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We study an optimization problem of an investor in which there is a better
investment opportunity when he is rich than when he is poor. We model the
betterment of the investment opportunity by considering an exogenously spec-
ified wealth threshold such that the investor’s investment opportunity is better
when his wealth is above the threshold than when it is below the threshold.
We derive a closed form solution for the optimal consumption and investment
strategies by using a dynamic programming method, and investigate the effects
of the potential investment opportunity changes on the optimal strategies.
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1. INTRODUCTION

We study an optimization problem of an investor in which there is a bet-
ter investment opportunity when he is rich than when he is poor. It is well-
established in the literature that major participants in the stock market
are wealthy households while majority of poor households have no equity
holdings (See e.g., Mankiew and Zeldes (1991), Carroll (2002), Inkman et
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al. (2011)). When studying limited participation and enlargement of the
investment opportunity set, researchers have introduced information acqui-
sition cost and an endogenous wealth threshold, at which an investor pays
the cost to enlarge the set (Gomes and Michaelides (2005), Shim (2011)).
However, we model the betterment of the investment opportunity by con-
sidering an exogenously specified wealth threshold such that the investor’s
investment opportunity is better when his wealth is above the threshold
than when it is below the threshold. Justification for the assumption can be
provided by institutional aspects. For example, US Rule 144A stipulates
that unregistered securities can be traded only by qualified institutional
investors. Commonly, the qualified investors’ net worth is above a certain
threshold, even though the threshold is not explicitly specified. Further-
more, there exist minimum required investments to enroll in certain hedge
funds. Even though the required minimum does not imply a fixed wealth
threshold, we can regard the exogenous threshold as a first order approxi-
mation to the existence of such restrictions.

Choi et al. (2003) have also studied a model in which there exists an ex-
ogenous wealth threshold such that the investment opportunity gets better
once the investor’s wealth exceeds the threshold level. Their model has the
unrealistic aspect that the investment opportunity set stays constant once
after being enlarged, regardless investment outcomes. In reality, investors
tend to be excluded from certain investments when their net worth shrinks.
Information economics has discovered ample reasons for such exclusion (see
e.g. Jaffee & Russell (1976), Keeton (1979), and Stiglitz & Weiss (1981)).
Consider the situation, e.g., an investor has discovered a new investment
opportunity, which requires a certain amount of initial investment. Then
the ability to exploit the investment opportunity depends on a loan which
often has a specific down payment requirement. Furthermore, the loan may
not be renewed if the investor’s net worth shrinks below a certain level. We
introduce this realistic feature by assuming that the investment opportu-
nity returns to the smaller one when wealth falls below the threshold level.

We derive a closed form solution for the optimal strategies and discuss
their properties. We first show that optimal consumption is a continuous
function of wealth for all wealth levels. Despite the existence of an ex-
ogenous threshold across which the investment opportunity undergoes a
noticeable change, the investor does not make a discrete adjustment to his
optimal consumption. This is in sharp contrast to the result in Choi et
al. (2003). In their model the change in the investment opportunity is
permanent without returning to the smaller one, thus the investor makes
a discrete adjustment of consumption at the threshold as an optimal re-
sponse to the permanent change. However, in our model the change in
the investment opportunity is only temporary with the possibility of the
opportunity returning to the smaller one, thus the investor does not make
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a discrete adjustment and optimal consumption is continuous for all wealth
levels.

We show that the investor consumes less with the wealth-dependent in-
vestment opportunity set than he would without it. When the investor’s
wealth is below the threshold level, he tries to accumulate his wealth fast
enough by reducing consumption to reach the threshold wealth level to
have an access to the better investment opportunity. When his wealth is
above the threshold level, he reduces consumption because of the risk of
losing the better investment opportunity. Furthermore, we show that such
effect becomes stronger as the investor’s wealth gets closer to the threshold
level, while the effect is negligible when his wealth is sufficiently far from
it.

The marginal propensity to consume out of wealth exhibits a rather in-
teresting behavior. It is defined as the ratio of the incremental change in
consumption to a small increase in wealth. It is a strictly decreasing func-
tion of wealth for all wealth levels except at the threshold level where it
makes an upward jump. When wealth is below the threshold, the marginal
propensity to consume is smaller than it is in the absence of potential in-
vestment opportunity changes. When wealth exceeds the threshold level,
the marginal propensity to consume is greater than it is in the absence
of potential investment opportunity changes. The marginal propensity to
consume approaches its value in the absence of potential investment op-
portunity changes either as wealth approaches 0 or as it gets arbitrarily
large. Thus, even though the investor does not make a discrete adjustment
in optimal consumption, he makes a discrete adjustment in its marginal
propensity.

We show that the investor takes more (resp. less) risk at wealth below
(resp. above) the threshold level than he would in the absence of poten-
tial investment opportunity changes. When the investor’s wealth is below
the threshold level, he increases the expected growth rate of his wealth
by taking more risk and thereby taking advantage of risk premia in the
risky assets to reach the threshold wealth level fast enough, while, when
his wealth is above it, he reduces his risk taking because of the risk of
wealth falling below the threshold level and losing the better investment
opportunity. Furthermore, we show that such effect becomes stronger as
the investor’s wealth gets closer to the threshold level, while the effect is
negligible when his wealth is sufficiently far from it.

Implicit in the previous discussion of the investor’s risk taking behav-
ior is his revealed coefficient of relative risk aversion. Remarkably, it is a
strictly decreasing function of wealth except at the threshold level, where
it makes an upward jump. The investor makes a discrete adjustment in his
revealed relative risk aversion at the threshold. As a consequence of the be-
havior of revealed relative risk aversion, the investor’s marginal propensity
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to invest in the risky assets, defined as the ratio of the incremental change
in his investment in the risky assets to a small increase in wealth, gets
larger (resp. smaller) as wealth increases at wealth below (resp. above)
the threshold level. The marginal propensity approaches its value in the
absence of potential investment opportunity changes as wealth becomes
either arbitrarily small or arbitrarily large.

There has been an increasing interest in the consumption and investment
behavior of the rich (see e.g., Carroll (2002), Wachter & Yogo (2010)). We
make a contribution to the literature by showing theoretically that the
consumption and portfolio selection of a moderately rich person can be
quite different from predictions of the traditional models or of more re-
cent models (e.g., Merton (1969), Wachter & Yogo (2010)). There have
been investigations of enlargement of an investor’s investment opportunity
set. For example, Gomes and Michaelides (2005) have studied a discrete-
time model where investors with Epstein-Zin preferences choose the time
to enter the stock market by paying a fixed cost, and Shim (2011) has con-
sidered a continuous-time consumption and investment problem, in which
the investor can enlarge the investment opportunity by paying a cost of
information gathering. The enlargement of investment opportunity in re-
ality, however, often depends on the investor’s net worth staying a certain
level, which is beyond his control. We investigate this aspect of reality.

The paper proceeds as follows. Section 2 sets up the consumption and
investment problem. Section 3 derives the closed form solutions for the
value function, optimal consumption and portfolio strategies. Section 4
discusses the properties of optimal strategies. Section 5 concludes.

2. THE MODEL

We consider a financial market in which an investor’s investment oppor-
tunity depends on his wealth level. There are one riskless asset and m+ n
risky assets in the market. We assume that the risk-free rate is a constant,
r > 0, and the price, p0(t), of the riskless asset follows a deterministic
process

dp0(t) = p0(t)rdt, p0(0) = p0.

The price, pj(t), of the j-th risky asset, as commonly assumed in the liter-
ature (see e.g., Merton (1969), Merton (1971), Karatzas et al. (1986), Choi
et al. (2003), etc.) follows a geometric Brownian motion

dpj(t) = pj(t)
{
αjdt+

m+n∑
k=1

σjkdwk(t)
}
, pj(0) = pj , j = 1, . . . ,m+ n,
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where (w(t))∞t=0 = ((w1(t), . . . , wm+n(t)))∞t=0 is an m + n dimensional
standard Brownian motion defined on the underlying probability space
(Ω,F ,P). Let (Ft)∞t=0 be the augmentation under P of the natural filtra-
tion generated by the standard Brownian motion (w(t))∞t=0. The market
parameters, αj ’s and σjk’s for j, k ∈ {1, . . . ,m+n}, are assumed to be con-
stants. We will use notation α = (α1, . . . , αm+n). We assume that matrix
D = (σij)

m+n
i,j=1 is nonsingular so that the symmetric matrix, Σ = DD>, is

positive definite. Let Dm denote the first m × (m + n) submatrix of D,
and let Σm = DmD

>
m so that the symmetric matrix Σm is the first m by

m submatrix of Σ and also positive definite. Note that Σ−1 and Σ−1
m are

also positive definite.
Let πt := (π1,t, . . . , πm+n,t) be the row vector representing dollar amounts

invested in the risky assets at time t and ct be the investor’s consumption
rate at time t. The consumption rate process, c = (ct)

∞
t=0, is a nonnegative

process adapted to (Ft)∞t=0 and satisfies
∫ t

0
cs ds <∞, for all 0 ≤ t <∞ a.s.

The portfolio process, π = (πt)
∞
t=0, is adapted to (Ft)∞t=0 and satisfies∫ t

0
‖πs‖2 ds <∞, for all 0 ≤ t <∞ a.s. The investor’s wealth process, xt,

with initial wealth x0 = x ≥ 0 evolves according to

dxt = (α− r1m+n)π>t dt+ (rxt − ct ) dt+ πtDdw>(t), 0 ≤ t <∞, (1)

where 1m+n = (1, . . . , 1) is the (m+n)-row vector of ones. A special feature
of this paper is the assumption that the investor’s investment opportunity
set depends on his wealth. There exists an exogenously given threshold
wealth level z > 0 below which the investor does not have access to the
last n risky assets, however, above which he has an access to the full array
of assets. That is, the portfolio process, π = (πt)

∞
t=0, should satisfy

πm+1,t = · · · = πm+n,t = 0 if xt < z for t ≥ 0. (2)

Condition (2) is different from condition (3) in Choi et al. (2003) in the
following sense: the investor under condition (2) loses the acquired better
investment opportunity if his wealth falls below the threshold level after
exceeding it, while the investor under condition (3) in Choi et al. (2003)
does not lose the once acquired investment opportunity although his wealth
falls below the threshold level.

To preclude an arbitrage opportunity we assume that the investor faces
the following nonnegative wealth constraint (see e.g., Dybvig & Huang
(1988) and Karatzas & Shreve (1998)):

xt ≥ 0, for all t ≥ 0 a.s. (3)

Given initial wealth x0 = x ≥ 0, a pair of controls, (c,π), satisfying
conditions in the above including (2) and (3) is said to be admissible at x.
Let A(x) denote the set of admissible controls at x ≥ 0.
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We assume that the investor has an infinite horizon, derives utility from
a stream of consumption, and exhibits constant relative risk aversion with
the coefficient of relative risk aversion being equal to γ so that his utility
function is given by the following1

u := E
[ ∫ ∞

0

e−βtU(ct) dt
]
, U(c) =

c1−γ

1− γ
, 0 < γ 6= 1.

where β is the investor’s subjective discount rate. Thus, the investor’s
optimization problem is to maximize, for a given x0 = x ≥ 0,

V(c,π)(x) := E
[ ∫ ∞

0

e−βt
c1−γt

1− γ
dt
]

(4)

over all (c,π) ∈ A(x). If x0 = x = 0, then the optimization problem
becomes trivial. Therefore, we assume that x0 = x > 0.

The value function(indirect utility), V ∗(x), is defined by

V ∗(x) = sup {V(c,π)(x) : (c,π) ∈ A(x)} for x > 0.

Let

κ1 :=
1

2
(α̃−r1m)Σ−1

m (α̃−r1m)> and κ2 :=
1

2
(α−r1m+n)Σ−1(α−r1m+n)>.

where 1m is the m-row vector of ones and α̃ denotes the m-row vector
consisting of the first m components of α. Since Σ−1

m is positive definite,
κ1 > 0, unless α̃− r1m is the zero vector. By Remark 2.1 in Shim (2011),
κ2 ≥ κ1. If κ2 = κ1, then the optimization problem gives the same value
function as that in the absence of constraint (2). Therefore, we consider
the case where

κ2 > κ1 > 0. (5)

In order to make the problem well-posed (see e.g. Merton (1969), Karatzas
et al. (1986), Choi et al. (2003)) we assume

K1 := r +
β − r
γ

+
γ − 1

γ2
κ1 > 0 and K2 := r +

β − r
γ

+
γ − 1

γ2
κ2 > 0. (6)

Let λ− < −1 be the negative solution of the quadratic equation of λ,
κ1λ

2 − (r − β − κ1)λ − r = 0, and let η+ > 0 the positive solution of the
quadratic equation of η, κ2η

2 − (r − β − κ2)η − r = 0.

1U(c) = log c corresponds to the case where γ = 1. We do not consider this case in
this paper, but results similar to the ones for the case γ 6= 1 can be obtained for this
case too.
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Remark 2.1. As mentioned in Choi et al. (2003), Choi & Shim (2006),
K1 > 0 if and only if 1 + γλ− < 0.

3. DERIVATION OF THE SOLUTION

We define constants b, B1, and B2 by

b :=
(1− γ)(η+ − λ−)K1K2

(1− γ)(η+ − λ−)K2 + (1 + γη+)(1 + λ−)(K2 −K1)
z, (7)

B1 := bγλ−(z − b

K1
), (8)

and

B2 := bγη+(z − b

K2
). (9)

Lemma 1. b > 0, B1 > 0, and B2 > 0.

Proof. Calculation shows that

B1 = bγλ−
(1 + γη+)(1 + λ−)(K2 −K1)

(1− γ)(η+ − λ−)K2 + (1 + γη+)(1 + λ−)(K2 −K1)
z

and

B2 = bγη+
(1 + η+)(1 + γλ−)(K2 −K1)

(1− γ)(η+ − λ−)K2 + (1 + γη+)(1 + λ−)(K2 −K1)
z.

By (5) and (6), K1 > K2 > 0 (resp. 0 < K1 < K2) if 0 < γ < 1 (resp. γ >
1), which together with inequality 1 + λ− < 0 and Remark 2.1 proves the

lemma.

Define functions Xi(c) on (0,∞) for i = 1, 2 by

X1(c) := B1c
−γλ− +

c

K1
and X2(c) := B2c

−γη+ +
c

K2
. (10)

By (8) and (9), we have

X1(b) = z = X2(b). (11)

Since B1 > 0 by Lemma 1, function X1(·) is strictly increasing and maps
(0,∞) onto (0,∞) so that its inverse function, C1(·), exists, is strictly
increasing and maps (0,∞) onto (0,∞).
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Lemma 2. X ′2(b) > 0 if and only if K1+(1+γλ−) η+(1+η+)
γ(η+−λ−) (κ2−κ1) > 0.

Proof. By using (10), (11), (7), and (6), we can calculate that

X ′2(b) =
1

K1K2

[
K1 + (1 + γλ−)

η+(1 + η+)

γ(η+ − λ−)
(κ2 − κ1)

]
,

from which the lemma follows.

Thus, we will make the following assumption throughout the paper:

Assumption 1.

K1 + (1 + γλ−)
η+(1 + η+)

γ(η+ − λ−)
(κ2 − κ1) > 0.

Since B2 > 0 by Lemma 1, the derivative X ′2(c) = −γη+B2c
−γη+−1 + 1

K2

is strictly increasing with X ′2(0) = limc↓0X
′
2(c) = −∞ and limc↑∞X ′2(c) =

1
K2

> 0. Since X ′2(b) > 0 by Lemma 2 and Assumption 1, X ′2(c) > 0 for
c ≥ b. Therefore, if we restrict the domain to [b,∞), then X2(·) is strictly
increasing and maps [b,∞) onto [z,∞) by (11) so that its inverse function,
C2(·), exists, is strictly increasing and maps [z,∞) onto [b,∞). Note that
(11) is equivalent to

C1(z) = b = C2(z). (12)

Define functions Ji(c) on (0,∞) for i = 1, 2 by

J1(c) :=
λ−
ρ−

B1c
−γρ− +

c1−γ

(1− γ)K1
and

J2(c) :=
η+

ν+
B2c

−γν+ +
c1−γ

(1− γ)K2
, (13)

where ρ− := 1 + λ− < 0 and ν+ := 1 + η+ > 1. Define function V (x) by

V (x) =

{
V1(x) := J1(C1(x)) for 0 < x < z,
V2(x) := J2(C2(x)) for x ≥ z. (14)

Lemma 3. V (x) defined by (14) is strictly increasing and strictly con-
cave. It is continuously differentiable for x > 0 and twice continuously
differentiable for x ∈ (0,∞) \ {z}.
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Proof. By using (7), (8), and (9), we can show that J1(b) = J2(b) which
implies V1(z) = V2(z) by (12). Thus, V (x) is continuous at x = z. For
i = 1, 2, differentiating each Vi gives

V ′i (x) = J ′i(Ci(x))C ′i(x) =
J ′i(Ci(x))

X ′i(Ci(x))
= (Ci(x))−γ > 0. (15)

Therefore, V (x) is strictly increasing for x > 0. Since V ′1(z) = (C1(z))−γ =
b−γ = (C2(z))−γ = V ′2(z) by (12), V (x) is continuously differentiable for
x > 0. Since, for i = 1, 2,

V ′′i (x) = −γ(Ci(x))−γ−1C ′i(x) < 0 (16)

in its domain, V (x) is strictly concave for x > 0.

Lemma 4. V (x) defined by (14) satisfies the Bellman equation:
βV (x) (17)

= max
c≥0,π∈Θ(x)

{
(α− r1m+n)π>V ′(x) + (rx− c)V ′(x) +

1

2
πΣπ>V ′′(x) +

c1−γ

1− γ
}
,

where Θ(x) :=

[
{(π1, ..., πm+n) ∈ Rm+n : πm+1 = · · · = πm+n = 0} if 0 < x < z,
Rm+n if x ≥ z.

The righthand side is maximized when{
c = C1(x), π = − V ′1 (x)

V ′′1 (x)S, if 0 < x < z,

c = C2(x), π = − V ′2 (x)
V ′′2 (x) (α− r1m+n)Σ−1, if x ≥ z,

(18)

where S denotes the (m+n)-row vector whose first m components are equal
to those of (α̃−r1m)Σ−1

m and whose last n components are all equal to zero.

Proof. We can prove the lemma in the case where x ≥ z by using (15)
and (16), similarly to the proof of Theorem 9.1 in Karatzas et al. (1986).
When 0 < x < z, the Bellman equation (4) is equivalent to βV (x) =

maxc≥0,π̃∈Rm
{

(α̃−r1m)π̃>V ′(x)+(rx−c)V ′(x)+ 1
2 π̃Σmπ̃>V ′′(x)+ c1−γ

1−γ
}

.
Therefore, we can also prove the lemma in the case where 0 < x < z by
using (15) and (16), similarly to the proof of Theorem 9.1 in Karatzas et al.

(1986).

Theorem 1. With initial wealth x0 = x > 0, the value function of the
optimization problem is equal to V (x) defined by (14), that is, V ∗(x) =
V (x). An optimal strategy in A(x) is provided by (c̄, π̄) defined as follows:

c̄t = C1(xt), π̄t = − V ′(xt)
V ′′(xt)

S = − V ′1 (xt)
V ′′1 (xt)

S, if 0 < xt < z,

c̄t = C2(xt), π̄t = − V ′(xt)
V ′′(xt)

(α− r1m+n)Σ−1

= − V ′2 (xt)
V ′′2 (xt)

(α− r1m+n)Σ−1, if xt ≥ z,
(19)
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where S is the same as in Lemma 4.

Proof. Similarly to Karatzas et al. (1986) or Choi & Shim (2006) (that
is, by using Itô’s rule), we can find the stochastic differential equation for
C1(xt) in (19) and show that xt > 0 for all t ≥ 0 with strategy (19). Thus,
strategy (19) is in A(x). By Lemma 3 and (17) in Lemma 4, and by using
the generalized Itô rule, we can show, similarly to Choi & Shim (2006),
that V (x) ≥ V(c,π)(x) for arbitrary (c,π) ∈ A(x). Thus, we have

V (x) ≥ V ∗(x). (20)

Now we consider the strategy (c̄, π̄) given by (19) with the corresponding

wealth process (xt)t≥0. Let S̄n = inf {t ≥ 0 :
∫ t

0
‖π̄s‖2 ds = n} and let ξ ∈

(0, x) and let T = S̄n ∧n∧ inf {t ≥ 0 : xt = ξ}. Then, T ↑ ∞ as n ↑ ∞ and
ξ ↓ 0. By (17) and (18) in Lemma 4, and by using the generalized Itô rule,
we can derive that

E
[ ∫ T

0

e−βt
c̄1−γt

1− γ
dt
]

= −E
[
e−βTV (xT )

]
+ V (x). (21)

When γ > 1, we can show that V (xT ) < 0 so that, by (21),

E
[ ∫ T

0

e−βt
c̄1−γt

1− γ
dt
]
≥ V (x). (22)

When 0 < γ < 1, we can show that 0 <
∫∞

0
E
[
e−βt

c̄1−γt

1−γ

]
dt < ∞ by using

Fubini’s Theorem, (20), and the fact that (c̄, π̄) ∈ A(x). Therefore, if
0 < γ < 1, then we have

lim
t↑∞

E
[
e−βt

c̄1−γt

1− γ

]
= 0. (23)

For 0 < γ < 1, we can show, by using (14), that

E
[
e−βTV (xT )

]
≤ e−βT

(λ−
ρ−

B1b
−γρ− +

η+

ν+
B2b

−γν+
)

+
1

K2
E
[
e−βT

c̄1−γT

1− γ

]
,

which, together with (21), implies

E
[ ∫ T

0

e−βt
c̄1−γt

1− γ
dt
]
≥ −e−βT

(λ−
ρ−

B1b
−γρ− +

η+

ν+
B2b

−γν+
)

− 1

K2
E
[
e−βT

c̄1−γT

1− γ

]
+ V (x). (24)
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Let T ↑ ∞ by letting n ↑ ∞ and ξ ↓ 0 in (22) and (23), respectively,
apply the monotone convergence theorem to the left-hand sides of them,
respectively, and use (23) for the right-hand side of (23). Then we get

V(c̄,π̄)(x) = E
[ ∫ ∞

0

e−βt
c̄1−γt

1− γ
dt
]
≥ V (x). (25)

By (20), (25), and the fact that V ∗(x) ≥ V(c̄,π̄)(x) since (c̄, π̄) ∈ A(x), we

get V ∗(x) = V(c̄,π̄)(x) = V (x).

4. PROPERTIES OF THE SOLUTION

In this section, we will derive and discuss properties of the optimal strat-
egy in Theorem 1. We start with the following remark which discusses an
important difference between the optimal consumption policy in our model
and Choi et al.’s

Remark 4.1. If the (enlarged) investment opportunity set stays constant
after the investor’s wealth exceeds the threshold level z although his wealth
falls below z as assumed by Choi et al. (2003), then the consumption
jump of positive size occurs at the first time when the investor’s wealth
exceeds the threshold level(see Lemma 1 in Choi et al. (2003)). However,
in our model, the consumption jump does not occur by (12). That is, c̄t is
continuous as a function of xt.

As mentioned in Section 1 and 2, our model is different from Choi et
al.’s, since the investor in our model loses the acquired better investment
opportunity if his wealth falls below the threshold level after exceeding it,
while the investor in Choi et al. (2003) does not lose the once acquired
investment opportunity although his wealth falls below the threshold level.
A prominent feature of Choi et al.’s model is the existence of a jump in
the optimal consumption rate at the threshold wealth level. Intuitively,
the investor makes a discrete adjustment of his consumption as an opti-
mal response to the permanent change in the investment opportunity. In
contrast to their model, optimal consumption is a continuous function of
wealth and does not exhibit a jump in our model. This is because the
investor does not make a discrete adjustment of his consumption after en-
largement of his investment opportunity since it is not permanent and the
investment opportunity returns to the smaller one if his wealth falls below
the threshold level.

The marginal propensity to consume out of wealth (MPC) is defined
as the ratio of the incremental change in consumption to a small increase
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in wealth, i.e., MPC := dct
dxt

. Next we would like to define the marginal
propensity to invest in the risky assets out of wealth (MPIR) as a mea-
sure proportional to the ratio of the incremental change in his risky asset

holdings to a small increase in wealth. We will call −V
′′(x)

V ′(x) the revealed

coefficient of absolute risk aversion and its reciprocal, − V ′(x)
V ′′(x) , risk toler-

ance. By (19) the investor’s risky asset holdings is proportional to his risk

tolerance. Therefore, we can define MPIR := d
dx

(
− V ′(x)

V ′′(x)

)
.

If the investment opportunity set consisted constantly of the riskless asset
and the first m risky assets without change, then the value function, say
M1(x), would be given by

M1(x) =
K−γ1

1− γ
x1−γ

and the optimal consumption/investment strategy, say (cm,πm), would be

cmt = K1xt,

πmt = −M
′
1(xt)

M ′′1 (xt)
S =

xt
γ
S, for t ≥ 0,

as in Merton (1969) or Karatzas et al. (1986). In this case, the corre-

sponding MPC,
dcmt
dxt

, and the MPIR, d
dxt

(
− M ′1(xt)

M ′′1 (xt)

)
(the corresponding

risk tolerance is equal to −M ′1(xt)
M ′′1 (xt)

= xt
γ ), are constant for all wealth levels:

dcmt
dxt

= K1 and
d

dxt

(
− M ′1(xt)

M ′′1 (xt)

)
=

1

γ
for xt ≥ 0.

If the investment opportunity set consisted constantly of the riskless asset
and the whole m+ n risky assets without change, then the value function,
say M2(x), would be given by

M2(x) =
K−γ2

1− γ
x1−γ

and the optimal consumption/investment strategy, say (cm+n,πm+n), would
be

cm+n
t = K2xt, πm+n

t = −M
′
2(xt)

M ′′2 (xt)
(α−r1m+n)Σ−1 =

xt
γ

(α−r1m+n)Σ−1, for t ≥ 0,

as in Merton (1969) or Karatzas et al. (1986). In this case we have

MPC =
dcm+n
t

dxt
= K2 and MPIR =

d

dxt

(
−M

′
2(xt)

M ′′2 (xt)

)
=

1

γ
for xt ≥ 0.
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Proposition 1 and Proposition 2 illustrate the effects of the change in the
investment opportunity on the optimal consumption strategy.

Proposition 1.

(i)The investor consumes less than he would if the investment opportu-
nity set did not change across z. That is,{

c̄t = C1(xt) < K1xt = cmt , for 0 < xt < z,
c̄t = C2(xt) < K2xt = cm+n

t , for xt ≥ z.

(ii)The difference between optimal consumption rates, cmt − c̄t = K1xt −
C1(xt), is an increasing function of xt for 0 < xt < z and approaches 0 as
xt ↓ 0. The difference, cm+n

t − c̄t = K2xt−C2(xt), is a decreasing function
of xt for xt ≥ z and approaches 0 as xt ↑ ∞.

Proof. For 0 < xt < z, we have

cmt − c̄t = K1xt − C1(xt)

= K1X1(C1(xt))− C1(xt)

= K1

(
B1(C1(xt))

−γλ− +
C1(xt)

K1

)
− C1(xt)

= K1B1(C1(xt))
−γλ− ,

where the second equality comes from the fact that X1 is the inverse
function of C1, and the third from (10). Therefore, since −γλ− > 0 and
B1 > 0 as stated in Lemma 1, cmt − c̄t is positive(that is, c̄t < cmt ) and an
increasing function of xt for 0 < xt < z, and approaches 0 as xt ↓ 0. For
xt ≥ z, similarly we have

cm+n
t − c̄t = K2xt − C2(xt)

= K2X2(C2(xt))− C2(xt)

= K2

(
B2(C2(xt))

−γη+ +
C2(xt)

K2

)
− C2(xt)

= K2B2(C2(xt))
−γη+ .

Therefore, since −γη+ < 0 and B2 > 0 as stated in Lemma 1, cm+n
t − c̄t is

positive(that is, c̄t < cm+n
t ) and a decreasing function of xt for xt ≥ z, and

approaches 0 as xt ↑ ∞.

Proposition 1(i) states that the investor consumes less with the wealth-
dependent investment opportunity set than he would with a constant in-
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vestment opportunity set. When the investor’s wealth is below the thresh-
old level, he tries to accumulate his wealth fast enough by reducing con-
sumption to reach the threshold wealth level and to have an access to the
better investment opportunity. When his wealth is above the threshold
level, he reduces consumption because of the risk of losing the better in-
vestment opportunity. Proposition 1(ii) states that such effect becomes
stronger as the investor’s wealth gets closer to the threshold level, while
the effect is negligible when his wealth is sufficiently far from it. Figure 1
illustrates these properties of optimal consumption.

Remark 4.2. The statement that cmt −c̄t = K1xt−C1(xt) is an increasing
function of xt for 0 < xt < z and cm+n

t − c̄t = K2xt−C2(xt) is a decreasing
function of xt for xt ≥ z in Proposition 1 (ii), is equivalent to the statement
that the MPC, dc̄tdxt

, is smaller(resp. greater) at the wealth level below(resp.
above) z than it is in the absence of potential investment opportunity

changes, that is, dc̄t
dxt

= C ′1(xt) < K1 =
dcmt
dxt

for 0 < xt < z and dc̄t
dxt

=

C ′2(xt) > K2 =
dcm+n
t

dxt
for xt ≥ z.

FIG. 1. Consumption
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Proposition 2 discusses properties of the MPC.

Proposition 2. The MPC, dc̄t
dxt

, is a strictly decreasing function of
wealth xt both for 0 < xt < z and for xt > z with

lim
xt↑z

dc̄t
dxt

= C ′1(z) < C ′2(z) = lim
xt↓z

dc̄t
dxt

, (26)
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and it satisfies

lim
xt↓0

dc̄t
dxt

= lim
xt↓0

C ′1(xt) = K1 and lim
xt↑∞

dc̄t
dxt

= lim
xt↑∞

C ′2(xt) = K2.

Proof. By (10) and the fact that X1 is the inverse function of C1, we
have

C ′1(xt) =
1

X ′1(C1(xt))
=

1

−γλ−B1(C1(xt))−γλ−−1 + 1
K1

. (27)

Since −γλ− − 1 > 0 by Remark 2.1, we have

lim
xt↓0

dc̄t
dxt

= lim
xt↓0

C ′1(xt) = K1.

Similarly, we have

C ′2(xt) =
1

X ′2(C2(xt))
=

1

−γη+B2(C2(xt))−γη+−1 + 1
K2

. (28)

Since −γη+ − 1 < 0, we have

lim
xt↑∞

dc̄t
dxt

= lim
xt↑∞

C ′2(xt) = K2.

Since Xi is the inverse function of Ci for i = 0, 1, we have

X ′i(Ci(xt))C
′
i(xt) = 1 andX ′′i (Ci(xt))(C

′
i(xt))

2 +X ′i(Ci(xt))C
′′
i (xt) = 0

so that

C ′′i (xt) = −X
′′
i (Ci(xt))(C

′
i(xt))

2

X ′i(Ci(xt))
. (29)

By (10), Lemma 1 and Remark 2.1 we have

X ′′1 (c) = (γλ− + 1)γλ−B1c
−γλ−−2 > 0. (30)

By (10) and Lemma 1 we have

X ′′2 (c) = (γη+ + 1)γη+B2c
−γη+−2 > 0. (31)

Since Xi and Ci are strictly increasing functions, (29), (30), and (31) imply

C ′′1 (xt) < 0 for 0 < xt < z and C ′′2 (xt) < 0 for xt > z.
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By (27), (28) and (12) we have

C ′1(z) =
1

−γλ−B1b−γλ−−1 + 1
K1

and C ′2(z) =
1

−γη+B2b−γη+−1 + 1
K2

.

By (10) and (11) we have

−γλ−B1b
−γλ−−1+

1

K1
= −γλ−b−1X1(b)+

1 + γλ−
K1

= −γλ−b−1z+
1 + γλ−
K1

and

−γη+B2b
−γη+−1+

1

K2
= −γη+b

−1X2(b)+
1 + γη+

K2
= −γη+b

−1z+
1 + γη+

K2
.

By using (7) we can calculate that

−γλ−b−1z+
1 + γλ−
K1

−
(
−γη+b

−1z+
1 + γη+

K2

)
= (1+γη+)

1 + γλ−
1− γ

( 1

K1
− 1

K2

)
,

which is positive since 1+γλ− < 0 by Remark 2.1, and K1 > K2 > 0(resp.
0 < K1 < K2) if 0 < γ < 1(resp. γ > 1) by (5) and (6). Therefore,

−γλ−B1b
−γλ−−1 +

1

K1
> −γη+B2b

−γη+−1 +
1

K2
,

which implies C ′1(z) < C ′2(z).

Figure 2 illustrates Proposition 2. When wealth is below the threshold,
the MPC is smaller than it is in the absence of potential investment op-
portunities, decreases as wealth increases. It makes a jump when wealth
reaches the threshold level. When wealth exceeds the threshold level, the
MPC is greater than it is in the absence of potential investment oppor-
tunities, decreases as wealth increases. The MPC approaches its value in
the absence of potential investment opportunity changes either as wealth
approaches 0 or as it gets arbitrarily large, i.e., as xt ↓ 0 or as xt ↑ ∞.

Proposition 2 implies a downward jump in the investor’s risk tolerance
implied by the value function at the threshold wealth level, which we state
as a remark. The remark will be useful to understand the investor’s optimal
investment strategy.

Remark 4.3. Note that

− V
′
1(z)

V ′′1 (z)
=

C1(z)

γC ′1(z)
>

C2(z)

γC ′2(z)
= − V

′
2(z)

V ′′2 (z)
,
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FIG. 2. MPC
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where the inequality comes from (12) and (26), and the equalities from
(15) and (16). Thus, there is a downward jump in his risk tolerance at the
threshold wealth level.

In the remainder of this section we will state and prove Proposition 3,
Corollary 1, and Proposition 4 which illustrate the effects of the potential
investment opportunity changes on the optimal investment strategy.

Proposition 3.

(i)The investor takes more(resp. less) risk at the wealth level below(resp.
above) z than he would in the absence of potential investment opportunity
changes. That is, the risk tolerance satisfies{

− V ′1 (xt)
V ′′1 (xt)

> xt
γ = −M ′1(xt)

M ′′1 (xt)
, for 0 < xt < z,

− V ′2 (xt)
V ′′2 (xt)

< xt
γ = −M ′2(xt)

M ′′2 (xt)
, for xt ≥ z.

(ii)The difference, − V ′1 (xt)
V ′′1 (xt)

−
(
−M ′1(xt)
M ′′1 (xt)

)
= − V ′1 (xt)

V ′′1 (xt)
−xtγ , is an increasing

function of xt for 0 < xt < z and approaches 0 as xt ↓ 0. The difference,

−M ′2(xt)
M ′′2 (xt)

−
(
− V ′2 (xt)

V ′′2 (xt)

)
= xt

γ −
(
− V ′2 (xt)

V ′′2 (xt)

)
, is a decreasing function of xt

for xt ≥ z and approaches 0 as xt ↑ ∞.
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Proof. For 0 < xt < z, we have

− V
′
1(xt)

V ′′1 (xt)
+
M ′1(xt)

M ′′1 (xt)
=

1

γ

[C1(xt)

C ′1(xt)
− xt

]
=

1

γ

[
C1(xt)X

′
1(C1(xt))−X1(C1(xt))

]
= − 1

γ
(1 + γλ−)B1(C1(xt))

−γλ− ,

where the first equality comes from (15) and (16), the second from the fact
that X1 is the inverse function of C1, and the last from (10). Therefore,
since −γλ− > 0, −(1 +γλ−) > 0 by Remark 2.1, and B1 > 0 by Lemma 1,

we conclude that − V ′1 (xt)
V ′′1 (xt)

+
M ′1(xt)
M ′′1 (xt)

is positive(that is, − V ′1 (xt)
V ′′1 (xt)

> −M ′1(xt)
M ′′1 (xt)

)

and an increasing function of xt for 0 < xt < z, and approaches 0 as xt ↓ 0.
For xt ≥ z, similarly we have

−M
′
2(xt)

M ′′2 (xt)
+
V ′2(xt)

V ′′2 (xt)
=

1

γ

[
xt −

C2(xt)

C ′2(xt)

]
=

1

γ

[
X2(C2(xt))− C2(xt)X

′
2(C2(xt))

]
=

1

γ
(1 + γη+)B2(C2(xt))

−γη+ .

Therefore, since −γη+ < 0, 1 + γη+ > 0, and B2 > 0 by Lemma 1, we

conclude that −M ′2(xt)
M ′′2 (xt)

+
V ′2 (xt)
V ′′2 (xt)

is positive(that is, − V ′2 (xt)
V ′′2 (xt)

< −M ′2(xt)
M ′′2 (xt)

)

and a decreasing function of xt for xt ≥ z, and approaches 0 as xt ↑ ∞.

An intuitive explanation for Proposition 3 can be given as follows: when
the investor’s wealth is below the threshold level, he increases the expected
growth rate of his wealth by taking more risk and thereby taking advantage
of the risk premia in the risky assets to reach the threshold wealth level
fast enough, while, when his wealth is above it, he reduces his risk taking
because of the risk of wealth falling below the threshold level and losing
the better investment opportunity. Proposition 3(ii) states that such effect
becomes stronger as the investor’s wealth gets closer to the threshold level,
while the effect is negligible when his wealth is sufficiently far from it.
Figure 3 illustrates these properties of optimal risky asset holdings.

We now state and prove Corollary 1 where (i) is a direct consequence of
Proposition 3(i).

Corollary 1.

(i)When the investor’s wealth is below(resp. above) the threshold level z,
the revealed coefficient of relative risk aversion implied by the value func-
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FIG. 3. Risk Tolerance
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tion, −xV
′′(x)

V ′(x) , is smaller(resp. greater) than it is in the absence of potential

investment opportunity changes. That is,{
−xV

′′
1 (x)

V ′1 (x) < γ = −xM
′′
1 (x)

M ′1(x) for 0 < x < z,

−xV
′′
2 (x)

V ′2 (x) > γ = −xM
′′
2 (x)

M ′2(x) for x ≥ z.

(ii)The revealed coefficient of relative risk aversion implied by the value
function is a decreasing function of x for all wealth levels except at the
threshold level where it makes an upward jump. It approaches γ either as
x ↓ 0 or as x ↑ ∞.

Proof. Assertion (i) in the corollary follows from (i) in Proposition
3. We will prove (ii). For 0 < x < z, by using (15), (16), the inverse
relationship beween X1 and C1, and (10), we can derive that

−xV
′′
1 (x)

V ′1(x)
=

1

−λ−

[
1 +

−γλ−−1
K1

−γλ−B1(C1(x))−γλ−−1 + 1
K1

]
.

Since λ− < 0 and −γλ− − 1 > 0 by Remark 2.1, −xV
′′
1 (x)

V ′1 (x) is a decreasing

function of x for 0 < x < z and approaches γ as x ↓ 0. Since x
γ −

(
−

V ′2 (x)
V ′′2 (x)

)
= x

[
1
γ−
(
− V ′2 (x)
xV ′′2 (x)

)]
> 0 is a decreasing function of x for x ≥ z and

approaches 0 as x ↑ ∞ by Proposition 3, 1
γ−
(
− V ′2 (x)
xV ′′2 (x)

)
> 0 is a decreasing
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function of x for x ≥ z and approaches 0 as x ↑ ∞, which implies that

−xV
′′
2 (x)

V ′2 (x) is a decreasing function of x for x ≥ z and approaches γ as x ↑ ∞.

The upward jump at the threshold wealth level is shown by Remark 4.3.

Figure 4 illustrates Corollary 1. At wealth below the threshold level the
investor becomes more aggressive as his wealth increases, however, when
his wealth crosses the threshold he suddenly becomes very conservative
being afraid of losing the just acquired better investment opportunity and
his risk aversion is far greater than it would be in the absence of potential
investment opportunity changes and gets less and less conservative as his
wealth increases. As his wealth becomes either very small or very large, the
revealed coefficient of relative risk aversion approaches γ, the coefficient in
the absence of potential investment opportunity changes.

FIG. 4. Revealed Coefficient of Relative Risk Aversion
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Remark 4.4. The statement that − V ′1 (xt)
V ′′1 (xt)

−
(
− M ′1(xt)
M ′′1 (xt)

)
= − V ′1 (xt)

V ′′1 (xt)
− xt

γ

(−M ′2(xt)
M ′′2 (xt)

−
(
− V ′2 (xt)

V ′′2 (xt)

)
= xt

γ −
(
− V ′2 (xt)

resp.V ′′2 (xt)

)
) is an increasing (resp.

decreasing) function of xt for 0 < xt < z (resp. xt ≥ z) in Proposition

3(ii) is equivalent to the statement that the MPIR, d
dxt

(
− V ′1 (xt)

V ′′1 (xt)

)
(resp.

d
dxt

(
− V ′2 (xt)

V ′′2 (xt)

)
), is greater at the wealth level below (resp. above) the

threshold than it is in the absence of potential investment opportunity

changes, that is, d
dxt

(
− V ′1 (xt)

V ′′1 (xt)

)
> 1

γ = d
dxt

(
− M ′1(xt)

M ′′1 (xt)

)
for 0 < xt < z and

d
dxt

(
− V ′2 (xt)

V ′′2 (xt)

)
> 1

γ = d
dxt

(
− M ′2(xt)

M ′′2 (xt)

)
for xt ≥ z.
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Proposition 4 states that the MPIR is a strictly increasing(resp. decreas-
ing) function of wealth at wealth below(resp. above) the threshold level and
it approaches its value in the absence of potential investment opportunity
changes as wealth becomes either arbitrarily small or arbitrarily large.

Proposition 4. The MPIR, d
dxt

(
− V ′1 (xt)

V ′′1 (xt)

)
, is a strictly increasing

function of wealth xt for 0 < xt < z and the MPIR, d
dxt

(
− V ′2 (xt)

V ′′2 (xt)

)
, is a

strictly decreasing function of wealth xt for xt ≥ z, with

lim
xt↓0

d

dxt

(
− V ′1(xt)

V ′′1 (xt)

)
=

1

γ
=

d

dxt

(
− M ′1(xt)

M ′′1 (xt)

)
and

lim
xt↑∞

d

dxt

(
− V ′1(xt)

V ′′1 (xt)

)
=

1

γ
=

d

dxt

(
− M ′1(xt)

M ′′1 (xt)

)
.

Proof. By (15) and (16) we have

− V
′
i (xt)

V ′′i (xt)
=

Ci(xt)

γC ′i(xt)
for i = 1, 2.

Since Xi is the inverse function of Ci for i = 1, 2, we have

d

dx

(Ci(xt)
C ′i(xt)

)
=

d

dx

(
Ci(xt)X

′
i(Ci(xt))

)
= C ′i(xt)X

′
i(Ci(xt)) + Ci(xt)X

′′
i (Ci(xt))C

′
i(xt)

= 1 + Ci(xt)X
′′
i (Ci(xt))C

′
i(xt). (32)

Therefore, by (27), (30), we have

d

dxt

(
− V ′1(xt)

V ′′1 (xt)

)
=

1

γ
[1 + C1(xt)X

′′
1 (C1(xt))C

′
1(xt)]

=
1

γ

[
1 +

(γλ− + 1)γλ−B1(C1(xt))
−γλ−−1

−γλ−B1(C1(xt))−γλ−−1 + 1
K1

]

=
1

γ

[
1 +

(−γλ− − 1)
[
− γλ−B1(C1(xt))

−γλ−−1 + 1
K1

]
+ γλ−+1

K1

−γλ−B1(C1(xt))−γλ−−1 + 1
K1

]
=

1

γ

[
− γλ− −

−γλ−−1
K1

−γλ−B1(C1(xt))−γλ−−1 + 1
K1

]
,
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which, by Remark 2.1 and Lemma 1, is an increasing function of xt for
0 < xt < z and approaches 1

γ as xt ↓ 0. Similarly, we have

d

dxt

(
− V ′2(xt)

V ′′2 (xt)

)
=

1

γ
[1 + C2(xt)X

′′
2 (C2(xt))C

′
2(xt)]

=
1

γ

[
1 +

(γη+ + 1)γη+B2(C2(xt))
−γη+−1

−γη+B2(C2(xt))−γη+−1 + 1
K2

]

=
1

γ

[
1 +

(−γη+ − 1)
[
− γη+B2(C2(xt))

−γη+−1 + 1
K2

]
+ γη++1

K2

−γη+B2(C2(xt))−γη+−1 + 1
K2

]
=

1

γ

[
− γη+ +

γη++1
K2

−γη+B2(C2(xt))−γη+−1 + 1
K2

]
,

which, by Lemma 1, is a decreasing function of xt for xt ≥ z and ap-

proaches 1
γ as xt ↑ ∞.

According to Proposition 4, the incremental change in the investor’s risky
asset holdings gets larger(resp. smaller) as wealth increases at wealth be-
low(resp. above) the threshold level. The incremental change approaches
its value in the absence of potential investment opportunity changes as
wealth becomes either arbitrarily small or arbitrarily large. Figure 5 illus-
trates these properties of the MPIR.

FIG. 5. MPIR
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5. CONCLUSION

We have investigated an optimal consumption and investment problem in
which the investor has a better investment opportunity when his wealth is
above an exogenously given threshold level than he does when his wealth is
below it. We have derived a closed form solution for the optimal consump-
tion and investment strategies by using a dynamic programming method,
and investigated the effects of the potential investment opportunity changes
on them. We have shown that the investor consumes less with the wealth-
dependent investment opportunity set than he would without it, and that
he takes more(resp. less) risk at wealth below(resp. above) the thresh-
old level than he would in the absence of potential investment opportunity
changes. Furthermore, we have shown that such effects of the potential in-
vestment opportunity changes on the optimal consumption and investment
strategies become stronger as the investor’s wealth gets closer to the thresh-
old level, while the effects are negligible when his wealth is sufficiently far
from it.

The consumption and investment behavior of the investor we have de-
rived is different from predictions either from traditional models (e.g.. Mer-
ton (1971)) or from recent model with decreasing relative risk aversion (e.g.,
Wachter & Yogo (2010)). It will be interesting to see if one can identify
such a behavior from the data. This is left for future research.
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