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This paper integrates monetary search theory with limited participation to
analyze the liquidity effect of open market operations. The model features a
centralized bonds market with limited participation and a decentralized goods
market with random matches. In a fraction of matches, buyers can use un-
matured bonds together with money to purchase goods. In other matches, a
legal restriction forbids the use of bonds as the means of payments. In this
economy, a shock to bond sales has two distinct liquidity effects. One is the
immediate liquidity effect on the bond price and the nominal interest rate.
The other is a liquidity effect in the goods market starting one period later,
which arises as unmatured bonds facilitate trades. Thus, even independent
shocks in the open market can have persistent effects on interest rates and
real output. I establish the existence of the equilibrium and, with numerical
examples, examine equilibrium properties.
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1. INTRODUCTION

This paper integrates monetary search theory with Lucas’ (1990) model
of limited participation to analyze the liquidity effect of open market op-
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erations. I show that shocks to government bond sales can affect interest
rates and output persistently even when the shocks are independent over
time. These shocks also affect the term structure of interest rates.

The liquidity effect of open market operations refers to the effect that an
unexpected purchase of government bonds by a central bank reduces the
nominal interest rate and an unexpected sale of government bonds drives
up the interest rate. This effect is intuitively related to liquidity for the
reason that when a central bank uses money to purchase government bonds,
it injects liquid assets (money) into the market to replace relatively less
liquid assets (bonds). The liquidity effect is separate from the effect of open
market operations on expected inflation, because it can arise even when a
central bank uses other policies in conjunction with open market operations
to maintain a constant money growth rate. Moreover, the liquidity effect
has real consequences. As Christiano et al. (1999) documented with vector
autoregression, even a temporary monetary shock through open market
operations affects real activities persistently. Thus, analyzing the liquidity
effect is important for understanding the effect of monetary policy.

For open market operations to generate the liquidity effect, an economy
must have two necessary features. First, money must have higher liquidity
than bonds in the sense that money is more readily accepted in the exchange
for goods. If the two assets were equally liquid, swapping one for the
other would have no effect on the liquidity of the asset portfolio. Second,
there must be frictions that delay the transmission of the newly injected
money from the bond market to the goods market. If the injection could
immediately spread to the goods market, instead, the price level of goods
would increase immediately, which would lead to an increase rather than a
decrease in the nominal interest rate. In an influential paper, Lucas (1990)
constructs a model with these two features. In his model, the lower liquidity
of bonds relative to money comes from the assumption that a buyer can
only use money to buy goods. This cash-in-advance constraint can be
interpreted as a legal restriction. To prevent money from immediately
flowing from the bond market to the goods market, Lucas (1990) assumes
that the two markets are separated from each other in a period. This
separation can be interpreted as a result of a participation cost in the bond
market. Because of this feature, Lucas’ model is often referred to as a
model of limited participation. In this model, Lucas demonstrates that a
pure liquidity effect arises. Specifically, when the government unexpectedly
sells bonds for money and uses a lump-sum monetary tax/transfer to keep
the money growth rate constant, the nominal interest rate rises.

The liquidity effect in Lucas’ model is not persistent. That is, if the
shocks in open market operations are independent over time, then the
nominal interest rate and real activities depend only on the contemporane-
ous shock but not on past shocks. This prediction of the model contrasts
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with the evidence of vector autoregression mentioned earlier. Since Lucas’
work, a large literature has attempted to generate a persistent liquidity
effect, with limited success (see Christiano et al., 1999, for a partial list
of references). Most of the models in this literature add impediments to
the flow of funds from the bonds market to the goods market but maintain
the assumption that the goods market is Walrasian with a cash-in-advance
constraint. In this paper, I impose the same assumption on limited par-
ticipation in the bond market as Lucas does, but make two changes to the
modelling of the goods market. First, the goods market is not Walrasian;
instead, it is decentralized and characterized by search and matching. Sec-
ond, the legal restriction that prevents bonds from being used as a medium
of exchange is partial; that is, it is enforced in only a fraction of the trades
rather than all trades.

The main motivation for modelling the goods market as search and
matching is to provide a microfoundation of money. Originated in Kiyota-
ki and Wright (1989), monetary search theory generates a role of money
endogenously from the trading frictions in the goods market, even when
money has no intrinsic value in preferences and technology.1 There is an
additional motivation for such modelling. When the exchange in the goods
market is decentralized, it is natural to assume that funds in the bond mar-
ket take time to flow to the goods market, as is required for the liquidity
effect to arise. Although monetary search theory is appealing for these rea-
sons, it has largely been formulated in deterministic settings, rather than
the stochastic setting that macroeconomists calibrate to investigate the s-
tatistical relationships between aggregate variables. For the liquidity effect
of open market operations, in particular, a stochastic environment is nec-
essary because the effect often does not arise in deterministic environments
(see Lucas, 1990).

The motivation for modelling the legal restriction as a partial rather
than complete restriction is to allow shocks in open market operations to
affect the composition of assets used in the exchange in the goods market.
As explained below, this change in the composition induces the liquidity
effect to be persistent. Although government bonds are rarely used directly
in the exchange for goods, it is not difficult to find the evidence on the
indirect use of bonds in the goods market. For example, government bonds
with short maturity are a large part of money market checking accounts
on which checks are written and other means of payment are created to
pay for goods. Although checking accounts and other means of payment
are products and services provided by financial institutions, I abstract from

1Examples of search models are Trejos and Wright (1995), Shi (1995, 1997), Green
and Zhou (1998).
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the detailed modelling of financial intermediation and, instead, assume that
bonds are partially liquid in the goods market.

Let me describe the model briefly. The economy has a bond market and
a goods market, which are separated in each period. The bond market
is centralized and functions in the same way as in Lucas (1990), where
the government sellsnominal bonds at the market price and accepts only
money as payments.2 The amount of new bonds is stochastic, which is
the only aggregate uncertainty in the economy. This shock is realized
after the households have already allocated the assets between the two
markets, and hence there is limited participation in the bond market. In
contrast to the bond market, the goods market is decentralized; that is,
matching is random and bilateral, barter is difficult, and individuals are
anonymous. There are two types of matches. One is unrestricted matches,
where the buyer can use both money and bonds to buy goods. The other
is restricted matches, where a legal restriction forbids the use of bonds
as the means of payments for goods. Restricted matches are a fraction
g ∈ (0, 1) of all matches. With this partial legal restriction, bonds are
redeemed immediately at maturity, but unmatured bonds can circulate as
an imperfect substitute for money. I set the bonds’ maturity to be two
periods — the shortest length that allows unmatured bonds to circulate in
the goods market.

Open market operations in this model generate a delayed liquidity effect
in the goods market, in addition to the immediate liquidity effect in the
bond market. In particular, a high shock to bond sales in the previous
period increases the quantity of unmatured bonds circulating in the cur-
rent goods market. These additional bonds provide liquidity to the buyers
who are in unrestricted trades. Thus, shocks to bond sales in the previous
period change the current dispersion of real quantities of goods produced
and traded in unrestricted matches versus restricted matches. As a result,
aggregate output depends on the shock in the previous period even though
shocks are independent over time. This persistence of the liquidity effect is
absent in Lucas (1990). In addition, the model can generate reasonable se-
rial correlations in output and a non-trivial term structure, as summarized
in the concluding section.

The persistence of the liquidity effect depends on the assumption that
the legal restriction is only imposed in a fraction of the trades in the goods
market. If every trade were restricted (i.e., if g = 1), the model’s predictions
would resemble Lucas’ (1990). On the other hand, if every trade were
unrestricted (i.e., if g = 0), shocks in open market operations would change
prices of goods uniformly across matches. In either case, there would be

2I maintain this cash-in-advance constraint in the bonds market in order to compare
the results with Lucas’. However, it should be clear that this constraint is not the reason
why money is valued here.
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no delayed liquidity effect in the goods market and so independent shocks
would not have persistent effects. In particular, the case g = 0 is not
interesting for the current purpose.

A natural question is why it is necessary to construct a model with de-
centralized exchange in the goods market. Would a modification of Lucas’
model with a partial legal restriction generate the same results as the cur-
rent model? The answer is no. When the goods market is Walrasian, as in
Lucas’ model, agents can arbitrage between trades. As a result, matured
bonds can circulate as a medium of exchange despite the partial legal re-
striction (see Shi, 2005). The circulation of matured bonds will reduce or
even eliminate the real effects of open market operations. To obtain non-
negligible real effects in such a model, one must assume either that g is
close to one or that matured bonds cannot circulate. The former is unre-
alistic and the latter is arbitrary. The current model does not need such
assumptions. With decentralized exchange in the goods market, even an ar-
bitrarily small coverage of the legal restriction is sufficient to induce agents
to redeem all matured bonds immediately at maturity (see Shi, 2005).

One may also wonder whether the legal restriction can improve welfare
(see Kocherlakota, 2003). In a related model, I have shown that a partial
legal restriction can increase steady state welfare (Shi, 2008). I abstract
from this welfare analysis in this paper.

As said above, there is a large literature on limited participation in which
the goods market is assumed to be Walrasian. Deviating from this liter-
ature, Williamson (2006, 2008) has constructed models of limited partici-
pation with detailed modelling of the frictions in the goods market. The
mechanism of monetary propagation in his models is different. In his mod-
els, there is a persistent separation or lack of “connection” between indi-
viduals that slows down the diffusion of the money injection among the
population. As a result, even a perfectly anticipated money injection has
long lasting real effects in his model, which seems implausible. In contrast,
the propagation mechanism in my model works through the amount of “1iq-
uidity” that unmatured bonds provide in the goods market. An anticipated
money injection does not have any real effect in my model. Another notice-
able difference of my model from Williamson’s is the presence of aggregate
uncertainty regarding monetary policy. Such uncertainty is necessary for
characterizing the stochastic relationships between endogenous variables
and monetary policy.

2. A MONETARY ECONOMY WITH SEARCH AND LEGAL
RESTRICTIONS

In this section I describe an economy with a legal restriction in the goods
market, analyze individuals’ decisions, and define the equilibrium.
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2.1. Households, Matches, and Markets

The economy has discrete time and many types of households. The
number of households in each type is large and normalized to one. The
households in each type are specialized in producing a specific good, which
they do not consume, and exchange for consumption goods in the market.
Goods are perishable between periods. The utility of consumption is u(.)
from consumption goods and 0 from other goods. The function u is strictly
increasing, concave and twice continuously differentiable, with the proper-
ties u′(0) = ∞ and u′(∞) < ∞. The disutility of production is ψ(.). To
simplify the algebra, I will use the form ψ(q) = ψ0q

Ψ, where Ψ > 1 and
ψ0 > 0.

Each household consists of a large number of members, whose measure
is normalized to one. The household makes all the decisions and the mem-
bers simply carry out these decisions. The members regard the household’s
utility as the common objective. A fraction σ of the members are sellers
and the remaining are buyers, where σ ∈ (0, 1). A seller produces and
sells goods, while a buyer purchases goods. At the end of each period,
the household pools all assets and goods received from trades, and then
allocates the same amount of consumption to every member. As a result,
individual matching risks are smoothed out within each household, and the
distribution of asset holdings across households is degenerate. This degen-
eracy maintains tractability as it enables me to focus on the equilibrium
that is symmetric across households.3

There are two assets in the economy — money and nominal bonds issued
by the government. These assets can be stored without cost. Both have
zero intrinsic value; i.e., they yield no direct utility or productive capaci-
ty. Nominal bonds are default-free and their maturity is two periods. A
bond before the maturity is called an unmatured bond. Each bond can be
redeemed for one unit of money at maturity. An alternative to redemption
is to use matured bonds as a medium of exchange in the goods market in
the future. Nothing in a traditional monetary model could prevent ma-
tured bonds from circulating as money. In contrast, when the exchange in
the goods market is decentralized, households will always choose to redeem
bonds immediately at maturity (see the introduction). In light of this re-
sult, it is innocuous to assume that matured bonds cannot be redeemed
once they pass the maturity.

Let me describe the goods market first. In this market, agents meet
trading partners bilaterally and randomly. Of interest are trade matches,
in which the buyer likes the seller’s goods. These matches are the only

3The large household is meant to approximate an agent’s time allocation in different
activities during a period. This modelling device, used by Shi (1997), is extended from
a similar one in Lucas (1990).
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ones in which a trade can take place. A buyer encounters a trade match at
rate ασ, and a seller at rate α(1 − σ), where α < 1. The total number of
trade matches that all buyers (or sellers) of a household have in a period is
ασ(1− σ). There is no double coincidence of wants to support barter, nor
public record-keeping of transactions to support credit trade in the goods
market. As a result, every trade entails a medium of exchange, which can
be money or bonds. The strong assumptions on the matching patterns
and record-keeping abilities are not necessary for the role of money. As is
well established in monetary search theory (see the references cited in the
introduction), fiat money continues to have a positive value even when there
are bilateral credits, limited barter, multi-lateral meetings and imperfect
public memory. The strong assumptions are imposed here to simplify the
analysis and sharpen the focus on the competition between money and
unmatured bonds as the media of exchange.

There are two types of matches. One is an unrestricted trade, where
the buyer can use both money and bonds to buy goods. The other is a
restricted trade, where a legal restriction requires money to be the only
means of payments. The legal restriction is imposed in a fraction g ∈ (0, 1)
of matches. One interpretation of the legal restriction is that a fraction g
of all agents are government agents who face the same matching rates as
private agents but who accept only money as payments. Although I will use
this interpretation later in the numerical exercises, I do not explicit model
government agents here (for such modelling in a deterministic environment,
see Shi, 2005). Notice that both restricted and unrestricted trades are
decentralized exchanges.4

I model the legal restriction as a matching shock that occurs in each
period after buyers and sellers have gone to the market. To be precise,
suppose that there are a large number of locations in the goods market
and each household goes to a particular location to search for matches. In
each period, a government randomly selects a fraction g of the locations
to monitor and impose the legal restriction. If a location is monitored, all
matches in the location face the legal restriction. This way of modelling
the matching shock simplifies the analysis and has the following implica-
tions. First, in any given period, all of a household’s buyers and sellers are
involved in either restricted matches or unrestricted matches, but not in
both. Second, because the shock occurs to matches, the two individuals
in a match necessarily receive the same realization of the matching shock.
This and the previous feature together imply that the two households in a
match are symmetric, which simplifies the calculation of the terms of trade.

4One may suggest the alternative setup where restricted trades are Walrasian market
and unrestricted trades are decentralized. As said above, this setup cannot prevent
matured bonds from circulating as money, unless the government sector is sufficiently
large.
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The shock induces different quantities of trade and consumption between a
household in restricted matches and a household in unrestricted matches.
However, this ex post heterogeneity among the households is not carried
over time. As I will explain in section 2.4, all households will optimally
choose to hold the same portfolio of assets at the end of each period regard-
less of the matching shocks in the period. Thus, a representative household
can be maintained over time.

In contrast to the goods market, the bond market has no transaction cost
and trades take zero measure of agents. In this market, the government
conducts open market operations by selling new bonds at the competitive
price. As in Lucas (1990), the government only accepts money as payments
for the bonds. However, agents can bring unmatured bonds into the bond
market, sell them to other households for money, and then use the receipt
to purchase new bonds, although the net amount of such transactions is
zero in any symmetric equilibrium.

The amount of newly issued bonds is stochastic, which is the only ag-
gregate uncertainty in the economy. To specify this stochastic process, let
M+1 be the average amount of money holdings per household in the next
period after monetary transfers in that period are made but before the mar-
kets open (see Figure 1 later for a depiction of the timing). The amount
of bonds newly issued in the current period is zM+1, where z is a random
variable following a Markov process.5 The realizations of z lie in a finite set
Z, with a lower bound zL > 0 and an upper bound zH <∞. The transition
function of z is Φ(dz, z−1), where the subscript −1 indicates the previous
period. Assume that Φ has the Feller property, i.e., that f : Z × Z → R is
continuous implies that

∫
f(z, z−1)Φ(dz, z−1) is continuous.

Open market operations can affect the money growth rate. However, to
focus on the “pure” liquidity effect, Lucas (1990) eliminates the effect of the
shocks on money growth in some sections of his paper by assuming that the
government uses lump-sum transfers to maintain a constant money growth
rate. In most parts of my analysis, I will adopt this assumption in order to
compare my results with Lucas’. However, I will allow the money growth
rate to vary with the shocks in section 6. Denote the gross rate of money
growth as γ.

5The purpose of specifying the amount of new bonds as zM+1, rather than zM as
in Lucas (1990), is for the convenience of unifying the formulas in the case where open
market operations affect the money growth rate and the case where the money growth
rate is fixed by monetary transfers (see a discussion in the next paragraph). The two
specifications are equivalent, up to rescaling, in the case where the monetary growth
rate is constant. Notice that the specification of zM+1 does not create any problem of
measurability. Because there is no new shock between the realization of the current z
and the measurement of future money stock M+1, the stock M+1 and the amount of
newly issued bonds are measurable with respect tothe stochastic process of z.
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2.2. Timing of Events

Let me clarify four pieces of notation. First, following Lucas (1990), I
normalize all nominal quantities by the aggregate money holding per house-
hold, M . Second, I pick an arbitrary household as the representative house-
hold and use lower-case letters to denote the decisions of this household.
The corresponding capital-case letters denote other households’ decisions
or aggregate variables. Third, I suppress the generic time subscript t, de-
noting t± j as ±j for j ≥ 1. Fourth, all integrals in this paper are over Z,
with Z being suppressed.

Figure 1 depicts the timing of events in each period. At the beginning
of the period the household redeems bonds that were issued two periods
ago and receives a lump-sum monetary transfer, L. After these events, the
household’s holding of money (divided by M) is measured as m, and of
unmatured bonds as b.

t
redeem

portfolio
(a, `)

markets open;
z is realized

markets
closed

t+ 1

|−−−−−−−−→ −−−−−−−−→ −−−−−−−−−→ −−−−−−−−−−−−−→ −−−−−−→ |−→

money
transfer L

(m, b)
measured

decisions on
goods trade
(q, x)

trades: γd, bu

and (q, x)
pooling,
consume

Figure 1 Timing of events in a period

Then, the household chooses a fraction of money, a, and a fraction of
unmatured bonds, `, that will be taken to the goods market. This part of
the assets the household divides evenly among the buyers; so, each buyer
carries am/(1−σ) units of money and `b/(1−σ) units of unmatured bonds.
The household takes the remaining assets to the bond market. At the time
of choosing the portfolio divisions (a, `), the household also chooses the
quantities of goods and money for each buyer to offer in a trade (see the
detailed description later). These quantities are contingent on whether the
household members will be located in restricted or unrestricted trades. To
indicate this contingency, I denote the quantities in a restricted trade as
(qi, xi), where i = g indicates a restricted trade and i = n indicates an
unrestricted trade.

Next, the two markets open simultaneously and separately. It is not
possible to communicate between the two markets. In the goods market,
the matching shock is realized, which determines whether the household’s
members are in restricted or unrestricted trade. In each trade, the buyer
makes a take-it-or-leave-it offer prescribed by the household as (qi, xi).
In the bond market, the shock z is realized as the government issues an
amount γz of new two-period bonds. Let γd be the amount of such bonds
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demanded by the household, where d is normalized by the aggregate money
stock in the same way as z is. The household can also trade unmatured
bonds in the bond market. Let bu be the amount of unmatured bonds that
the household carries out of the bond market when the market closes. Let
the price of two-period bonds be S and the price of unmatured bonds be
Su.

After the trades, the markets close and agents go home. The household
pools the receipts from the trades and allocates consumption evenly among
all members. After consumption, time proceeds to the next period.

As in Lucas (1990), the temporary separation between the two markets
captures the costs of transferring assets and information between the two
markets within the same period. These costs are critical for the liquidity
effect, although the extreme form (i.e., infinite cost) may not be necessary.
If agents could costlessly move assets between the two markets immediately
after observing the shock in the bond market, or if the traders in the goods
market can costlessly make the trades contingent on the realization of the
current shock, then expected inflation would respond to the shock imme-
diately. This would change the nominal interest rate in the way indicated
by the Fisherian equation, which is opposite to the liquidity effect.

To make explicit these restrictions imposed by the temporary separation,
I require that the portfolio divisions, (a, `), and the quantities of trade in the
goods market, (qi, xi), be all independent of the current shock z, although
they can depend on the past shock z−1. In contrast, the amounts of bonds
traded, (d, bu), can depend on z as well as on z−1, because the household
chooses these amounts after observing the shock z. Similarly, prices of
bonds, (S, Su), depend on both the shocks in the current period and in the
previous period.

With the above timing, one-period bonds (if they are introduced) do
not have a chance to circulate in the goods market before maturity. Once
matured, they will be redeemed immediately by the households, rather
than being kept to buy goods in a fraction of future trades. Thus, only
unmatured long-term bonds can circulate in the goods market.

2.3. Quantities of Trade in the Goods Market

In a trade match, the buyer makes a take-it-or-leave-it offer. The house-
hold chooses the quantities of money and goods for each buyer to offer. To
describe these choices, let v(m, b, z−1) be the household’s value function
at the time where m and b are measured (see Figure 1).6 The discount
factor is β ∈ (0, 1). Let ωm(z−1) be the expected shadow value of next
period’s money discounted to the current period, where the expectation is
calculated before observing the current shock z. Similarly, let ωb(z−1) be

6I suppress the dependence of the value function on aggregate variables and other
households’ decisions.
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the expected shadow value of unmatured bonds. Then,

ωi (z−1) =
β

γ

∫
vi+1

(m+1, b+1, z)Φ (dz, z−1) , i = m, b, (1)

where vi+1 = ∂v(m+1, b+1, z)/∂i+1. Notice that the discount on the value
of future assets involves the money growth rate γ, because the variables m
and b are normalized by the aggregate money stock which grows at rate γ.
The expected values, ωm and ωb, are computed before the current shock z
is realized, in order to make them relevant for the money allocation in the
current period. Other households’ expected value of future money is Ωm

and of future unmatured bonds is Ωb.
The offer specifies the quantity of goods that the buyer asks the seller

to supply, q, and the quantity of assets that the buyer gives, x. These
quantities are (qg, xg) in a restricted trade and (qn, xn) in an unrestricted
trade. In a restricted trade, money is the only asset that can be used for
the purchase. In an unrestricted trade, both money and unmatured bonds
can be used. However, it is not necessary to specify the division of the
amount xn into money and unmatured bonds, because the two assets are
equivalent to anyone who exits the trade with them. When the trade is
closed, no one can use these assets to purchase goods in the current period
and, at the beginning of the next period, the bonds mature and can be
redeemed for money at par.7

Under the assumption that the buyer makes a take-it-or-leave-it offer, the
quantities (qi, xi) yield zero surplus for the seller.8 The seller’s surplus in a
type i trade is [Ωmxi−ψ(qi)], where Ωmxi is the value of the assets that the
seller receives from the trade and where i = n, g. In this surplus, the seller’s
money receipts are evaluated at the margin because the contribution of one
seller to the household’s total money receipts is marginal. Notice that a
household’s sellers cannot share the production cost because production is
incurred in each match. Setting the surplus to zero yields:

xi(z−1) =
ψ(qi(z−1))

Ωm
, i = n, g. (2)

Also, the buyer is constrained by the sum of money and unmatured bonds
in an unrestricted trade, and by the amount of money in a restricted trade.
These asset constraints are:

xn(z−1) ≤ a(z−1)m+ `(z−1)b

1− σ
, (3)

7For the same reason, a trade in the goods market between a money holder and a bond
holder is inconsequential, and so it is omitted here. Of course, this simplicity would be
lost if bonds had maturity longer than two periods.

8See Shi (2001) for a formulation of sequetial bargaining that is embedded in a market
with decentralized exchange and whose outcome coincides with that of Nash bargaining.
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xg(z−1) ≤ a(z−1)m

1− σ
. (4)

When an asset constraint binds, I say that the asset yields liquidity services
in the goods market. Similarly, money may generate liquidity in the bond
market.

2.4. A Household’s Decision Problem

In a typical period, the household’s choices are the portfolio division,
(a, `), the quantities of trade, (qn, xn, qg, xg), the amount of new bonds to
purchase, γd, the amount of unmatured bonds exiting the bond market
with, bu, consumption, (cn, cg), future money holdings, m+1, and future
holdings of unmatured bonds, b+1. The decisions (a, `, q, x, c) are functions
of only the previous period’s state z−1, but (d, bu) can depend on the
current state z as well as z−1. Future money holdings are denoted mg

+1

if the household has restricted trades in the current period and mn
+1 if

the household has unrestricted trades. The household takes as given other
households’ decisions, aggregate variables and bond prices (S, Su).

The representative household solves the following problem:9

(PH) v(m, b, z−1) = max
(a,`,q,x,c)(z−1)

[gUg + (1− g)Un] ,

where, for i ∈ {g, n}, U i is defined as:

U i ≡ u(ci(z−1))−ασ(1−σ)ψ(Qi)+β

∫
max

(d,bu)(z,z−1)
v(mi

+1, b+1, z)Φ(dz, z−1).

The constraints of the problem are as follows:
(i) the constraints in the goods market, (2) – (4), and

ci(z−1) = ασ(1− σ)qi(z−1), i = n, g; (5)

9To establish existence, uniqueness and differentiability of the value function, one can
use the standard procedure in Stokey and Lucas with Prescott (1989). First, it is easy
to show that the constraints in the problem form a closed, bound and convex subset
in a finite Euclidean space. Given the assumptions on u and ψ, the Theorem of the
Maximum implies that the maximum in (PH) exists and that the maximizer is unique.
Second, since other households’ decisions (Xn, Qn, Xg , Qg) and the aggregate variables
are taken as given in (PH), the household’s own marginal values of the assets, ωm and
ωb, do not appear directly on the right-hand side of (PH). The mapping defined by the
right-hand side satisfies Blackwell’s sufficient conditions for contraction mapping, and so
there exists a unique value function satisfying the Bellman equation in (PH). Finally,
differentiability of the value function follows from Theorem 4.11 in Stokey and Lucas
with Prescott (p85).
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(ii) the constraints in the bond market: bu(z) ≥ 0 and

S(z, z−1)γd(z, z−1) ≤ [1− a(z−1)]m+Su(z, z−1) {[1− `(z−1)] b− bu(z, z−1)} ;
(6)

(iii) the laws of motion of asset holdings:

b+1 = d(z, z−1), (7)

mi
+1 = 1

γ {m− S(z, z−1)γd(z, z−1) + Su(z, z−1) [(1− `(z−1)) b− bu(z, z−1)]

+ασ(1− σ)
[
Xi − xi(z−1)

]
+ [`(z−1)b+ bu(z, z−1)] + L+1

}
, i = g, n.

(8)
(iv) and other constraints: 0 ≤ a(z−1) ≤ 1 and 0 ≤ `(z−1) ≤ 1.

The objective function in the above problem contains two groups of
terms, one for the case where the household’s members are located in re-
stricted matches and the other for the case in unrestricted matches.10 The
outer maximization in (PH) determines the choices (a, `, q, x, c), which are
made before the realization of the shock z. The maximization in U i de-
termines the choices (d, bu), which maximize the future value function for
each realization of z.

The constraints in (i) and (iv), and the law of motion of unmatured bond-
s, (7), are self-explanatory. In (ii), there are two constraints in the bond
market. First, the household cannot hold a negative amount of unmatured
bonds. Second, as (6) requires, the household must finance the purchase of
new bonds by the assets it brings into the bond market. The last term in
(6) is the receipt of money that the household obtains by selling some of
the unmatured bonds it brings to the bond market. This amount is zero
in a symmetric equilibrium.

To explain the law of motion of money, (8), recall that the household’s
money holding is measured at the time immediately after receiving mone-
tary transfers and redeeming matured bonds (see Figure 1). Between two
adjacent points of time of this measurement, money holdings can change
as a result of the following transactions: purchasing newly issued bonds,
selling unmatured bonds in the bond market, selling and buying goods,
redeeming matured bonds and receiving the monetary transfer L+1 next
period. The terms following m on the right-hand side of (8) list the net
changes in money holdings from these transactions. Here, the factor 1/γ
appears on the right-hand side because m+1 is normalized by M+1 while
the money receipts in the current period are normalized by M .

In a symmetric equilibrium, all households hold the same portfolio of
assets at the end of each period regardless of the matching shocks in the

10The implicit assumption here is that the goods in a restricted trade yield the same
marginal utility as the goods in an unrestricted trade. For a relaxation of this assump-
tion, see Shi (2005, 2008).
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period. One reason for this result is that there is no communication between
the markets. This implies that the bond-trading decisions, (d, bu), do not
depend on the realization of the matching shock in the goods market. As a
result, the amount of bonds carried into the next period will be independent
of the matching shock. Another reason is that the representative household
and its trading partners in the goods market experience the same matching
shock. This feature implies xi = Xi in a symmetric equilibrium for i = g, n.
Then, from (8) one can show that the amount of money holdings at the
end of a period will also be independent of the matching shock, i.e., mg

+1 =
mn

+1. Thus, I can suppress the superscripts (g, n) on m and maintain a
representative household over time.

To characterize optimal decisions, let ρ(z, z−1) be the state-contingent
Lagrangian multiplier of the constraint in the bond market, (6). Let
λn(z−1)ασ(1 − σ)(1 − g) be the multiplier of the asset constraint in an
unrestricted trade, (3), and λg(z−1)ασ(1 − σ)g the multiplier of the as-
set constraint in a restricted trade, (4). The constants ασ(1 − σ)(1 − g)
and ασ(1 − σ)g in these multipliers are used to simplify various terms.
For the moment, I suppress the dependence of (a, `, q, x, c, λ) on z−1 and
of (d, bu, S, Su, ρ) on (z, z−1). The following conditions characterize the
household’s optimal choices.
(i) Quantities qn and qg:

u′(ci) =
(
ωm + λi

) ψ′(qi)
Ωm

, i = n, g. (9)

(ii) Portfolio divisions (a, `) and bond market decisions (bu, d):

for a: ασ [(1− g)λn + gλg] =

∫
ρΦ (dz, z−1) ; (10)

for `: ασ(1− g)λn + ωm =

∫ (
ρ+

β

γ
vm+1

)
SuΦ(dz, z−1); (11)

for bu:
β

γ
vm+1

=

(
ρ+

β

γ
vm+1

)
Su; (12)

for d:
β

γ
vb+1 =

(
ρ+

β

γ
vm+1

)
S. (13)

In each of these conditions, the variable attains the lowest value in its
domain if the equality is replaced by “<”, and the highest value if “>”,
where a, ` ∈ [0, 1] and d, bu ∈ [0,∞).
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(iii) The envelope conditions for m and b:

vm = ωm + aασ [(1− g)λn + gλg] + (1− a)

∫
ρΦ (dz, z−1) ; (14)

vb = ` [ωm + ασ(1− g)λn] + (1− `)
∫ (

ρ+
β

γ
vm+1

)
SuΦ(dz, z−1). (15)

The condition (9) requires that the net gain to a buyer from asking for an
additional amount of goods be zero. By getting an additional unit of good,
the household’s utility increases by u′(c). The cost is to pay an additional
amount ψ′(q)/Ωm of assets in order to induce the seller to trade (see (2)).
By giving an additional unit of asset, the buyer foregoes the discounted
future value of the asset, ωm, and causes the asset constraint in the trade
to be more binding. Thus, (ωm + λ) is the shadow cost of each additional
unit of asset to the buyer’s household and the right-hand side of (9) is the
cost of getting an additional unit of good from the seller.

In (ii), (10) says that for the household to allocate money to both the
goods market and the bond market, money must generate the same ex-
pected liquidity services in the two markets. The liquidity services derive
from the role of the asset in relaxing the trading constraints, as reflected
by the shadow costs of the corresponding constraints.

The condition (11) is a similar requirement on the allocation of unma-
tured bonds between the two markets. If the household takes a unit of
unmatured bond to the goods market, the bond can generate liquidity ser-
vices ασ(1− g)λn by relieving the asset constraints and will have a future
value β

γ vm+1 upon redemption. If the household instead takes the unit of
unmatured bond to the bond market, the bond can be sold for Su units of
money, which will generate liquidity services ρ in the bond market and will
have a future value β

γ vm+1
. Because the household must choose ` before

seeing the realization of z, it compares the expected values of allocating a
marginal unit of unmatured bonds to the two markets. This comparison
leads to (11).

The condition (12) specifies the optimal demand for unmatured bonds in
the bond market. The value of keeping a unit of unmatured bond for future
redemption is the discounted future value of one unit of money, βγ vm+1

. The

value of selling a unit of unmatured bond for money is
(
ρ+ β

γ vm+1

)
Su,

as explained above. For the choice bu to be interior, these two values must
be equal to each other. The condition (13) is a similar requirement for the
quantity of new bonds purchased, except that the price and future value
of a new bond are different from those of an unmatured bond. Notice that
(12) and (13) must hold for every realization of z.
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Finally, the envelope conditions require the current value of each asset
to be equal to the sum of the expected future value of the asset and the
expected liquidity services generated by the asset in the current markets.
Take the condition for money for example. The current value of money is
vm. The right-hand side of (14) consists of the expected future value of
money, ωm, the liquidity services generated by money in the current bond
market, ρ, and the liquidity services generated by money in the current
goods market, λ. The liquidity services in the two markets are weighted
by the division of money into the two markets.

2.5. Equilibrium Definition and Interest Rates

A (symmetric) monetary equilibrium consists of a value function v: R+×
R+ × Z → R, portfolio division functions a, `: Z → [0, 1], functions of
trade quantities in matches qn, xn, qg, xg: Z → R+, consumption function
c: Z → R+, bonds purchase functions d, bu: Z × Z → R+, bonds price
functions S, Su: Z×Z → R+ such that the following requirements are met:

(i) Given other households’ choices and (m, b), the household’s choices
solve (PH);

(ii) The choices are the same across households and, in particular, m = 1;

(iii) The bond market clears, i.e., d (z, z−1) = z and bu(z, z−1) = [1− `(z−1)] b
for all (z, z−1) ∈ Z × Z;

(iv) 0 < ωm(z), ωb(z) <∞ for all z ∈ Z.

The requirements (i), (ii) and (iii) are self-explanatory. In part (iv),
the restriction that the value of each asset be positive is necessary for
a meaningful examination of the coexistence of money and bonds. The
restriction that these values be bounded away from infinity is necessary for
the first-order conditions to characterize optimal decisions.

Moreover, I restrict attention to equilibria in which money generates
liquidity in the goods market in all states of the economy. That is, for all
z−1, at least one of λn(z−1) and λg(z−1) must be positive. Note that this
restriction also implies a(z−1) > 0 for all z−1. However, it is not reasonable
to assume that λn and λg are both positive for all realizations of the shock.
As I will show later, λn can be zero when the value of money is high.

By invoking equilibrium conditions, I can simplify the optimality condi-
tions. First, because d(z) = z ∈ (0,∞) in equilibrium, the optimal condi-
tion for d must hold as equality, as in (13). Second, because m = 1 and
b = d−1 = z−1 in equilibrium, I can shorten the notation for the shadow
values of the assets as follows:

µi(z−1) ≡ vi (1, z−1, z−1) , i = m, b. (16)
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The expected value of µ, defined in (1), can be expressed as ωi = O(µi),
where

O(µi)(z−1) =
β

γ

∫
µi(z)Φ (dz, z−1) , i = m, b. (17)

Third, for all S > 0, the bond market clearing conditions imply a < 1.
Under the restriction a > 0, then 0 < a < 1, and the equality in (10) holds.
The condition (14) can be simplified as

µm(z−1) = ωm(z−1) + ασ [(1− g)λn(z−1) + gλg(z−1)] . (18)

Now turn to the price of two-period bonds, S. If money yields liquidity
in the bond market (i.e., if ρ > 0), then (6) binds and S = (1 − a)/(γz).
In this case, (13) implies S < µb(z)/µm(z). If ρ = 0, then (6) does not
bind. In this case, S ≤ (1 − a)/(γz), and (13) implies S = µb(z)/µm(z).
Combining the two cases, I express the two-period bond price as

S (z, z−1) = min

{
1− a(z−1)

γz
,
µb(z)

µm(z)

}
. (19)

I can also use (13) and (19) to obtain:

ρ (z, z−1) =
β

γ
max

{
γz

1− a(z−1)
µb(z)− µm(z), 0

}
. (20)

Under the earlier restriction that at least one of λg(z−1) and λn(z−1) must
be positive, the expected value of ρ(z, z−1) over z must be positive (see
(10)). That is, the money constraint in the bond market binds “on aver-
age”. However, the constraint does not bind with some realizations of z,
as shown later in numerical examples.

The two-period nominal interest rate, defined as r = S−1 − 1, is

r(z, z−1) = max

{
γz

1− a(z−1)
− 1,

µm(z)

µb(z)
− 1

}
. (21)

Notice that the past shock affects the current interest rate if and only if the
following two conditions are satisfied. First, the money allocation in the
current period, a(z−1), depends on the past shock. Second, the maximum
in (21) is equal to the first term inside the max operator, i.e., ρ(z, z−1) > 0.
These conditions are not always met, as I will illustrate in section 4. If both
conditions are satisfied, then open market operations have persistent effects
on interest rates.

The price of unmatured bonds in the bond market, Su, depends on
whether the household takes all unmatured bonds to the goods market. If
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` = 1, the supply of and the demand for unmatured bonds in the bond
market are both zero, in which case Su is indeterminate. If ` < 1, the
supply of unmatured bonds in the bond market is positive. In this case,
the equality in (12) holds and so

Su(z, z−1) =
µm(z)

ρ(z, z−1) γβ + µm(z)
. (22)

Unmatured bonds are discounted if and only if ρ(z, z−1) > 0.
Although the price of unmatured bonds may be indeterminate, the price

of newly issued one-period bonds is determinate. If one-period bonds were
issued, the price would be given by the right-hand side of (22) (regardless
of whether ` < 1). Denote this price as SI(z, z−1). Then,

SI(z, z−1)

S(z, z−1)
=
µm(z)

µb(z)
. (23)

The ratio µm/µb is the expected future discount on unmatured bonds. As
shown later, µb(z) < µm(z) in the equilibrium, because unmatured bonds
are not perfect substitutes for money in the goods market. Thus, there is
a deeper discount on two-period bonds than on one-period bonds.

3. CHARACTERIZATION AND EXISTENCE OF THE
EQUILIBRIUM

One element that complicates the analysis of the equilibrium is that
various money constraints may or may not be binding. In deterministic
environments, one can avoid this complexity by restricting the parameter
values and monetary policy so that the money constraints are either always
binding or never binding. Such a restriction would be difficult to justify
in a stochastic environment. For example, the money constraint in the
bond market may bind for certain realizations of the shock but not for
other realizations. This variation in the severity of the money constraint
is a necessary implication of the liquidity effect of open market operations.
To capture this effect, I need to allow for the possibility that the money
constraints fail to bind for certain realizations of the shock.

3.1. Characterization

The equilibrium can be one of two cases, 0 ≤ ` < 1 and ` = 1. When
` = 1, the household takes all unmatured bonds to the goods market and
such bonds generate liquidity in a fraction (1 − g) of trades, i.e., λn > 0.
In the case 0 ≤ ` < 1, unmatured bonds do not generate liquidity (at
the margin) in the goods market, i.e., λn = 0, although some unmatured



LIQUIDITY, INTEREST RATES, AND OUTPUT 71

bonds may still be used to buy goods.11 Likewise, money generates liquidity
services in unrestricted trades if and only if ` = 1. In contrast to bonds,
money also generates liquidity services in restricted trades if λg > 0.

To characterize the equilibrium, it is useful to express more explicitly the
conditions under which the asset constraints bind. The condition λn > 0 is
equivalent to u′(cn) > ψ′(qn) (see (9) for i = n). Define Q0 as the solution
to the following equation:

u′ (ασ(1− σ)Q0) = ψ′(Q0). (24)

Then, λn > 0 (and hence ` = 1) iff qn < Q0. It is more convenient to
express this condition in terms of the shadow value of money. Since ` = 1
when λn > 0, then (3) and (2) imply that λn > 0 iff 0 < ωm < w1 where

w1(a, z−1) =
1− σ
a+ z−1

ψ(Q0). (25)

Similarly, the asset constraint binds in a restricted trade (i.e., λg > 0) iff
qg < Q0, which can be rewritten as 0 < ωm < w2 where

w2(a) =
1− σ
a

ψ(Q0) > w1(a, z−1). (26)

The equilibrium requires ωm < w2, provided γ > β: If ωm ≥ w2, no asset
would generate liquidity (at the margin) in the goods market, in which case
µm = ωm and an equilibrium would exist only for γ = β. For ωm < w2,
the equilibrium falls into the following two cases.

Case 1: 0 < ωm < w1. In this case, λn > 0, λg > 0, and ` = 1.
Since the asset constraints (3) and (4) bind, the quantity of goods traded
is qn = Q1 in an unrestricted trade and qg = Q2 (< Q1) in a restricted
trade, where

Q1(ωm; a, z−1) = ψ−1

(
a+ z−1

1− σ
ωm
)
, (27)

Q2(ωm; a) = ψ−1

(
aωm

1− σ

)
. (28)

The total amount of liquidity services that unmatured bonds generate is
ασ(1− g)λn. After substituting λn from (9), I can express this amount as

11The proof for λn = 0 in this case is as follows. When 0 ≤ ` < 1, the optimality
condition for ` holds as “≤”; That is, (11) holds as “≤”. Because bu = (1− `)b ∈ (0,∞)
when 0 ≤ ` < 1, the equality in (12) holds, which leads to (22). Substituting (22) into
the inequality form of (11) yields λn ≤ 0. Thus, λn = 0.
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ωm(z−1)Fn, where

Fn(ωm; a, z−1) = ασ(1− g)

[
u′ (ασ(1− σ)Q1(ωm; a, z−1))

ψ′(Q1(ωm; a, z−1))
− 1

]
. (29)

Similarly, the total amount of liquidity services that money generates is
ασ(1−g)λn+ασgλg, which can expressed as ωm(z−1)(Fn+F g) where F g

is defined as follows:

F g(ωm; a) = ασg

[
u′(ασ(1− σ)Q2(ωm; a))

ψ′(Q2(ωm; a))
− 1

]
. (30)

Case 2: w1 ≤ ωm < w2. In this case, λn = 0 < λg. Since λn = 0, the
quantity of goods traded in an unrestricted trade is qn = Q0. Since λg > 0,
the quantity of goods traded in a restricted trade is qg = Q2. Bonds do
not generate liquidity services in this case. In contrast, money generates
liquidity services, the total amount of which is ωm(z−1)F g.

In both cases, µm(z) > µb(z) for all z (see (32) and (33)). Thus, un-
matured bonds are not perfect substitutes for money in the goods market.
As (23) shows, this imperfect substitutability induces a deeper discount on
two-period bonds than on one-period bonds. The fraction of unmatured
bonds taken to the goods market is ` = 1 if ωm < w1 and ` ∈ [0, 1) if
ωm > w1.12

To unify the two cases, express the total amount of liquidity services
generated by money as ωm(z−1)F , where

F (ωm; a, z−1) =

 F g(ωm; a) + Fn(ωm; a, z−1), if 0 < ωm ≤ w1

F g(ωm; a), if w1 ≤ ωm ≤ w2

0, if ωm ≥ w2.
(31)

Using this amount to substitute for the term [ασ(1− g)λn +ασgλg], I can
write (18) as:

µm(z−1) = ωm(z−1) [1 + F (ωm(z−1); a(z−1), z−1)] . (32)

12Although the value of ` is indeterminate when ωm > w1, this indeterminacy of `
has no effect on real variables, because unmatured bonds in this case do not generate
liquidity at the margin. The indeterminacy does not affect the equilibrium value of a,
either, and hence the bond price S and the corresponding interest rate r do not depend
on such indeterminacy.
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Since ωm = O(µm), this is a functional equation for µm for any given
function a(.). Similarly, (15) yields a functional equation for µb as follows:13

µb(z−1) =

{
ωm(z−1) [1 + Fn(ωm(z−1); a(z−1), z−1)] , if 0 < ωm ≤ w1

ωm(z−1), if ωm ≥ w1.
(33)

To determine the function a(.), I use (10) to eliminate (λg, λn) in (18),
substitute the definition of ωm, and use (20) to eliminate ρ. This produces
the following functional equation for a:

a(z−1) = 1− β/γ

µm(z−1)

∫
max

{
γzµb(z), [1− a(z−1)]µm(z)

}
Φ(dz, z−1).

(34)
The procedure for determining the equilibrium has two steps. First, for

any fixed function a(.) that is continuous and bounded in the interior of
[0, 1], I solve the fixed point for µm from (32). Substitute the solution
into ωm = O(µm) to get ωm and into (33) to get µb. Then, substitute
(µm, µb) into the right-hand side of (34) to obtain a new function, denoted
as Γa(z−1). Second, the equilibrium function a(.) solves a(z−1) = Γa(z−1)
for all z−1 ∈ Z. Once the functions (µm, µb, ωm, a) are determined, I can
recover the traded quantities of goods and consumption (output) through
(27) and (28), the bond price S through (19) and the nominal interest rate
through (21).

3.2. Existence of the Equilibrium

Two features of the equilibrium complicate the proof of existence. First,
the mapping defined by the right-hand side of (32) is not concave. Second,
the function Γa (as a function of a) is an implicit one because it involves
the solution to another fixed point problem. To get around these problems,
I impose additional assumptions in this section. The proof has some resem-
blance to the proof by Lucas (1990). However, the details necessarily differ
for the following reasons. First, the goods market here is non-Walrasian,
and so prices are determined bilaterally. Second, output is endogenous,
rather than being given by endowments. Third, there are two types of
trades in the goods market – the restricted trades and unrestricted trades
– and so prices are different in these trades. All proofs for this subsection
are collected in Appendix A.1.1.

Let me begin by defining the bounds on various functions. Let a be
bounded in [aL, aH ] and µm bounded in [ γβωL,

γ
βωH ], where

0 < aL ≤ aH < 1, 0 < ωL ≤ ωH <∞. (35)

13The derivation is straightforward when ωm < w1 (i.e., when ` = 1). When ωm >
w1, 0 ≤ ` < 1 and λn = 0, as discussed above. Then bu = (1− `)b ∈ (0,∞), and so the
equality in (12) holds. This equality and the fact λn = 0 reduce (15) to µb = ωm.
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Then, by (17), ωm is bounded in [ωL, ωH ]. There will be further restric-
tions imposed on these bounds later in Lemma 1 and Theorem 1. Restrict
attention to µm(.) ∈ V and a(.) ∈ A, where V denotes the set of continuous
functions defined on Z whose values lie in [ γβωL,

γ
βωH ] and A the set of

continuous functions defined on Z whose values lie in [aL, aH ]. Endow V
and A with the supnorm, so that they are complete metric spaces. Note
that V and A are sets of functions defined on Z which is assumed to be a
finite set.

In the first step of the procedure for determining an equilibrium, I pick
an arbitrary a ∈ A and solve for µm from (32). Denote the right-hand side
of (32) as T (ωm; a, z−1) and define

TO(µm; a, z−1) = T (O(µm); a, z−1). (36)

Then, (32) requires µm to be the fixed point of TO. I will find conditions
under which TO is a monotone contraction mapping from V to V.

Assumption 1. Denote the relative risk aversion as δ (c) = −cu′′ (c) /u′ (c).
Assume that (i) δ(c) ≤ 1, and (ii) the function [1− δ(c)]u′(c)

/
ψ′
(

c
ασ(1−σ)

)
is decreasing in c.

The unity upper bound on the relative risk aversion in part (i) simplifies
the proofs by ensuring that T (ωm; a, z−1) be increasing in ωm, but it is not
necessary for existence. An equilibrium can exist even when the relative
risk aversion exceeds one, as shown in the numerical examples in section
5.4. Also, the numerical examples will show that imposing this upper
bound strengthens the quantitative predictions of the model. Part (ii) of
the above assumption is necessary and sufficient for T to be concave in ωm

in each of the three segments (0, w1), (w1, w2), and (w2,∞). It is satisfied
if, for example, the utility function exhibits constant relative risk aversion.
Figure 2 depicts the mapping T on ωm.

I can select a constant K that is sufficiently close to but greater than 1,
and use K to construct the lower bound ωL (see Figure 2 for an illustration
and Appendix A.1.1 for the formal construction). Then, the following
lemma holds.

Lemma 1. Let ε > 0 be a small number. Let K be sufficiently close to
but greater than 1. Given any function a(.) ∈ A, the mapping TO defined
in (36) is a monotone contraction mapping from V to V if the following
condition holds:

max {K − 1 + ε, F (ωH , aL, zL)} ≤ γ

β
− 1 ≤ F (ωL, aH , zH) . (37)
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I can select a constant that is sufficiently close to but greater than 1, and use to construct

the lower bound  (see Figure 2 for an illustration and Appendix A for the formal construction).

Then, the following lemma holds.

Lemma 3.1. Let   0 be a small number. Let  be sufficiently close to but greater than

1. Given any function () ∈ A, the mapping  defined in (3.13) is a monotone contraction

mapping from V to V if the following condition holds:

max { − 1 +   (   )} ≤ 


− 1 ≤  (   )  (3.14)

There is a non-empty set of parameter values that satisfy (3.14). Under this condition,  has

a unique fixed point  () ∈ V.

The subscript  in the notation  emphasizes the dependence of the fixed point for 
 on the

function  that is arbitrarily chosen from A in this step of the analysis. Similarly, the expected

future shadow value of money is  (−1) = ( )(−1). The shadow value of unmatured bonds

21

There is a non-empty set of parameter values that satisfy (37). Under this
condition, TO has a unique fixed point µma (.) ∈ V.

The subscript a in the notation µma emphasizes the dependence of the
fixed point for µm on the function a that is arbitrarily chosen from A in
this step of the analysis. Similarly, the expected future shadow value of
money is ωma (z−1) = O(µma )(z−1). The shadow value of unmatured bonds
is obtained from (33) as µba(.). Clearly, ωma (.) and µba(.) are continuous.
Also, ωma (z) ∈ [ωL, ωH ] for all z.

In the second step of the procedure for determining an equilibrium, I
solve the equilibrium function a. To do so, substitute µma and µba solved
above into (34). I obtain a(z−1) = Γa(z−1), where

Γa(z−1) ≡ 1− β/γ

µma (z−1)

∫
max

{
γzµba(z), [1− a(z−1)]µma (z)

}
Φ(dz, z−1).

(38)
Treat Γ as a mapping for a. Then, the equilibrium function a is a fixed
point of Γ. Once this fixed point is shown to exist, then the functions µma (.)
and µba(.) will recover the shadow values of money and unmatured bonds.
The following theorem summarizes the existence of the equilibrium.

Theorem 1. Maintain Assumption 1 and choose (γ,K, ωH) to satisfy
(37). Let aH be close to 1. There is a nonempty set of values of (zH , aL)
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that satisfy the following condition:

F (ωH , aH , zH) ≥ max

{
γzH

1− aL
− 1, 0

}
. (39)

Under (39), Γ is a continuous mapping from A to A. Thus, an equilibrium
exists, which satisfies µm(.) ∈ V, a(.) ∈ A, and ωL ≤ ωm(z) ≤ ωH for all
z ∈ Z.

The restriction (39) requires zH to be sufficiently small. This restriction
is necessary to ensure that the households allocate a positive fraction of
money to the goods market. If the size of the open market operation were
very large, instead, new bonds would be heavily discounted; given that the
money growth rate is fixed, the households would allocate all money to the
bond market to obtain the discount.

4. A SPECIAL CASE: INDEPENDENT SHOCKS

It is instructive to examine the special case where the shocks to bond
sales are independent over time. With this special case, I illustrate the key
differences between the current model and Lucas’ (1990) in the effects of
open market operations. I then explain how these differences depend on
the two modelling elements that are absent in Lucas’ model, namely, that
bonds can circulate in the goods market and that output is endogenous.

The behavior of the equilibrium depends on whether unmatured bond-
s generate liquidity in the goods market. Consider first the case where
unmatured bonds do not generate liquidity, i.e., where λn = 0 or equiv-
alently, ωm > w1. Then, the shadow values of assets, (µm, µb), and the
fraction, a, are numbers that are independent of the shocks. To verify
this result, suppose that (µm, µb, ωm, a) are all constants. Since λn = 0
in this case, F = F g. Also, ωm = O(µm) = β

γµ
m. Then, (32) becomes

F g(ωm; a) = γ
β − 1. Substituting F g from (30), this equation solves for the

quantity of goods in a restricted trade, which is a constant. The quantity
of goods in an unrestricted trade is also constant, given by Q0. Moreover,
µb = ωm by (33), and so µb = β

γµ
m. With (µb, µm), (34) becomes:

1− a =
β

γ

∫
max{βz, 1− a}Φ(dz). (40)

This equation solves for the constant a. Thus, (µm, µb, ωm, a) are indeed
constants in this case.

Equation (40) is essentially the same equation as in Lucas (1990) for the
case of independent shocks. Consequently, this case of the current model



LIQUIDITY, INTEREST RATES, AND OUTPUT 77

generates the liquidity effect that lasts for only one period, as in Lucas’
model. To see this, substitute the above results for (µb, µm, a) into (21):

r(z) = max

{
γz

1− a
− 1,

γ

β
− 1

}
.

A high realization of the current shock reduces the current interest rate
when z < (1− a)/β. This liquidity effect is not persistent, because future
interest rates are independent of the current shock. The liquidity effect
does affect real activities, either. Moreover, the additional discount on
two-period bonds relative to one-period bonds is independent of the shocks,
since it is equal to the constant (γ/β − 1) (see (23)).

Continue the examination of the economy with independent shocks but
now consider the case where unmatured bonds generate liquidity services,
i.e., where 0 < ωm < w1. This case of the equilibrium behaves very differ-
ently from Lucas’ model. In particular, µm and a are no longer constants.
Because the asset constraint binds in an unrestricted trade, the quantity
of goods in such a trade depends on the amount of unmatured bonds, as
well as the money stock. Since the amount of unmatured bonds in a period
is equal to the quantity of new bonds issued in the previous period, the
quantity of goods in an unrestricted match depends on the realization of
the previous period’s shock, z−1 (see (27)). That is, the previous period’s
shock affects the amount of liquidity in the current goods market. As a
result, current shadow values of the two assets are functions of the previous
shock (see (32) and (33)). Since these asset values affect the allocation of
money between the two markets, a is a function of z−1, even though the
shocks are independent over time.

Now, the shocks to bond sales can generate persistent effects on the
nominal interest rate, even when the shocks are independent. This can
be seen from (21). Since the past shock affects the current allocation of
money, the current interest rate depends on both the current shock and the
past shock, provided that the money constraint binds in the bond market.
Moreover, open market operations affect the relative value of unmatured
bonds to money, and hence affect the term structure of interest rates.

The persistence of the liquidity effect relies on the assumptions that
bonds can circulate in the goods market and that output is endogenous.
Recall that Lucas (1990) assumes that individuals are not allowed to use
bonds as payments in the goods market and that output is fixed as en-
dowment. Endogenizing output in Lucas’ model alone does not lead to
persistent liquidity effects. Since there is a cash-in-advance constraint in
Lucas’ model, bonds do not generate liquidity in the goods market, no
matter whether or not output is endogenous. This case is similar to the
case λn = 0 analyzed above.
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On the other hand, fixing output in the current model will also eliminate
the persistence of the liquidity effect. To see this, suppose that every
seller/producer is restricted to produce either 0 or a fixed amount q̄ > 0.
Then, (2) implies xg = xn = x ≡ ψ(q̄)/Ωm. Since x ≤ am/(1 − σ), the
asset constraint does not bind in an unrestricted trade, provided ` > 0 (see
(3)). Again, λn = 0. In this case, with independent shocks, a is a constant
solving (40), and past shocks do not affect the current interest rate.

5. NUMERICAL EXAMPLES

Let me return to the general case where the shocks can be dependent.
Because the equilibrium function a is a fixed point of an implicit mapping
Γ, it is difficult to check whether the solution is monotone. Likewise, it is
difficult to check whether consumption is a monotonic function of the past
shock. To study equilibrium properties, I turn to numerical examples.

5.1. Parameterization and Notation

Assume the following forms of utility and cost:

u (c) = u0
c1−δ − 1

1− δ
, ψ (q) = ψ0q

Ψ.

Let the shock z have two realizations, z1 and z2, with z2 > z1. Refer to z2

as the high shock and z1 as the low shock. The transition probability from
zi to zi′ (i′ 6= i) is 1 − θ, where i, i′ = 1, 2, and the probability of staying
at zi is θ. Consider the following parameter values as the baseline:

preference: δ = 0.5, u0 = 4, ψ0 = 1, Ψ = 2, β = 0.995;
goods market: α = 1, σ = 0.5, g = 0.2;
monetary policy: z1 = 0.02, z2 = 0.08, γ = 1.005.

The value of g matches the size of the government relative to the economy,
using the interpretation that the legal restriction in the goods market is
imposed in trades between private households and the government.14 The
values of (β, z1, z2) are the ones chosen by Lucas (1990). With the partic-
ular value of β, I can interpret the length of a period as one month and
the interest rate r as the bi-monthly interest rate. Also following Lucas, I
explore a large range of values of θ: 0.01, 0.1, 0.3, 0.5, 0.7, 0.9 and 0.99. I
will also analyze the sensitivity of the results to other parameters in section
5.4.

14Notice that g is not the fraction of goods purchased with money. Because money
is used in the current model to buy both restricted goods and unrestricted goods, the
fraction of goods purchased with money is much larger than the value of g.
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The bounds on the variables are set at aL = 0.90, aH = 0.98, κ = 1,
ωL = 0.543 and ωH = 3.375. These bounds satisfy all the conditions in
Theorem 1. Moreover, the equilibrium lies in the region ωm ∈ (0, w1).
That is, unmatured bonds generate liquidity in the goods market and the
household takes all unmatured bonds to the goods market. This is the case
for a large range of parameter values.

To display the results, let me add a subscript i to variables that depend
only on the previous period’s shock zi, where i = 1, 2. Add subscripts ji
to variables that depend on both the current shock zj and the previous
period’s shock zi, where i, j = 1, 2. To aggregate consumption of the
goods over the two types of trades, denote the price of goods in a restricted
trade, normalized by the money stock, as pg and the normalized price in an
unrestricted trade as pn. Aggregate real consumption (output) is defined
as follows:

ci = ασ(1− σ)

[
gpg(zi)q

g(zi) + (1− g)pn(zi)q
n(zi)

gpg(zi) + (1− g)pn(zi)

]
.

Notice that current output depends only on the shock in the previous pe-
riod, but not on the current shock. This is because consumption in the
current period is purchased with the assets that are allocated to the goods
market before the current shock is realized. Then, following the convention
in asset pricing models, I can define the (ex ante) real interest rate between
the current and the next period period as

Ereali =

[
βE

u′(cj)

u′(ci)

]−1

− 1, i = 1, 2, (41)

where the expectation is taken over the current shock zj , conditional on
the past shock zi.

The term structure is represented by the percentage difference between
the yield to newly issued two-period bonds, S−1/2, and the yield to one-
period bonds, 1/SI . Letting rI be the one-period interest rate correspond-
ing to SI and using (23), I can write this difference as:

termji =

(
µm(zj)/µ

b(zj)

1 + rI(zj , zi)

)1/2

− 1. (42)

Table 1 describes equilibrium properties of the fraction of money taken
to the bond market (1− a), nominal and real interest rates, consumption,
and the term structure of nominal interest rates. The mean, the stan-
dard deviation, and serial autocorrelations are calculated using the unique
invariant measure prob(zi) = 1/2 for i = 1, 2.
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5.2. Results Similar to Lucas’ Model

There are three important similarities between the results in Table 1 and
those reported by Lucas (1990). First, interest rates change significantly
with the persistence of the shock when the current shock is high. Also,
interest rates have a large (unconditional) standard deviation. However,
the mean of interest rates does not vary significantly with the persistence
of the shock, even if the degree of persistence varies between 0.1 and 0.9.
Thus, if one is interested only in the mean of interest rates, one can ignore
the persistence and simply examine the case of independent shocks (i.e.,
θ = 0.5).

Second, the fraction of money allocated to the bond market is insensi-
tive to the previous period’s shock. As in Lucas’ model, this insensitivity
is surprising especially when the shocks are negatively dependent. With
negatively dependent shocks, a high shock in the previous period implies
that the amount of bond sales is likely to be low in the current period and
the bond price likely to be high. Since the discount on bonds will be smal-
l, there is not much need to allocate more money to the bond market to
take advantage of the discount on new bonds. Thus, when the shocks are
negatively correlated, one would expect that the household would reduce
(1 − a) significantly upon observing a high shock in the previous period.
This does not happen in the numerical examples.

The insensitivity of money allocation to shocks is more puzzling here
than in Lucas’ model, because the goods market here provides an addition-
al reason for the household to adjust the money allocation. In particular, a
high past shock increases the amount of assets used in an unrestricted trade
relative to the assets in a restricted trade. This widens the gap between the
quantities of goods obtained in the two types of trades, and hence increases
the variation in a household’s consumption. To smooth consumption be-
tween the two types of trades, the household should increase the fraction
of money allocated to the goods market, so as to maintain a stable ratio of
assets used in an unrestricted trade relative to a restricted trade. Despite
this additional motivation for changing a, the negative response of (1− a)
to the past shock is not significant. Even when θ = 0.1, an increase of z−1

from z1 to z2 reduces (1− a) from 7.87% to 7.70%. This reduction is small
in comparison with the variation in the shock.

Third, the insensitivity of the money allocation leads to a strong liquidity
effect in the bond market. Interest rates are much higher when the current
shock is high than when the current shock is low; that is, r2i is much higher
than r1i for i = 1, 2. This is because the insensitive money allocation forces
the bond price to fall in order to absorb the higher supply of new bonds.
Notice that r11 = r12; that is, the two-period interest rate is independent
of past shocks when the current shock is low. This is because there is
more money than what is needed in the bond market when the amount of
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TABLE 1.

Table 1. Simulation results under a constant money growth rate

θ

0.01 0.1 0.3 0.5 0.7 0.9 0.99

1− a1 (%) 7.879 7.867 7.828 7.761 7.615 7.044 3.952

1− a2 (%) 6.224 7.698 7.892 7.930 7.941 7.926 7.903

r11 (%) 0.474 0.451 0.445 0.439 0.428 0.389 0.327

r21 (%) 2.038 2.201 2.705 3.593 5.580 14.133 103.46

r12 (%) 0.474 0.451 0.445 0.439 0.428 0.389 0.327

r22 (%) 29.178 4.443 1.877 1.384 1.248 1.441 1.732

E(r) (%) 1.392 1.438 1.451 1.464 1.488 1.549 1.538

StD(r) (%) 2.119 1.096 1.041 1.289 1.759 2.932 7.259

corr(r, r−1) −0.129 −0.483 −0.535 −0.341 −0.166 −0.029 0.004

corr(r, r−2) 0.126 0.387 0.214 0 −0.067 −0.023 0.004

corr(r, r−3) −0.124 −0.309 −0.086 0 −0.027 −0.018 0.004

c1 0.616 0.617 0.617 0.617 0.618 0.619 0.622

c2 0.628 0.627 0.626 0.626 0.626 0.625 0.622

E(c) 0.622 0.622 0.622 0.622 0.622 0.622 0.622

StD(c) 0.006 0.005 0.005 0.005 0.004 0.003 0.000

Ereal1 (%) 1.450 1.231 1.042 0.869 0.702 0.545 0.503

Ereal2 (%) −0.436 −0.221 −0.035 0.136 0.303 0.460 0.502

corr(c, r) −0.298 −0.537 −0.554 −0.429 −0.276 −0.073 0.025

corr(c+1, r) 0.433 0.901 0.966 0.795 0.603 0.396 0.167

corr(c+2, r) −0.424 −0.721 −0.386 0 0.241 0.317 0.163

corr(c+3, r) 0.416 0.577 0.155 0 0.096 0.253 0.160

term11 (%) 0.237 0.225 0.222 0.219 0.214 0.194 0.163

term21 (%) −0.720 −0.687 −0.902 −1.299 −2.181 −5.782 −29.391

term12 (%) 0.237 0.225 0.222 0.219 0.214 0.194 0.163

term22 (%) −11.764 −1.758 −0.500 −0.230 −0.111 −0.061 −0.144

single subscript i(= 1, 2): conditional on the previous period’s shock zi;
double subscript ji(i, j = 1, 2): conditional on past shock zi and current shock zj .

bond sales is low in the current period. In this case, the cash-in-advance
constraint in the bond market does not bind, the one-period interest rate
is zero (see (22)), and the two-period interest rate is driven entirely by the
imperfect substitution between unmatured bonds and money in the goods
market in the next period.
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5.3. New Results

The model generates several results that are absent in Lucas (1990). I
will describe them for the case of independent shocks, since the contrasts
with Lucas’ model are the sharpest in this case.

First, open market operations have a real effect – A high shock in the
previous period increases current real output. The standard deviation of
output is about 0.7% of the mean. This real effect arises because (un-
matured) bonds generate liquidity in the goods market. A high shock in
the previous period increases the stock of unmatured bonds in the current
goods market. This allows a buyer to purchase a larger quantity of goods
in an unrestricted trade than if the previous period’s shock was low, i.e.,
qn2 > qn1 . The presence of a larger quantity of nominal assets in the goods
market also pushes up the price level and reduces the quantity of goods
purchased in a restricted trade, i.e., qg2 < qg1 . In the numerical examples,
the increase in qn dominates the decrease in qg, and so aggregate output
rises.15 This positive effect of a tightening open market operation on out-
put depends on the unrealistic assumption that open market operations
do not affect money growth. When open market operations affect money
growth, as they typically do in practice, a tightening open market opera-
tion is likely to reduce aggregate output, as will be illustrated in section
6.

As a result of the effect on consumption, the past shock also affects the
real interest rate. When the shock was high in the previous period, current
consumption is high and so the real interest rate is low in the current
period. On the other hand, the real interest rate is high in the current
period when the shock was low in the previous period. The difference in
the real interest rate between the two states of the past shock is about 70
basis points, which is sizable. However, because of the liquidity effect, this
difference is smaller than the one in the nominal interest rate between the
two states.

Second, a high past shock reduces the current nominal interest rate when
the current shock is high. In contrast, past (independent) shocks in Lucas’
model do not affect the current interest rate. To explain this new effect,
recall that a high past shock increases the amount of unmatured bonds
circulating in the current goods market and increases the price level. The
higher price level reduces real values of both money and unmatured bond-
s. However, because the increased amount of unmatured bonds increases
liquidity in unrestricted trades, the real value of unmatured bonds (µb)
falls by less than does the real value of money (µm). (In fact, µb in the

15Also, real output (consumption) is serially correlated (not reported in Table 1). The
coefficient of correlation between current consumption and k-period past consumption
is equal to (2θ−1)k. Thus, positively correlated shocks induce positive autocorrelations
in consumption.
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examples barely changes at all with past shocks.) Thus, the relative value
of unmatured bonds to money increases, which induces the households to
allocate more money to purchase new bonds. When the current shock is
high, the additional money in the bond market pushes up the bond price
and depresses the current interest rate. When the current shock is low, the
additional money in the bond market does not affect the current interest
rate, as discussed above.

Third, the above effects of past shocks on current activities induce the
following correlations: (i) Contemporaneous output and interest rates are
negatively correlated; (ii) Interest rates in two adjacent periods are nega-
tively correlated; (iii) Future output is positively correlated with the cur-
rent interest rate.16 These correlations arise because a shock in the previous
period increases current output, increases the interest rate in the previous
period, and reduces the current interest rate. Although the result (i) is
realistic, the results (ii) and (iii) are not realistic. I will examine a natu-
ral variation of the model in section 6 that will eliminate these unrealistic
features.

Fourth, the term structure of interest rates responds to open market
operations. The yield curve is negatively sloped when the current shock
is high and positively sloped when the current shock is low. In light of
(42), this negative response of the yield curve to the current shock is not
surprising. For example, a high current shock increases the one-period
interest rate; at the same time, it reduces the expected future discount on
unmatured bonds (µm/µb) by generating liquidity in next period’s goods
market. Both effects reduce the slope of the yield curve.

Moreover, the slope of the yield curve can depend on the previous pe-
riod’s shock: When the current shock is high, a high past shock makes
the yield curve less negatively sloped. To explain this result, recall that a
high past shock increases the money allocation to the bond market. This
allocation reduces current interest rates when the current shock is high.
However, the expected future discount on unmatured bonds depends only
on the current shock, not on past shocks. Thus, by (42), the yield curve
becomes less negatively sloped.17 Clearly, the role of unmatured bonds in
the goods market is important for this dependence of the yield curve on

16The formulas for the correlations between r and c are as follows:

corr(r, y) = y2−y1
2

[θ(r22 − r11) + (1− θ)(r12 − r21)] ,

corr(r, y+1) = y2−y1
2

[θ(r22 − r11) + (1− θ)(r21 − r12)] .

Moreover, corr(r, y−j) = (2θ− 1)jcorr(r, y) and corr(r, y+j) = (2θ− 1)j−1corr(r, y+1),
for j = 1, 2, ....

17Of course, when the current shock is low, the one-period interest rate is zero and
unaffected by the money allocation, in which case the slope of the yield curve is inde-
pendent of past shocks.
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past shocks, because it is the reason why the households condition their
money allocation on past shocks. In contrast, in Lucas’ model, bonds play
no role in the goods market regardless of the maturity, and so the yield
curve is independent of past shocks when the shocks are independent.

Most of the above features with independent shocks continue to exist
when shocks are dependent. However, there are a few changes. First, when
shocks are highly negatively dependent (i.e., θ ≤ 0.1), a high past shock
increases (rather than decreases) the current interest rate when the current
shock is high. That is, r22 > r21. This is because, given the high past shock
and the negative serial dependence, the households anticipate bond sales
to be low in the current period and so they allocate less money to the bond
market. When the current bond sales turn out to be high, the interest
rate will be high. Second, when the shocks are highly persistent (i.e.,
θ ≥ 0.99), the correlation between the current and one-period past interest
rates becomes positive. This is not surprising because a permanent shock
will generate a positive correlation between interest rates in all periods.
Similarly, the contemporaneous correlation between output and interest
rates becomes positive when the shocks are highly persistent.

5.4. Sensitivity Analysis

In this section, I examine the sensitivity of the results to the parameters,
while maintaining the assumption that the money growth rate is constant.
I only examine the case where shocks are independent. The parameters
to be perturbed are the money growth rate (γ), the scope of the legal
restriction (g), the relative risk aversion (δ) and the variation in the shock.
Table 2 reports the sensitivity results.

Overall, these perturbations do not change the main features of the base-
line model. In particular, the allocation of money between the markets is
still insensitive to the shock and there is a strong liquidity effect in the bond
market as reflected by the large responses of interest rates to the shocks.
The specific effects of each perturbation are summarized below.

First, an increase in the money growth rate increases the mean of interest
rates and reduces the mean of real consumption (output). It also increases
the standard deviations of interest rates and real output. By eliminating
net money growth from the baseline case, the mean and standard deviation
of interest rates fall by about a half, and the standard deviation in output
falls by more than a half. Real output and the nominal interest rate are
still negatively correlated with each other but the magnitude seems to first
increase, and then decrease, with money growth.

Second, an increase in the scope of the legal restriction increases the
mean of interest rates but affects the standard deviation of interest rates in
a hump-shaped pattern. The mean of real consumption barely changes with
the increase in the scope of the legal restriction, the standard deviation of
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consumption decreases, and the negative correlation between consumption
and interest rates weakens. Real consumption responds in this way be-
cause the wider coverage of the legal restriction reduces the liquidity effect
of unmatured bonds in the current goods market and reduces the variation
in the quantity of goods between a restricted trade and an unrestricted
trade. Because consumption varies less and interest rates vary more be-
tween different states, the two variables become less correlated with each
other when g increases.

TABLE 2.

Table 2. Sensitivity results under a constant money growth rate

γ g δ z1 = 0.001

baseline 1 1.05 0.01 0.5 0.05 2 z2 = 0.099

1− a1 (%) 7.761 7.864 7.323 7.729 7.789 7.758 7.770 9.595

1− a2 (%) 7.930 7.933 7.583 8.033 7.847 7.939 7.902 9.843

E(r) (%) 1.464 0.783 7.056 1.044 1.823 1.429 1.578 1.361

StD(r) (%) 1.289 0.598 5.850 1.725 1.058 1.319 1.197 1.382

corr(r, r−1) −0.341 −0.316 −0.163 −0.337 −0.175 −0.346 −0.311 −0.352

E(c) 0.622 0.626 0.588 0.622 0.622 0.507 0.789 0.622

StD(c) 0.005 0.002 0.007 0.008 0.002 0.006 0.002 0.005

corr(c, r) −0.429 −0.371 −0.168 −0.571 −0.181 −0.447 −0.361 −0.473

corr(c+1, r) 0.795 0.851 0.971 0.589 0.967 0.775 0.860 0.744

term11 (%) 0.219 0.137 0.685 0.014 0.399 0.203 0.274 0.166

term21 (%) −1.299 −0.577 −5.301 −1.927 −0.774 −1.353 −1.125 −1.446

term12 (%) 0.219 0.137 0.685 0.014 0.399 0.203 0.274 0.166

term22 (%) −0.230 −0.141 −3.605 −0.015 −0.404 −0.212 −0.288 −0.180

Baseline: θ = 0.5, γ = 1.005, g = 0.2, δ = 0.5, z1 = 0.02, z2 = 0.08.
single subscript i(= 1, 2): conditional on the previous period’s shock zi;
double subscript ji (i, j = 1, 2): conditional on past shock zi and current shock zj .

In the limit g → 1, every trade requires cash. Then, the real effect of
open market operations will diminish to zero as in Lucas’ (1990) model. In
the opposite limit g → 0 (and with independent shocks), the real effect will
also diminish to zero because there will be no dispersion in the quantities
across trades. It is then surprising to see from Table 2 that, even in the
case with g = 0.01, open market operations affect output significantly.

Third, an increase in the relative risk aversion increases the mean and
reduces the standard deviation of interest rates and output. It also reduces
the magnitude of the (negative) correlation between output and interest
rates. The important features of the model do not change much with
the relative risk aversion. Even when the relative risk aversion is very
small, e.g., when δ = 0.05, the money allocation remains insensitive to the
previous period’s shock. Note that an equilibrium still exists for δ = 2, a
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value that does not satisfy Assumption 1.18 Also, note that, when δ = 2,
the money allocation between the two markets is even more insensitive to
the previous period’s shock than in the baseline model. In this sense, by
restricting the relative risk aversion in the baseline model to be not greater
than 1, I have strengthened the model’s predictions.

Fourth, an increase in the mean-preserving spread in the shock reduces
the mean and increases the variation in interest rates. It also increases
the variation in output, without affecting the mean of output much, and
strengthens the negative correlation between output and the interest rate.

Finally, the above perturbations affect the magnitude but not the sign
of the slope of the yield curve. In particular, when g becomes very small,
the yield curve becomes very flat.

6. ALLOWING THE MONEY GROWTH RATE TO VARY

I have so far maintained the assumption that open market operations
do not affect money growth. Although this assumption allowed me to
compare the model’s predictions with Lucas’, it produced some counter-
factual results: A tight operation increases real output, and future output
is positively correlated with current interest rates when the shocks are
positively correlated. It is important to check whether these counterfactual
results are caused by the unrealistic assumption on money growth. To do
so, I now assume that monetary transfers in each period are a fixed fraction
of the money stock. That is, L+1 = τM , where τ is constant.

Denote γ = M+1/M . By (8) and the requirements (ii) and (iii) in the
equilibrium definition (see section 2.5), I have:

γ = γ(z−1) ≡ a(z−1) + z−1 + τ. (43)

Thus, the past shock z−1 affects the growth rate of the aggregate money
stock between the current period and the next period. Notice that this
growth rate does not depend on the current shock z, because the current
shock affects neither the amount of money that the household spends in
the current bond market nor the amount of bonds that the household will
redeem at the beginning of the next period. Also, the autocorrelation in
money growth is the same as that in the shocks. Thus, money growth rates
in two adjacent periods are positively correlated if and only if θ > 1/2.19

18For δ = 2, the function T (ωm; a, z−1) is first decreasing and then increasing in ωm

as ωm increases. To ensure that T is increasing in ωm, the lower bound on ωm is chosen
to be sufficiently large.

19To see this, denote γi = γ(zi) and Eγ = (γ1 + γ2)/2. Then, E(γ+1|γ = γi) =
2(1− θ)Eγ + (2θ − 1)γi. The serial correlation in money growth is equal to (2θ − 1).
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Once γ is replaced with γ(z−1), all equilibrium conditions in section 2
continue to hold and an equilibrium can still be characterized as in section
3.1. For the existence of an equilibrium, the conditions in Theorem 1 need
be modified to incorporate the fact that now γ is not a constant. These
modifications are straightforward and hence are omitted here.

For the numerical exercise, let the parameter values (except γ) be the
same as specified at the beginning of section 5. Let the fraction of monetary
transfers be equal to the average of the two realizations of z, i.e., τ = 0.05.
The results are reported in Table 3.

TABLE 3.

Table 3. Simulation results under varying money growth rates

θ

baseline 0.01 0.1 0.3 0.5 0.7 0.9 0.99

1− a1 (%) 7.761 7.356 7.537 7.544 7.477 7.339 6.748 2.026

1− a2 (%) 7.930 2.152 6.462 7.629 7.841 7.900 7.873 7.826

r11 (%) 0.439 1.436 0.906 0.723 0.640 0.545 0.444 3.627

r21 (%) 3.593 8.364 5.577 5.472 6.482 8.640 18.845 314.51

r12 (%) 0.439 3.029 0.906 0.723 0.640 0.545 0.444 1.183

r22 (%) 1.384 312.12 31.891 10.489 7.298 6.434 6.825 7.505

E(r) (%) 1.464 7.208 4.557 3.850 3.765 3.821 4.236 7.089

StD(r) (%) 1.289 21.779 6.670 3.524 3.138 3.352 4.569 21.880

corr(r, r−1) −0.341 −0.010 −0.045 −0.050 0.065 0.247 0.354 0.003

c1 0.617 0.578 0.599 0.606 0.609 0.613 0.617 0.588

c2 0.626 0.596 0.607 0.609 0.606 0.602 0.594 0.587

E(c) 0.622 0.587 0.603 0.607 0.608 0.608 0.605 0.587

StD(c) 0.005 0.009 0.004 0.001 0.001 0.005 0.001 0.001

corr(c, r) −0.429 −0.050 −0.083 −0.056 −0.065 −0.253 −0.427 −0.016

corr(c+1, r) 0.795 0.193 0.547 0.887 −0.996 −0.977 −0.830 −0.159

corr(c+2, r) 0 −0.189 −0.438 −0.355 0 −0.391 −0.664 −0.156

corr(c+3, r) 0 0.185 0.350 0.142 0 −0.156 −0.531 −0.153

term11 (%) 0.219 0.715 0.452 0.351 0.320 0.272 0.222 −0.603

term21 (%) −1.299 −2.624 −1.610 −1.596 −2.012 −2.885 −6.936 −50.076

term12 (%) 0.219 −0.067 0.452 0.351 0.320 0.272 0.222 0.590

term22 (%) −0.230 −50.067 −11.970 −3.956 −2.385 −1.884 −1.840 −1.969

γ1 − 1 (%) 0.500 −0.356 −0.537 −0.544 −0.477 −0.339 −0.252 4.974

γ2 − 1 (%) 0.500 10.848 6.538 5.371 5.159 5.100 5.127 5.174

Baseline: θ = 0.5, γ = 1.005 (fixed), g = 0.2, δ = 0.5, z1 = 0.02, z2 = 0.08.
single subscript i (= 1, 2): conditional on the previous period’s shock zi;
double subscript ji (i, j = 1, 2): conditional on past shock zi and current shock zj .
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Similar to the baseline model, this model generates large increases in
interest rates when there is a positive shock to bond sales. As before, this
strong liquidity effect arises because the allocation of money between the
bond market and the goods market is insensitive to the shock. Moreover,
the term structure of interest rates exhibits the same pattern of dependence
on the shocks as in the baseline model.

By allowing the shocks to affect money growth, the model eliminates the
unrealistic features mentioned above in the baseline model. For brevity, let
me focus on the case θ = 0.7. The model implies the following features.
First, nominal interest rates are positively correlated. Second, a tightening
open market operation reduces output. Third, current output and future
output in three consecutive periods are negatively correlated with the cur-
rent interest rate. These features suggest that a tightening open market
operation increases interest rates and reduces output persistently.

To explain these persistent effects, let me first examine how a past shock
affects the money growth rate. When the shock in the previous period was
high, there will be a large amount of redemption at the beginning of the
next period. Since the money allocation is not sensitive, this amount of
redemption will be the dominant force determining the money growth rate
between the current period and the next period (see (43)). Thus, a high
past shock increases the money growth rate between the current period
and the next period.

Now I can explain the persistent effects of the open market operation.
Suppose that there was a high shock to bond sales in the pervious period
and that the shocks are positively correlated. Then, the money growth rate
between the current period and the next period rises. Expected inflation
increases, which raises the current interest rate. Because the high past
shock increased the interest rate in the previous period through the liquidity
effect in the bond market, interest rates are positively correlated in the two
adjacent periods. Also, expected inflation reduces the real value of money
in the current period and reduces current output. Moreover, because the
shocks are positively correlated, inflation is expected to be high in future
periods. This will reduce output in future periods. Therefore, future output
and current output are all negatively correlated with the interest rate.

The persistent effects of the shocks on interest rates and output are
realistic (see Christiano et al., 1999). Although they rely on the positive
effect of a past shock on future money growth, they do not require the
money growth rate to be negatively correlated. On the contrary, in the
case examined above (with θ = 0.7), the autocorrelation of money growth
is equal to 0.4, which is a realistic number.
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7. CONCLUSION

In this paper I combine a decentralized goods market and a centralized
bond market to analyze the liquidity effect of open market operations. The
bond market features limited participation, while the goods market features
bilateral matches. In a fraction of matches, a legal restriction prevents
buyers from using bonds to pay for goods. In such a restricted trade, the
buyer faces a money constraint. In an unrestricted trade, the buyer can
use both money and unmatured bonds to buy goods, and so unmatured
bonds can provide liquidity. A shock to bond sales in this economy has two
distinct liquidity effects. One is the immediate liquidity effect in the bond
market and the other is a liquidity effect in the goods market starting one
period later.

The liquidity effect in the bond market arises for the same reason as in
Lucas (1990). That is, there is limited participation in the bond market,
and the households’ money allocation between the markets is insensitive to
past shocks even when shocks are highly persistent. As a result, the bond
price and the interest rate absorb most of the shock to bond sales.

The liquidity effect in the goods market is new and it occurs with one-
period delay. To describe this additional liquidity effect, suppose that the
money growth rate is fixed irrespective of open market operations. Then,
a high shock to bond sales in the previous period increases the amount
of unmatured bonds circulating in the current goods market, relaxes the
asset constraints in unrestricted trades, and increases the quantity of goods
traded in an unrestricted trade. Although inflation also rises to reduce the
quantity of goods traded in a restricted trade, the increase in the quantity of
goods traded in unrestricted trades can dominate. In this case, aggregate
output rises with a high past shock. This delayed liquidity effect also
changes the amount of money that households allocate to the bond market,
affects the current interest rate, and hence makes interest rates serially
correlated.

When money growth is not fixed but positively correlated, a positive
shock to bonds sale reduces real output. In addition, the model generates
the following features: (i) Current output is negatively correlated with
the current nominal interest rate; (ii) Output in three consecutive future
periods, starting from the next period, is negatively correlated with the
current nominal interest rate; (iii) Nominal interest rates in two adjacent
periods are positively correlated; (iv) There is a non-trivial term structure
of interest rates and the slope of the yield curve depends on both past and
current shocks. These features indicate that open market operations have
persistent effects on output and interest rates when there is search in the
goods market.
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Let me remark on the delayed liquidity effect in the goods market. First,
the effect arises only when prices and quantities of goods in an unrestricted
trade respond to the shock in the previous period differently from those in
a restricted trade. For this reason, decentralized exchanges in the goods
market are important for the delayed liquidity effect. If all agents could
move assets between trades, then a high past shock would push up prices
to such a level that would eliminate most of the output response. Second,
the duration of the delayed liquidity effect increases with the length of ma-
turity of the bonds that are used in open market operations.20 Third, the
real effect is different from that in the literature of limited participation.
This literature imposes a separate cash-in-advance constraint on firms’ pay-
ments on investment or wages, and open market operations affect output
by changing the loanable funds for such payments.

Another important message that this paper tries to convey is that it is
tractable to use a monetary model with a strong microfoundation to analyze
the stochastic relationships between aggregate variables that have been
the focus of traditional macro models. Often, search monetary models are
criticized as being internationally consistent but difficult to be integrated
with the rest of macroeconomic theory (e.g., Kiyotaki and Moore, 2001).
The model described in this paper is no more difficult than many of the
models in the literature of limited participation (see Christiano et al., 1999,
for references). Thus, I hope that this paper has eliminated a major road
block to the integration of the microfoundation of monetary theory into
mainstream macroeconomics.

It is useful to extend the model by relaxing the following assumptions
that I have retained from Lucas’ model. First, the shock to bond sales is the
only shock in the economy and, in particular, there are no shock to money
demand or to the production technology. Second, there is no element (other
than the one-period separation between markets) to delay the transmission
of shocks from the bond market to the goods market. Third, there is
no capital accumulation that can prolong the effects of monetary shocks.
Despite the absence of these elements, the model is still able to generate
persistent liquidity effects. Nevertheless, one may want to introduce these
realistic elements to examine the monetary propagation mechanism. For
example, money demand shocks can be modelled as stochastic changes in
the scope of the legal restriction, g. Finally, there may be a need to model
explicitly how financial institutions create inside money and to endogenize
the legal restriction.

20If the government attaches repurchase agreements to bond sales, then the duration
of the liquidity effect of bonds in the goods market will be reduced.
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APPENDIX A

A.1. PROOFS FOR SECTION 3.2

A.1.1. Proof of Lemma 3.1

To begin, I construct an upper bound on Tω ≡ ∂T (ωm; a, z−1)/∂ωm.
This upper bound is necessary for TO to satisfy the contraction mapping
requirement. It is easy to verify that Tω > 0 under Assumption 1. Also, T
is concave in ωm in each of the three segments, (0, w1), (w1, w2) and (w2,∞)
(see Figure 2). Thus, Tω ≤ max{Tω(w1+; a, z−1), 1} for all ωm ≥ w1. Also,
because Tω(w1-; a, z−1) < Tω(w1+;a, z−1), there exists w3 < w1 such that
for all ωm ≥ w3, Tω ≤ max{Tω(w1+; a, z−1), 1}. Under (ii) of Assumption
1, Tω(w1+; a, z−1) decreases in a and increases in z−1, after the dependence
of w1 on (a, z−1) is taken into account. Setting a = aL, z−1 = zH and
w1 = w1(aL, zH), I have Tω(w1+; a, z−1) ≤ T̄ω for all (a, z−1), where

T̄ω ≡ 1− ασg +
ασg

Ψ

[1− δ(ĉ)]u′(ĉ)

ψ′
(

ĉ
ασ(1−σ)

) ,

ĉ = ασ(1− σ)ψ−1

(
aLψ(Q0)

aL + zH

)
.

Choose the upper bound on Tω as

K = κ max{T̄ω, 1}, where 1 ≤ κ <∞.

The upper bound K leads to a lower bound on ωm. Let ω0(a, z−1) (< w1)
solve Tω(ω0; a, z−1) = K. Because Tω(ω; a, z−1) is decreasing in (ω, a, z−1),
ω0 is decreasing in (a, z−1). The lower bound of ωm is then defined as
ωL = ω0(aL, zL). Clearly, ωL is smaller if a larger κ is chosen (see Figure
2), and ωL > 0 for all finite κ. Also, for all ωm ≥ ωL, 0 < Tω ≤ K.

Next, I show that TO maps from V to V. For any µm ∈ V, O(µm) is
continuous because Φ has the Feller property. Since a(.) ∈ A is continuous,
TO(µm) is continuous. Because µm ≥ γ

βωL, then O(µm) ≥ ωL. Hence,

TO(µm) ≥ ωL [1 + F (ωL; a, z−1)] ≥ ωL [1 + F (ωL; aH , zH)] .

The first inequality comes from the fact that T is an increasing func-
tion of ωm and the second inequality from the fact that, for given ωm,
F (ωm; a, z−1) is a decreasing function of (a, z−1). Similarly, O(µm) ≤ ωH
and

TO(µm) ≤ ωH [1 + F (ωH ; a, z−1)] ≤ ωH [1 + F (ωH ; aL, zL)] .
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Thus, TO(µm) ∈
[
γ
βωL,

γ
βωH

]
if

F (ωH , aL, zL) ≥ γ

β
− 1 ≥ F (ωH ; aL, zL).

This is part of (37) in the lemma.
Moreover, TO is a contraction mapping under the supnorm. To see this,

take any µ′, µ′′ ∈ V. Let ω′ = O(µ′) and ω′′ = O(µ′′). Then, ω′, ω′′ ≥ ωL
and

|ω′ − ω′′| = |O(µ′)−O(µ′′)| ≤ β

γ
‖µ′ − µ′′‖ .

Because T is concave in each of its segments and because Tω is bounded
above by K for all ωm ≥ ωL, I have:

|T (ω′)− T (ω′′)| ≤ K |O(µ′)−O(µ′′)| ≤ β

γ
K ‖µ′ − µ′′‖ .

Thus, ‖TO(µ′)− TO(µ′′)‖ ≤ β
γK ‖µ

′ − µ′′‖. The mapping TO is a con-

traction if γ/β ≥ K + ε, where ε > 0. This completes the condition (37)
in the lemma.

Because TO: V → V is a contraction mapping under (37), and V (with
the supnorm) is a complete metric space, TO has a unique fixed point
µma ∈ V.

Finally, there is a nonempty set of parameter values that satisfy (37).
To show this, note that F (ωL, aH , zH) > 0 by construction. By choosing κ
sufficiently close to 1, I can ensure that K is sufficiently close to one, and so
K + ε < F (ωL, aH , zH) + 1. Then, there are values of γ (> β) that satisfy
K + ε ≤ γ/β ≤ F (ωL, aH , zH) + 1. Also, because F (ω; a, z) = 0 when ω is
large, I can choose a large value for ωH to ensure F (ωH , aL, zL)+1 ≤ γ/β.
Clearly, these conditions require γ > β and ωH > ωL. QED

A.1.2. Proof of Theorem 1

To prove Theorem 1, I first show that Γ defined by (38) maps A into A.
The following lemma gives the sufficient conditions for this result.

Lemma 2. Given any a ∈ A, Γa ∈ A if aH is close to one and if (39)
is satisfied.

Proof. Since µma ≥
γ
βωL > 0, (µma , µ

b
a) are continuous, and Φ has

the Feller property, then Γa(.) defined by (38) is continuous. To show
Γa ∈ A, it suffices to show Γa(z) ∈ [aL, aH ] for all z ∈ Z. Notice that
the right-hand side of (38) is increasing in a(z−1) for given (µma , µ

b
a). Since



LIQUIDITY, INTEREST RATES, AND OUTPUT 93

a(z−1) ∈ [aL, aH ], the sufficient conditions for Γa(z−1) ∈ [aL, aH ] are:

µma (z−1) ≤ β

γ

∫
max

{
γz

1− aH
µba(z−1), µma (z)

}
Φ(dz, z−1), (A.1)

µma (z−1) ≥ β

γ

∫
max

{
γz

1− aL
µba(z), µma (z)

}
Φ(dz, z−1). (A.2)

The first condition is satisfied when aH is close to 1. For the second con-
dition, note that µba(z) ≤ µma (z) for all z (see (32) and (33)), and so

RHS(A.2) ≤ max
{
γzH

1−aL , 1
}
β
γ

∫
µma (z)Φ(dz, z−1)

= ωma (z−1)max
{
γzH

1−aL , 1
}
.

Also, because F (ωm; a, z−1) is decreasing in (ωm; a, z−1), then

µma (z−1) = ωma (z−1) [1 + F (ωma (z−1); a(z−1), z−1)] ≥ ωma (z−1) [1 + F (ωH ; aH , zH ] .

Therefore, (39) is a sufficient condition for (A.2). This completes the proof

of Lemma 2.

It is possible to satisfy (39) by choosing zH and aL sufficiently close to
0. Thus, there is a nonempty set of parameter values in which Γ maps A
into A.

Next, I show that Γ : A → A is continuous. Treat µma , µba and ωma
as functions of a. I show that (µma , µ

b
a, ω

m
a ) are continuous in a in the

supnorm. Once this is done, it is clear from (38) that Γ is continuous in a
in the supnorm. Because the proofs for (µma , µ

b
a, ω

m
a ) to be continuous in a

are similar, I describe only the proof for µma . For the latter, I need to show
that for any ε > 0, there exists ∆ > 0 such that

∥∥µma2 − µma1∥∥ < ε whenever
‖a2 − a1‖ < ∆, where the norm is the supnorm. Let ε > 0 be an arbitrary
number. Define

B(ωm, z−1) = max
a,â∈A

∣∣∣∣F (ωm, a(z−1), z−1)− F (ωm, â(z−1), z−1)

â(z−1)− a(z−1)

∣∣∣∣ ,
where F is defined in (31). Since F is decreasing in a, then B > 0. Also,
because the intervals [aL, aH ] , [ωL, ωH ], and [zL, zH ] are bounded away
from zero and bounded above, it can be verified that B(ωm, z−1) < ∞.
For any a1, a2 ∈ A, if ‖a2 − a1‖ < ∆, then

|F (ωm, a2(z−1), z−1)− F (ωm, a1(z−1), z−1)|
≤ B(ωm, z−1) |a2(z−1)− a1(z−1)| ≤ B(ωm, z−1) ‖a2 − a1‖ < B(ωm, z−1)∆.
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Because T (ωm, a, z−1) = ωm (1 + F ) and ωm ≤ ωH , then

|T (ωm, a2(z−1), z−1)− T (ωm, a1(z−1), z−1)|
= ωm |F (ωm, a2(z−1), z−1)− F (ωm, a1(z−1), z−1)| < ωHB(ωm, z−1)∆.

Since µma = T (ωma , a(z−1), z−1) and ‖TO(µ′)− TO(µ′′)‖ ≤ β
γK ‖µ

′ − µ′′‖,
I get: ∣∣µma2 (z−1)− µma1(z−1)

∣∣
=
∣∣T (ωma2 , a2(z−1), z−1

)
− T (ωma1 , a1(z−1), z−1)

∣∣
≤
∣∣TO (µma2 , a2(z−1), z−1

)
− TO(µma1 , a2(z−1), z−1)

∣∣
+
∣∣T (ωma1 , a2(z−1), z−1

)
− T (ωma1 , a1(z−1), z−1)

∣∣
< β

γK
∥∥µma2 − µma1∥∥+ ωHB(ωma1(z−1), z−1)∆.

Taking the maximum over z−1 on both sides of the inequality yields

∥∥µma2 − µma1∥∥ < ∆

1− β
γK

ωH ‖B‖ .

Let ∆ = ε
(

1− β
γK
)/

[ωH ‖B‖]. Because γ/β > K, ‖B‖ < ∞ and 0 <

ωH < ∞, then ∆ > 0. For all a1, a2 ∈ A such that ‖a2 − a1‖ < ∆,∥∥µma2 − µma1∥∥ < ε. Therefore, Γ : A → A is continuous.
Finally, we can verify that A is compact and convex. Because Γ is

continuous and A contains functions defined on a finite set Z, Brouwer’s
fixed point theorem implies that Γ has a fixed point in A. This fixed point
is the equilibrium function a(.). This completes the proof of Theorem 1.
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