. (9) is equivalent
to solving the following differential equation:

∂H

∂t
+ GH + α

1
γ = 0

where the operator G is defined by

GH =
1

2

∂2H

∂2X
σ2
X +

[
−λX(X − X̄)− 1

γ
(X − θ)σX + σXX

]
∂H

∂X

+

[
1

2γ

(
1

γ
− 1

)
(X − θ)2 +

1− γ

γ
r

]
H

and H is given in (11).
From (A.1) and the definition of F̂ , I can obtain the following equality

∂Ĥ

∂t
+ GĤ = 0.

Then it follows

∂H

∂t
+ GH = −α

1
γ Ĥ(Xt, t) + α

1
γ

∫ T

t

GĤ(Xt, t)dτ

= −α
1
γ Ĥ(Xt, t)− α

1
γ

∫ T

t

∂Ĥ

∂t
dτ

= −α
1
γ Ĥ(Xt, t)− α

1
γ

[
Ĥ(XT , T )− Ĥ(Xt, t)

]
= −α

1
γ

with the boundary condition H (XT , T ) = (1− α)
1
γ .

Thus, we have shown that the function F (Kt, Xt, t) satisfies the PDE
(9) with the solution being characterized by (10)—(15).

Proof of Corollary 1: First, I assume that θ∗ = κ and then derive a
condition for this equality to hold. The value function (the indirect utility
function) Jκ has the form:

Jκ (W,X, t) = e−ρt
W 1−γ

1− γ
(H(X, t))

γ
.
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From (6) and (10), it immediately follows that the utility process Jκt (Jκt
abbreviates for Jκ (W,X, t)) can be written as

Jκt =
c1−γt

1− γ
Gt

where Gt = e−ρtH (Xt, t). By Ito’s lemma and (6), it follows that the
consumption process c∗ satisfies the SDE

dc∗t
c∗t

= µctdt+ σctdBt

where µct and σ
c
t are given by

µct =
1

γ
(r − ρ) +

1

2
(1 + γ)(σct )

2 + σct θ
∗

σct =
1

γ
(Xt − θ∗) .

By Ito’s lemma, the process Gt satisfies the SDE

dGt
Gt

= µGt dt+ σGt dBt

where µGt and σGt are given by

µGt =
1

Gt

(
∂Gt
∂t

− ∂Gt
∂Xt

λX(Xt − X̄) +
1

2

∂2Gt
∂X2

t

σ2
X

)
σGt = − 1

Gt

∂Gt
∂Xt

σX .

Then one can show that the utility process Jκt satisfies the following BSDE:

dJκt = µJ
κ

t dt+ σJ
κ

t dBt JκT = (1− α)e−βT
W 1−γ
T

1− γ

where µJ
κ

t and σJ
κ

t are given by

µJ
κ

t = Jκt (1− γ)

(
µct +

µGt
1− γ

− 1

2
γ (µct)

2
+ µctµ

G
t

)
σJ

κ

t = Jκt (1− γ)

(
σct +

σGt
1− γ

)
.
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For the κ-ignorance specification, θ∗ is equal to κ when σJ
κ

t > 0. Since

Jκt (1−γ) is in positive sign for γ > 1, σJt > 0 if and only if σct +
σGt

1− γ
> 0,

which is equivalent to the condition given in the corollary.

Proof of Proposition 2: To prove (i), i introduce an auxiliary optimiza-
tion problem. I consider a candidate probability measure Qθ ∈ P for a
given random variable θ ∈ Θ. In this case, the value function is defined by

Jθ(Wt, Xt, t) = max
c,WT

EQθ

[∫ T

t

αe−ρ(s−t)u(cs)ds+ (1− α)e−ρ(T−t)u(WT ) | Ft

]
.

When Qθ coincides with P , Jθ(Wt, Xt, t) is equivalent to J̄(Wt, Xt, t) and
gives the value function for expected utility. The value function for RMPU
is given by

Jθ
∗
(Wt, Xt, t) = max

c,WT

min
Qθ∈P

EQθ

[∫ T

t

αe−ρ(s−t)u(cs)ds+ (1− α)e−ρ(T−t)u(WT ) | Ft

]

with θ∗ = κ. By the Minimax theorem, one can reverse the order of the
minimization operator and the maximization operator and obtain

Jθ
∗
(Wt, Xt, t) = min

Qθ∈P
max
c,WT

EQθ

[∫ T

t

αe−ρ(s−t)u(cs)ds+ (1− α)e−ρ(T−t)u(WT ) | Ft

]

which can be rewritten as

Jθ
∗
(Wt, Xt, t) = min

Qθ∈P
Jθ(Wt, Xt, t).

Since θ∗ = κ ̸= 0, it follows that the inequality Jθ
∗
(Wt, Xt, t) < J̄(Wt, Xt, t)

must hold.
To prove (ii), notice that κ2 > κ1 implies P1 ⊂ P2. The value functions

associated with these two sets of priors are given by

Jκ1(Wt, Xt, t) = min
Qθ∈P1

Jθ(Wt, Xt, t) and Jκ2(Wt, Xt, t) = min
Qθ∈P2

Jθ(Wt, Xt, t)

Since P1 ⊂ P2, it follows that Jκ2(Wt, Xt, t) ≤ Jκ1(Wt, Xt, t). By Corol-
lary 1, we have

Qκ1 = argmin
Qθ∈P1

Jθ(Wt, Xt, t) and Qκ2 = argmin
Qθ∈P2

Jθ(Wt, Xt, t).
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Thus, the inequality strictly holds, that is, Jκ2(Wt, Xt, t) < Jκ1(Wt, Xt, t).

Proof of Corollary 2: From Proposition 2, it follows Jκ(Wt, Xt, t) <
J̄(Wt, Xt, t) if κ > 0. The value function for RMPU and that for expected
utility are given by

Jκ(Wt, Xt, t) = e−ρt
W 1−γ
t

1− γ
(H (Xt, t))

γ
and J̄(Wt, Xt, t) = e−ρt

W 1−γ
t

1− γ

(
H̄ (Xt, t)

)γ
.

Then we have H (Xt, t) > H̄ (Xt, t) for γ > 1. Thus, one can obtain
(ct/Wt)Qκ < (ct/Wt)P for 0 < α ≤ 1. In a similar way, it can be shown
that (ct/Wt)Qκ1 > (ct/Wt)Qκ2 holds for κ2 > κ1.

A.2. PROPERTIES OF DERIVATIVES OF THE FUNCTION
A2

The partial derivative of A2(t) with respect to θ∗ (θ∗ = κ) is given by

∂A2

∂θ∗
=

1− γ

γ

4 (σX − λX)
(
1− e−b̄(T−t)/2

)2
− 2b̄

(
1− e−b̄(T−t)

)
b̄
[
2b̄−

(
b2 + b̄

) (
1− e−b̄(T−t)

)] .

Suppose σX < λX and γ > 1, then ∂A2

∂θ∗ > 0. To see the effect on ∂A2

∂θ∗ as t

varies, we compute the derivative of ∂A2

∂θ∗ with respect to t:

d
(
∂A2

∂θ∗

)
dt

=
1− γ

γ

−4 (σX − λX) b̄2e−b̄(T−t)/2
(
b̄− b2 + 2b2e

−b̄(T−t)/2 −
(
b2 + b̄

)
e−b̄(T−t)

)
(
b̄
[
2b̄−

(
b2 + b̄

) (
1− e−b̄(T−t)

)])2 .

Since σX < λX and γ > 1, b2 is negative. From (16)—(18), it can be shown
b̄+ b2 > 0. Then it follows that

b̄− b2 + 2b2e
−b̄(T−t)/2 −

(
b2 + b̄

)
e−b̄(T−t) ≥ b̄− b2 + 2b2e

−b̄(T−t)/2 −
(
b2 + b̄

)
= −2b2

(
1− e−b̄(T−t)/2

)
> 0

which implies
d( ∂A2

∂θ∗ )
dt < 0. This result shows that the effect of ambiguity

on the function A2 is a decreasing function of time t.
To see how ambiguity affects the horizon dependence of the function A2,

I compute the derivative of A2(s) with respect to s, where s is defined by
s = T − t. Define

C(s) = 2b̄− (b2 + b̄)
(
1− e−b̄s

)
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dA2(s)

ds
=

1− γ

γ

4λXX̄e−b̄s/2
(
1− e−b̄s/2

) [
2b̄−

(
b2 + b̄

) (
1− e−b̄s/2

)]
C(s)2

+
θ∗B(s)

C(s)2


(A.3)

B(s) = 2 (σX − λX)
[
b̄
(
e−b̄s/2 − e−3b̄s/2

)
− b2

(
e−b̄s/2 + e−3b̄s/2

)]
+

[
8σX
γ

b2 + 4(b22 − b̄2)

]
e−b̄s

The first term in the parenthesis of (A.3) is positive because[
2b̄−

(
b2 + b̄

) (
1− e−b̄s/2

)]
> 0,

while the second term is negative since B(s) < 0 assuming σX − λX < 0.
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