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We discuss modelling possibility of short-term forecasting for market pa-
rameters in the portfolio selection problems. We suggest a continuous time
financial market model and a discrete time market model featuring this pos-
sibility. For these models, optimal portfolio selection problem has an optimal
quasi-myopic solution. Computationally, the problem is reduced to a stochas-
tic optimal control problem with delay in the plant equation. This allowed to
quantify the degree of non-myopicness for a given utility function.
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1. INTRODUCTION

We consider the problems of optimal portfolio strategy selection under
uncertainty. The goal is to derive a model and problem setting that takes
into account the consequences of possibility or, respectively, impossibility
of forecasting of market parameters. By the obvious reasons, the prob-
lem of forecasting for financial series always attracted significant attention.
This problem is related to the open problem of validation of the so-called
technical analysis methods that offer trading strategies based on historical
observations. There are many different strategies suggested in the frame-
work of technical analysis. In Hsu and Kuan (2005) it was mentioned that
there are more than 18,326 different empirical trading rules being used in
practice. However, the question remains open if the main hypothesis of
technical analysis is correct. This hypothesis suggests that it is possible to
make a statistically reliable forecast for future stock price movements us-
ing recent prices, and, finally, to find “winning” in statistical sense trading
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strategies. However, the dependence from the past (if any) is extremely
weak for the stock prices, and this dependence is difficult to catch by usual
statistical methods. Statistical studies of historical prices made as early as
in 1933 didn’t support the hypothesis that there is significant dependence
from the past and predictability for the stock prices; see the discussion and
the bibliography in Chapter 2, pp. 37-38, from Shiryaev (1999). This is the
reason why the most common and mainstream model for the stock prices is
the random walk or its modifications, in the accordance with the Efficient
Market Hypothesis that suggests that a market is arbitrage free; see, e.g.,
Timmermann and Granger (2004).

Recently, new efforts were devoted to this problem, and some signs of
possible presence of statistically significant dependence from the past were
found; see, e.g., Hsu and Kuan (2005), Lorenzoni et al (2007), Lo et al
(2000), Dokuchaev (2012d). In particular, it was shown in Lorenzoni et al
(2007) that, for certain models of the stock price evolution, there is a sta-
tistically significant informational content in some patterns from technical
analysis. This gives a hope that at least the evolution of the parameters of
the price distributions can be forecasted. Under this assumption, the opti-
mal choice of a portfolio strategy requires a forecast of market parameters
to ensure the best choice defined by probabilistic criterions.

In the classical single period Markowitz setting, one step predictability
was assumed for the first two moments of returns (Markowitz (1959)).
For a stochastic diffusion model, this approach can be reformulated as the
following: the dynamic of the stock prices is defined by an unpredictable
noise process (for example, a Brownian motion or a jump noise process with
some standard distribution law) and by a less unpredictable parameter
process (for instance, the volatility process) that defines the probability
distributions of the state vector. In this paper, we consider forecasting of
the parameter process only; forecasting of the prices will not be considered.

Clearly, the forecast errors are inevitable due to the immanent unpre-
dictability of the real world. If the forecast is not the best possible one (in
a statistical/probabilistic sense), then the strategy selected is not optimal.
Therefore, the optimality of the decision can be affected by the hypothesis
and as well as by the forecast errors. Clearly, the impact of the forecast er-
ror can be reduced via improvement of the forecasting technique. However,
this will not lead to complete elimination of the forecast error. The rea-
son for this is that, in the mainstream framework, a forecast of the future
parameters (and, therefore, the future distributions of the prices) is usu-
ally obtained by using an evolution model or prior distribution hypothesis
and by collecting the historical data. On the other hand, the information
collected for past historical data is not necessarily helpful to predict the
future scenarios. Therefore, there is a problem of reducing the impact of
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the forecast error caused by the inevitable imperfection of the model (prior
distribution hypothesis).

For the mainstream stochastic optimization and control methods, the
evolution law for the future probability distributions is assumed to be
known. For instance, the optimal estimate of the drift of the Brownian
motion is actually using the hypothesis that the underlying process is a
Brownian motion. Another example: the solution of the classical station-
ary linear-quadratic control problems assumes that the system coefficients
are constant in time. An error in the prior hypothesis leads to the non-
optimality of the forecast error and non-optimality of the strategy. Un-
fortunately, a hypothesis about the future distributions is more difficult to
justify for the financial markets than in the natural sciences, biostatistics,
or engineering, due to a lack of causality and lesser stability. Respectively,
it is difficult to justify application of an optimization method based on a
given evolution model. Since the choice of the distribution hypothesis is
not very reliable, a decision maker has to take the possibility of the related
forecast error into account. The optimal forecast can rarely be achieved;
therefore, the perfect optimality appears to not be feasible in practice. It is
why some special methods are required for the financial models to deal with
this limited predictability. However, the existing theory is more oriented
on obtaining optimal strategies even if it requires quite strong hypothesis
about the probability distributions.

As was mentioned above, the optimality of the decision can be affected
by the errors in the hypothesis and the errors in the forecast (the former
are also inevitable even if the hypothesis is correct). Any reduction of
the impact of this error is extremely important for decision making; the
decisions could be more robust with respect to the forecast errors. The
goal of this paper is to explore some possibilities to reduce the impact of
the forecast error caused by the error in the choice of the hypothesis.

The classical approach is the maximin setting when the best strategy is
selected for the worst case scenario. This approach is also called “robust
performance” approach. Usually, it leads to a more conservative approach
than the optimal one, and, therefore, the selected strategy may be under-
performing. Rather than this, the decision theory and stochastic optimal
control theory focusing on minimization of the dependence of a prior dis-
tribution hypothesis have yet to be developed. Therefore, it is timely to
look for new approaches to deal with the unpredictability and the impact
of forecast errors.

One of promising special tools is related to the so-called “myopic strate-
gies”. The term “myopia” may have negative meaning when it is applied to
strategies, meaning inability to forecast. We apply this term to strategies
that can be reasonable or even optimal and such that they do not need the
future market scenarios. More precisely, we say that the optimal strategy
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is myopic if it does not require to know the future distributions of market
parameters. In this case, the impact of the forecast error will be minimal.
Therefore, it is important to be able to detect situations where the optimal
strategy is myopic and where the forecast error have a mild impact: it may
save valuable resources.

The financial market models have a very interesting and attractive fea-
ture: some optimal strategies for them can be myopic. Optimal myopic
strategies were first introduced for continuous time optimal portfolio prob-
lems where the prices are stochastic Ito processes (Merton (1969)). So far,
optimality for myopic strategies was established for special utility functions,
including U(x) = lnx and U(x) = q−1xq, where q < 1, q 6= 0; see Mossin
(1968), Samuelson (1969), Hakansson (1971), Pliska (1997), Dokuchaev
(2010b). For the optimal myopicness phenomena, the answers have yet to
be found why myopicness can be achieved for optimal financial decisions
but not for a typical stochastic control problem. It would be timely to
investigate the phenomenon of optimality of myopic strategies and to ex-
tend the use of these strategies. So far, the main efforts in the literature
were directed on finding financial models where the optimal strategies are
myopic.

In this paper, we suggest models with relaxed versions of myopicness: for
these models, the parameter processes for the prices distributions are pred-
icable on some short time horizon. Therefore, the corresponding optimal
strategies can be regarding as “almost myopic”: they require short-term
predictability. (We mean predictability of the parameter processes for the
prices distributions rather than the predicability of the prices). If an op-
timal strategy is myopic, then the predictability of the model parameters
does not improve the performance of this strategy. Therefore, the depen-
dence of the performance on the predicability horizon can be used as a
measure on “non-myopicness” of the market model. The paper suggests
models helping to explore this features.

We accept the following principles.

(I) A smooth enough process can be short-term forecasted.

(II) A stochastic model with a given parameter process accompanied by
a noise process can be approximated by models where the parameter pro-
cesses are smooth enough. These smooth parameter processes can be made
arbitrarily close to the original parameter process in the uniform metric,
and such that the distributions of the corresponding new state processes
approximate the distributions of the state process from the original model.

We illustrate below how these principles can be justified and where they
lead for the most common stochastic market models: for the continuous
time diffusion market model and for the discrete time model. For both
cases, we suggested models where optimal portfolio selection problem has
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an optimal quasi-myopic solution with short term forecasting. Computa-
tionally, the problem is reduced to a stochastic optimal control problem
with a delay in the plant equation. This allowed to quantify the degree
of non-myopicness for a given utility function. For continuous time dif-
fusion market models and for discrete time stochastic market models, we
suggest quantification of non-myopicness, i.e., some criterions that help to
estimate the dependence of a stochastic market model from a possibility of
short term forecasting.

2. CONTINUOUS TIME MARKET MODELS WITH SHORT
TERM FORECASTING

We consider first a continuous time market model, where the market dy-
namic is described by stochastic differential equations. The randomness is
presented in these equations in two ways: as a Wiener process (or cumula-
tive white noise, or Brownian motion) and as the randomness/uncetainty
of the coefficients (market parameters) that describes the correlations with
the past, non-Markov properties, and unpredictability of the future price
distributions.

2.1. The model

Let us consider the following stripped to the bone example that allows
to illustrate the decision problems related to forecasting and myopicness
and show that these problems can be reduced to challenging but still solv-
able mathematical problems. (More general models can be found in, e.g.,
Karatzas and Shreve (1998)).

Consider the model of a securities market consisting of a risk free bond
or bank account with the price B(t), t ≥ 0, and a risky stock with price
S(t), t ≥ 0. The prices of the stocks evolve as

dS(t) = S(t) (a(t)dt+ σ(t)dw(t)) , t > 0, (1)

where w(t) is a Wiener process, a(t) is a random appreciation rate, σ(t)
is a random volatility coefficient. The initial price S(0) > 0 is a given
deterministic constant. The price of the bond evolves as

dB(t) = r(t)B(t)dt,

where B(0) is a given constant, r(t) is a short rate process that is assumed
to be a non-negative random process.

We assume that w(·) is a standard Wiener process on a given standard
probability space (Ω,F ,P), where Ω is a set of elementary events, F is a
complete σ-algebra of events, and P is a probability measure.
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Let {Ft}t≥0 be a filtration generated by the currently observable data
(i.e., this can be interpreted as information flow generated by observations).
We assume that Ft is independent of {w(t2) − w(t1)}t2≥t1≥t, and F0 is
trivial, i.e., it is the P-augmentation of the set {∅,Ω}.

We assume that the process (S(t), σ(t)) is Ft-adapted. In particular, this
means that the process (S(t), σ(t)) is currently observable.

Strategies and wealth

The rules for the operations of the agents on the market define the class

of admissible strategies where the optimization problems have to be solved.

Let X(0) > 0 be the initial wealth at time t = 0 and let X(t) be the

wealth at time t > 0.

We assume that the wealth X(t) at time t ∈ [0, T ] is

X(t) = β(t)B(t) + γ(t)S(t). (2)

Here β(t) is the quantity of the bond portfolio, γ(t) is the quantity of

the stock portfolio, t ≥ 0. The pair (β(·), γ(·)) describes the state of the

bond-stocks securities portfolio at time t. Each of these pairs is called a

strategy.

A pair (β(·), γ(·)) is said to be an admissible strategy if the processes

β(t) and γ(t) are progressively measurable with respect to the filtration

Ft.
In particular, the agents are not supposed to know the future (i.e., the

strategies have to be adapted to the flow of current market information).

This is why forecasting is involved.

In addition, we require that

E

∫ T

0

(
β(t)2B(t)2 + S(t)2γ(t)2

)
dt < +∞.

A pair (β(·), γ(·)) is said to be an admissible self-financing strategy, if

dX(t) = β(t)dB(t) + γ(t)dS(t).

Under this condition, the process γ(t) alone defines the strategy.

Let U(x) be a non-decreasing concave function such that max(0, U(x)) ≤
const · (|x|+ 1) and U(X(0)) < −∞. Consider the following problem:

Maximize EU(X(T )) over admissible self-financing strategies. (3)

The selection of function U is defined by the risk preferences.
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In a typical situation, the optimal strategy can be represented in the

form

γ(t) = g(t, S(t), X(t)),

where the function g depends on U and on the distribution law of the

process µ|[0,T ], where µ(t) = (r(t), a(t), σ(t)).

A problem arises: how to find an optimal strategy in a setting where the

evolution law for the vector µ(t) is unknown.

2.2. Myopic strategies

In the model where the vector process µ(t) = (r(t), a(t), σ(t)) is deter-

ministic (i.e., known), the optimal strategy can be found as a deterministic

function of current flow of observable data for a quite general selection of

U . This function depends on the values of µ(t)|t∈[0,T ]. Therefore, the same

formulas cannot be applied pathwise for the paths of random processes

µ(t).

For the continuous time portfolio selection problem, optimal myopic

strategies can be described as strategies such that

γ(t) = f(t, S(t), µ(t), X(t)),

where the function f depends on U only. Examples of optimal myopic

strategies were first introduced in Merton (1969). Currently, optimality

for myopic strategies was established for special utility functions, including

U(x) = lnx and U(x) = q−1xq, where q < 1, q 6= 0. This is true when

the evolution of µ(t) is defined by an Ito equation and µ is independent of

w(·); see, e.g., Brennan (1998).

If this vector is observable but not predictable, then this approach is

not working for more general U . Respectively, a major setback with this

approach is that the myopicness of the optimal strategy vanishes after a

small change of the problem setting.

Example 2.1. The optimal strategy is not myopic for an utility
U(x) = log x + 0.001

√
x, even when the evolution of µ(t) is defined by an

Ito equation and µ is independent of w(·).

Example 2.2. Assume that the time horizon T is fixed but the initial
investment time τ has to be selected among Markov times (stopping times)
such that τ ∈ [0, T ] a.s. Let Xτ+T be the corresponding terminal wealth.
The goal is to maximize EU(Xτ+T ) over τ and over admissible strategies
(it can be noted that it would be a novel setting in the portfolio selection
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theory). In this setting, the optimal strategy is not myopic even with
U(x) = log x, in contrast with the classical setting with given starting time
τ = 0.

2.3. Quasi-myopic strategies based on short term predictability

of (r, a, σ)

Let us discuss the application of principles (I)-(II) from Section 1 to the

continuous time diffusion market model. Principle (I) is well known and is

actually used in all forecasting methods.

Let us justify the application of principle (II) to continuous time market

models. It is known that a continuous time process can be transferred into

a band-limited predictable process via an ideal low-pass filter. Similarly,

a process becomes predictable on the infinite horizon if it is smoothed by

a Gaussian filter, i.e., by a convolution with a kernel similar to exp(−t2).

These smoothing filters are not causal; moreover, the distance of the set of

these ideal low-pass time invariant filters from the set of all causal filters

is positive; see Almira and Romero (2008).

A Gaussian filter can be replaced by a filter with an exponential decrease

of energy on higher frequencies. These smoothing filters are also not causal.

However, they allow arbitrarily close approximation by causal filters that

require only past historical observations; see Dokuchaev (2012a). The out-

put of a process transferred with this kernel is a process that is predictable

on some finite horizon (or short-time predictable); see Dokuchaev (2010a).

Consider now a stochastic market model with a parameter process µ(t).

We suggest to consider a model where µ(t) is replaced by a predicable pro-

cess that is close to µ(t). It would be unreasonable to expect predictability

of stock prices, so the process w(t) is still a Wiener process. It was shown in

Dokuchaev (2012c) that, since the approximation of µ(t) can be arbitrarily

precise (pathwise), the distributions of the stock prices in the new model

can be made arbitrarily close to the distribution of the prices in the original

model. In addition, the new model still feature the desired unpredictabil-

ity of the prices. Therefore, many commonly used financial models can be

effectively approximated by statistical indistinguishable models where the

reference processes µ(t) can be locally predicted on the short time, without

loosing the fundamental no-arbitrage market properties.

We suggest below models that take into account principles (I)-(II).
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2.4. The model with short-term forecasting

Let y(t) be some parameter process that is Ft-adapted (i.e., currently

observable). We assume that

dy(t) = h(y(t), t) + b(y(t), t)dw(t) + b̂(y(t), t)dŵ(t). (4)

Here h, b, b̂ are some real valued functions defined on R2, ŵ(t) is a Wiener

process that is independent of w(t). The case when y(t) is just the process

µ(t) = (r(t), a(t), σ(t)) is not excluded.

Proposition 1. Assume that, for some δ > 0,

r(t) = ρ(y(t− δ), t), a(t) = f(y(t− δ), t), σ(t) = g(y(t− δ), t),

where ρ, f, g are some real valued functions defined on R2 i.e.,

dS(t) = S(t) (f(y(t− δ), t)dt+ g(y(t− δ), t)dw(t)) ,

dB(t) = B(t)ρ(y(t− δ), t)dt. (5)

Then the market model features the following properties:

(i)At any time t, the market parameters r(t), a(t), σ(t) can be forecasted

without error on the time horizon [t, t+ δ].

(ii)The forecast error for forecasting of r(τ), a(τ), σ(τ) at time τ > t+ δ

is increasing with τ and with the size of the coefficients b|s∈[t,τ−δ) and

b̂|s∈[t,τ−δ) in equation (4).

Proof. Since y(t) is observable, the value

µ(τ) = (r(τ), a(τ), σ((τ)) = (ρ(y(τ − δ), t), f(y(τ − δ), t), g(y(τ − δ), t))

is known without error at time t for all τ ∈ [t, t + δ]. Then statement (i)

follows. Let us prove statement (ii). We assume that forecasting is based

on Kalman filters; see, e.g.,Dokuchaev (2005). The forecast error for y(τ) is

generated by the uncertainty on the interval [t, τ−δ] only. This uncertainty

is defined by the size of the non-zero diffusion coefficients in equation (4).

Then statement (ii) follows.

The classical model with non-random and known µ(t) can be described

as a special case of model (3)–(5) with δ = T . A model with stochastic
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µ(t) that does not allow an error-free forecast on any time interval can be

described as a special case of model (3)–(5) with δ = 0. There are many

publications devoted to these two extreme cases.

It can be noted that analysis of system (3)–(5) does not lead to difficult

solvability and regularity issues, since the delay term is not presented in

a closed loop equation. In the literature, many solvability and regularity

results were obtained for more general and complicated stochastic delay

equations, including equations for market models; see, e.g., Arriojas et

al (1998), Ivanov et al (1998), Mao et al (1998), Stoica (2004), Luong

and Dokuchaev (2014), and the bibliography therein. The first market

model with a stochastic delay equation for the prices was introduced and

investigated in Stoica (2004).

Currently, there are many methods for dealing with optimal control prob-

lem (3)–(5) for δ ∈ (0, T ) in the framework of the optimal stochastic con-

trol for systems with delay; see, e.g., Chen and Wu (2010), Elsanousi et al

(2000), Larssen (2002), Larssen and Risebro (2003), Øksendal and Sulem

(2001).

Using the model with delay, we are able now to analyze the impact of

narrowing the set of admissible strategies to the set of myopic strategies

only. This would have the same effect as letting Vary(t+ ε)→ +∞ for any

ε > 0. It happens when ‖b|[t,T ]‖ → +∞ and ‖b̂|[t,T ]‖ → +∞, where ‖ · ‖
is a norm for the corresponding functions. This leads to the limit case of

model (3)–(5) with δ = 0. In this case, the limit optimal γ(t) can be found

as the solution of a static problem

Maximize U ′x(X(t))γa+
1

2
U ′′xx(X(t))γ2σ2 over γ,

where a = f(y(t), t) and σ = g(y(t), t), given some regularity of U .

2.5. Quantification of the impact of myopicness

Consider a set of utility functions U(·) such that the optimal strategies

for them are not myopic. It is clear intuitively that this “non-myopicness”

depends on the selection of the utility function. One can expect that,

for instance, that the optimal strategy is “less non-myopic” for U(x) =

log x + 0.001
√
x than for U(x) = log x +

√
x. The model suggested above

leads to a method of quantification of this property and classification of

utility functions with respect to this “non-myopicness”.

Let a utility function U(·) be given. For a set of parameters δ ≥ 0, con-

sider a family of models Mδ introduced above with the delay δ. Let JU (δ)

be the optimal value of the performance criterion given δ, i.e., JU (δ) =
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supγ EU(X(T )). Assume that, for all these models, the process µ(·) is in-

dependent on w(·) (i.e., b ≡ 0), and that the distribution of the process

µ(·) is the same (i.e., is independent on δ). In addition, assume that the

right-hand side derivative

D+
δ JU (δ) = lim

ε→0+
ε−1[JU (δ + ε)− JU (δ)]

is defined at δ = 0.

Proposition 2. For a given utility function, “non-myopicness” of the

corresponding optimal strategy can be characterized by the value

D+
δ JU (0). (6)

Proof. By the assumptions, the distribution of the process (S(t), B(t))

is independent on δ representing a time horizon where error free forecast-

ing of µ is possible. It suffices to observe that D+
δ JU (δ) ≥ 0 for for all

δ ≥ 0 and all utilities, and D+
δ JU (δ) = 0 for all δ ≥ 0 for U(x) = log x

and U(x) = q−1xq, where q < 1, q 6= 0. Hence (6) achieves its min-

imal value (zero) for utilities for which the optimal strategy is myopic.

2.6. Additional opportunities: forecasting of a single scalar pa-

rameter

In the setting described above, we assumed for simplicity a single stock

market model and an one dimensional process y(t). This model can be

extended to the case of a multi-stock market. In this case, the process

µ(t) can be of a high dimension, as well as the parameter process y(t).

However, the following useful fact takes a place: the general models require

to forecast a single scalar parameter Θ =
∫ T
0
|θ(t)|2dt only (Dokuchaev and

Haussmann (2001)). Here θ(t) = σ(t)−1(a(t) − r(t)1) is the market price

of risk vector process, 1 = (1, . . . , 1)> ∈ Rn, | · | is the Euclidean norm,

a(t) is the vector of the appreciation rates for n stocks, σ(t) is the volatility

matrix for the vector of stock prices.

Therefore, multi-dimensional forecasting could be avoided in some cases

and replaced by forecasting of a single scalar parameter. This is possible

even for a market with a large number of stocks, for general type utilities

and for random parameters. It could be interesting to develop a setting

with delay that can take into account this feature.

It can be also noted that the problem of forecasting of Θ can be further

reduced to the selection of a new time scale and an optimal stopping time
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among Brownian stopping times in random interval defined by a time scale

that transform this process into a Brownian motion. This “whitening” time

scale can be selected as is suggested by Dambis–Dubins–Schwarz Theorem

(see, e.g., Revuz and Yor (1999)). In this approach, the uncertainty of

the market parameters is transformed into the uncertainty of the terminal

time.

3. DISCRETE TIME MARKET MODELS WITH
SHORT-TERM FORECASTING

3.1. The model

Let us consider a model of a market consisting of the bond or bank

account with price Bt and stocks with prices St,k, t = 0, 1, 2, . . ., k =

1, . . . , n, where n ≥ 1 is the number of stocks. The initial prices S0,k > 0

and B0 > 0 are given non-random variables.

We consider discounted stock prices S̃t,k , R−1t St,k, k > 1, with S̃0,k ,
S0 and Rt , Bt/B0. We assume that

S̃t,k = S̃t−1,k(1 + ξt,k),

Bt = ρtBt−1, t ≥ 1, k = 1, . . . , n. (7)

Here ξt,k and ρt are random variables. We assume that ξt,k > −1 and

ρt ≥ 1 for all t, k. Clearly,

Rt ,
t∏

m=1

ρm, St,k = ρtSt−1,k(1 + ξt,k), t ≥ 1, k = 1, . . . , n.

In this setting, the single period risk-free return is ρt − 1, and the single

period return for the kth stock is ρt − 1 + ρtξk,t.

Let Ft be the filtration generated by the flow of observable data, i.e., by

the process (ξt,k, ρt).

Let X0 = 1 be the initial wealth of an investor at time t = 0, and let Xt

be the wealth at time t ≥ 0. We set that

Xt = βtBt +
∑
k

γt,kSt,k, (8)

where βt is the quantity of the bond portfolio and where γt = (γt,1, . . . , γt,n)

is the vector describing the quantities if the shares for the particular stocks

in the stock portfolio. The pair (βt, γt) describes the state of the bond-

stocks securities portfolio at time t ≥ 0. We call the sequences of these

pairs portfolio strategies.
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We consider the problem of trading or choosing a portfolio strategy.

Some constraints will be imposed on current operations in the market.

A portfolio strategy {(βt, γt)} is said to be admissible if the process

(βt, γt) is adapted to the filtration Ft and the following condition of self-

financing is satisfied: for all t ≥ 0,

Xt+1 −Xt = βt (Bt+1 −Bt) +

N∑
k=1

γ>t,k (St+1,k − St,k) .

We do not impose additional conditions on strategies such as transaction

costs, bid-ask gap, restrictions on short selling; furthermore, we assume

that shares are divisible arbitrarily, and that the current prices are available

at the time of transactions without delay. In any case, we shall ignore these

difficulties here.

For the trivial “keep-only-bonds” portfolio strategy, the portfolio con-

tains only the bonds, γt ≡ 0, and the corresponding wealth is Xt ≡ β0Bt ≡∏t
m=1 ρm.

The process X̃t , R−1t Xt is called the discounted wealth.

Proposition 3. Let {Xt} be a sequence, and let the sequence {(βt, γt)}
be an admissible portfolio strategy, where βt = (Xt − γ>t St)B−1t . Then the

process X̃t evolves as

X̃t+1 − X̃t =

N∑
k=1

γt,k(S̃t+1,k − S̃t,k), t ≥ 0.

Proof of Proposition 3 is standard (see, e.g., Pliska (1997)).

It follows from Proposition 3 that the sequence {γt} alone suffices to

specify admissible portfolio strategy {(βt, γt)}.
Let U(·) be again a non-decreasing function such described in Section 2.

We may state our general problem as follows: Find an admissible strategy

{γt} which solves the following optimization problem:

Maximize EU(XT ) over {γt}. (9)

3.2. Myopic and quasi-myopic strategies

The real market prices are presented as time series, so the discrete time

models are more natural than the continuous time models. Unfortunately,

these models are more difficult for analytical study. There are only few
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special cases when the discrete time optimal portfolio problems allow ex-

plicit solution and when optimal strategies are myopic; see Mossin (1968),

Hakansson (1971), Pliska (1997). Even power utilities do not allow myopic

optimal solutions: in Hakansson (1971) it was shown s that the optimal

strategy is not myopic for U(x) =
√
x if returns evolve as a Markov pro-

cess. It was found later that optimal strategies can still be myopic for

power utilities in a discrete time setting for more restrictive assumptions

about correlations (Dokuchaev (2007b,2010b)).

A possible direction for the research would be to introduce relaxed ver-

sions of myopicness and consider short-term predictability only, as was

suggested above for the continuous time market model.

It does not make sense to assume that the exact value of (ξt+1,k, ρt+1) is

known at time t without error. Remind that, for continuous time market,

we considered predicability of market parameters (r(t), a(t), σ(t)) only. For

the discrete time market model, there is no a direct analog of the appreci-

ation rate and the volatility. Therefore, a market model with short term

forecasting has to be constructed differently.

Let as assume that ξt,k and ρt are expressed via some reference process

{Ys}s<t and some discrete time white noise wt. The evolution of the process

Yt has some regularity and describes the evolution of the distributions of

ξt,k and ρt.

We will apply non-parametric spectral methods to describe “smoothness”

and predictability of discrete time processes.

We accept the following principles.

(i) A smooth enough discrete-time process Yt can be short-term fore-

casted. This class includes processes such that their Z-transform is vanish-

ing with a certain rate at eiω as ω → π.

(ii) A stochastic model with a given parameter process Yt accompanied

by a noise process wt can be approximated by models where the parameter

processes are such as described in (i). These “smooth” parameter processes

can be made arbitrarily close to the original parameter process such that

the distributions of the corresponding new state processes approximate the

distributions of the state process from the original model.

Principle (i) can be justified as the following. It was shown in Dokuchaev

(2012b), Dokuchaev (2012c). that a discrete time process x̂(t) is predictable

if, for some c > 0 and q > 1,

sup
ω∈[−π,π]

|X̂(eiω)| exp
c

[eiω + 1|q
< +∞, (10)
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where X̂ is the Z-transform of x̂, i.e.,

X̂(z) =

∞∑
t=−∞

x̂(t)z−t, z ∈ C.

It can be noted that frequency method are commonly used for financial

time series; see, e.g., Pollock (2012).

Let us provide some reasons for principle (ii). Consider a discrete time

parameter process Yt that drives the distribution of the prices for a discrete

time market model. It can be seen from (10) that a discrete time process is

predictable if it is an output of an ideal low-pass filter. Clearly, an output of

this filter can be made arbitrarily close to the output process; at the same

time, this output is a predictable process. Therefore, if one transforms the

parameter process using this filter, then the transformed process will be

predicable; the distribution of the price process St can be made arbitrarily

close to the distribution of the original process. This leads to the conclusion

that a market model by a can be replaced by a statistical indistinguishable

no-arbitrage model with predictable parameters. In can be noted that a

related result was obtained in Dokuchaev (2014).

For discrete time market, we suggest a model with the short-term pre-

dictability of parameters that can be described as the following: there exists

δ ∈ {1, 2, . . .} such that, for all m = 1, . . . , δ, the following holds.

For (ξt+m,k, ρt+m), the conditional distribution given Ft+m−1
is the same as the conditional distribution given Ft. (11)

The number δ−1 represents the predictability horizon. For a single period

optimal portfolio selection problem, there is no a non-zero predictability

horizon. This is the case of the classical Markovitz setting. Let us explain

why it is a reasonable model. To select an optimal strategy at time t with

the purpose of maximization of the wealth at time t+T , one has to use the

historical observations as well as the probability distributions of the entire

vector {ξt+m,k, ρt+m}Tm=1 (for the general case where the optimal strategy

is not myopic). If (11) holds, then the price evolution law is known at time

t for the next δ time periods, i.e., for t+ 1, . . . , t+ δ. For the more distant

future, the evolution law is defined by a particular realization of the future

price values that are unknown at time t.

The case where δ = 1 corresponds to the model without predictability.

This is equivalent to the case in the continuous time setting described above

with δ = 0. This is not surprising, since the continuous time model can be
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considered as the limit case of the discrete time model with the physical

time between instances tk and tk+1 converges to zero.

Let us consider a special case where the predictability of the evolution

law is ensured by the predictability of some parameter process similar to

the process (r(t), a(t), σ(t)) for the continuous time diffusion market model.

Let as assume that

ξt,k = at,k(Yt−δ, wt), ρt = bt,k(Yt−δ, wt),

where Yt = {(Sm, Bm)}m≤t represents the historical observations, wt is a

discrete time white noise process with values in RN , and at,k : R2τ×RN →
R and bt : R2τ ×RN → R are some known functions. In particular, wt
are mutually independent and have the same distribution; this distribution

is assumed to be known. In this case, the marked model can be again

described via discrete time equations with delay

S̃t,k = (1 + at,k(Yt−δ, wt))S̃t−1,k,

Bt = bt,k(Yt−δ, wt)Bt−1, t ≥ 1, k = 1, . . . , n. (12)

Respectively, optimal portfolio selection problem is in fact a stochastic

control problem for a discrete time system with delay.

Similarly to Proposition 2, we can use this model to estimate utility

functions with respect to “non-myopicness” of optimal strategies. For a

family of utilities U(·), let JU (δ) = supγ EU(XT ) be the optimal values

calculated for two models, model M1 and model M0, such as described

above; model M1 with δ = 1 and model M0 with δ = 0. In addition, we

require that this two models are constructed such that the distribution of

the vector {Yt−δ} is the same for both models, after substitution of the

corresponding δ. This values are defined for market models with δ as a

parameter. In discrete time case, it will require to compare for different

utilities the differences JU (1)− JU (0).

4. CONCLUSIONS

A possible way to reduce the impact of forecast errors is to use so-called

“myopic strategies” that can be reasonable or even optimal and such that

they do not use future market scenarios. For some financial market models

the optimal strategies can be myopic. Therefore, it is important to be

able to detect situations where the optimal strategy is myopic and the

forecast error does not have a big impact: it may save valuable resources.
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The paper suggests models with optimal “almost myopic” strategies that

require short-term predictability of a reference/parameter processes; these

models accommodate the possibility of forecasting for the parameters of

stock price evolution such as the volatility. We suggest a quantification

of “non-myopicness” of a given utility and criterion that estimates the

dependence of a stochastic market model from a possibility of short term

forecasting.
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