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The sample average is an unbiased estimator of the population mean, so it
may seem innocuous that for estimating model parameters that do not involve
the population mean, the data can be demeaned first. Using a first-order
moving average (MA) model for example, we derive the analytical approximate
biases of the quasi maximum likelihood estimators (QMLEs) based on the
original and demeaned data. The bias results indicate that the QMLEs can
behave quite differently in finite samples and it is not always advisable to
demean the data if the MA parameter is of primary interest to estimate.
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1. INTRODUCTION

For linear models, it is well known that we can first subtract the sample
average from the data without affecting estimation of the non-intercept
parameters. It is less obvious for nonlinear models.1 Intuitively, since the
sample average is a very good estimator of the population mean, demeaning
a univariate time series seems least harmful for estimating other model
parameters that do not involve the population mean. In this note, we
use the moving average (MA) model of order 1 (MA(1)) as an example to
demonstrate that it is not always advisable to take such a view. The MA
model is intrinsically nonlinear. Compared with the linear autoregressive
model, it can be used to model and forecast economic variables of less
persistence and shorter memory. A prominent example is from Stock and
Watson (2007), who found that the simple MA(1) model works really well
in describing the inflation rate change for the US economy.

1When we say a model is nonlinear, we mean that the model parameters are estimated
nonlinearly.

163

1529-7373/2015
All rights of reproduction in any form reserved.



164 YONG BAO

Let β = (µ, θ, σ2)′ be the vector of model parameters of the MA(1) model
yt = µ + εt + θεt−1, where |θ| < 1 and εt ∼ i.i.d. (0, σ2), not necessarily
normal. Let β0 = (µ0, θ0, σ

2
0)′ denote the population parameter vector and

y = (y1, · · · , yT )′ be the sample observations. Typically, the method of
quasi maximum likelihood (QML) is used to estimate the parameters by
maximizing a Gaussian sample likelihood function of y even though the
data might be nonnormally distributed, see Hamilton (1994). Neverthe-

less, the sample mean ȳT = T−1
∑T
t=1 yt is an unbiased estimator of the

population mean µ0, so it is quite often that applied economists demean
the data first and then estimate δ = (θ, σ2)′ from x = (x1, · · · , xT )′ with
xt = yt − ȳT . From a theoretical point of view, this amounts to using the
combination of two estimation methods, namely, moment estimation (for
estimating µ) and quasi maximum likelihood (for estimating δ). Two in-
triguing questions arise. First, how different is the QML estimator (QMLE)
of µ based on y from the simple estimator ȳT ? If the true distribution of
εt is normal, the QMLE becomes the maximum likelihood estimator and
it is most efficient, though can still be biased in finite samples, whereas ȳT
is unbiased and asymptotically efficient. Second, will demeaning affect the
estimation of (θ, σ2)? In a typical ordinary least squares framework with
cross-section data, demeaning is innocuous, so is with time-series autore-
gressive models. But for nonlinear time-series models, the answer is far less
obvious. We aim to answer the two questions in this note.

Throughout, ι is a vector of ones, I is the identity matrix, M = I −
T−1ιι′, and 0 is a null vector. The dimensions of vectors/matrices are to
be read from the context, and thus we suppress the dimension subscripts
in our notation.

2. MAIN RESULTS

Conditional on ε0 = 0, the average Gaussian log likelihood function of
the observable data y is

L(β;y|ε0 = 0) = −1

2
log(2π)− 1

2
log(σ2)− ε′ε

2Tσ2
, (1)

where ε = (ε1, · · · , εT )′ and εt is defined recursively from εt = yt−µ−θεt−1
starting with ε0 = 0. Let β̂T be the QMLE of β0 based on the Gaussian
likelihood function (1).

Now suppose we work with the demeaned data. By definition, the model
should be

xt = ut + θut−1, (2)

where ut = εt − ε̄T = εt − T−1
∑T
t=1 εt. Obviously, ut is no longer i.i.d.

and its variance is σ2(1 − T−1). Moreover, the conditional mean of ut is
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not θut−1 and u0 6= 0. This stands in contrast to the MA(1) model using
the original data. Another way to think about this is to write

xt = µ− ȳT + εt + θεt−1, (3)

whose constant term µ − ȳT 6= 0, though E(µ − ȳT ) = 0. In other words,
when using the demeaned data to estimate the model, we are in fact im-
posing µ− ȳT to be zero in the sample.

Let β̃T = (ȳT , θ̃T , σ̃
2
T )′ denote the estimated parameter vector based on

the demeaned data, where (θ̃T , σ̃
2
T )′ ≡ δ̃T is estimated from (2) based on

the log likelihood function

L(θ, σ2;x|u0 = 0) = −1

2
log(2π)− 1

2
log(σ2)− u′u

2Tσ2
, (4)

where u = (u1, · · · , uT )′ and ut is defined recursively from ut = xt− θut−1
starting with u0 = 0.

Using matrix notation, we can write y = µι + Cε, x = My = MCε,
ε = C−1(y − µι), u = C−1x, where C is a T × T tridiagonal matrix with
main diagonal elements 1, super-diagonal elements 0, and sub-diagonal
elements θ. Then the score function associated with (1) is

ψβ =

(
ε′C−1ι

Tσ2
,
ε′A1ε

Tσ2
,

ε′ε

2Tσ4
− 1

2σ2

)′
, (5)

where A1 = C−1B, and the first-order condition associated with (4) is

ψδ =

(
ε′D′A1Dε

Tσ2
,
ε′D′Dε

2Tσ4
− 1

2σ2

)′
, (6)

where D = C−1MC.
From (5), we note that, if the value of θ is known,

µ̂T =
y′C−1′C−1ι

ι′C−1′C−1ι
, σ̂2

T =
(y − y′C−1′C−1ι

ι′C−1′C−1ι
ι)′C−1′C−1(y − y′C−1′C−1ι

ι′C−1′C−1ι
ι)

T
.

This stands in contrast to the demeaned model:

µ̃T =
y′ι

ι′ι
, σ̃2

T =
(y − y′ι

ι′ι ι)
′MC−1′C−1M(y − y′ι

ι′ι ι)

T
.

So numerically, the original and demeaned models can give different values
of parameter estimates.
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One can easily check that E(ψβ) = 0, regardless of the distribution
of ε. On the other hand E(ψδ) 6= 0; instead, limT→∞ E(ψδ) = 0. This

implies in finite samples, β̂T and β̃T can behave quite differently. (And
we have already shown that numerically they are always different.) This
can be seen more clearly if we follow Bao and Ullah (2007) to implement a

stochastic expansion: β̂T − β0 = β−1/2 + β−1 + oP (T−1), where β−1/2 =

OP (T−1/2) = Σψ, β−1 = OP (T−1) = ΣV 1β−1/2 + 1
2ΣE(H2)(β−1/2 ⊗

β−1/2), Hi = 5iψ, Σ = −[E(H1)]−1 and V 1 = H1−E(H1), with all the

terms evaluated at the true parameter vector. A similar expansion for δ̃T is
δ̃T −δ0 = δ−1/2 +δ−1 +oP (T−1). As E(ψβ) = 0, we can see E(β−1/2) = 0

and thus the bias of β̂T , up to order O(T−1), can be approximated by
E(β−1). But for δ̃T , we can check that E(δ−1/2) 6= 0, so the approximate
bias needs to be defined as E(δ−1/2 + δ−1). When ε is normal, the bias of

β̂T was derived by Tanaka (1984) and Cordeiro and Klein (1994):

E(β̂T − β0) =
1

T

 0
−1 + 2θ
−2σ2

+ o(T−1). (7)

One can show that the above bias formula is still valid even when ε is
nonnormal (see the appendix). On the other hand, the bias of β̃T , with
ȳT being unbiased and the bias of δ̃T given by E(δ−1/2 + δ−1), is

E(β̃T − β0) =
1

T

 0
θ
−σ2

+ o(T−1). (8)

The derivation of (8) is given in the appendix.
Comparing (7) and (8), we have several interesting observations regard-

ing β̂T and β̃T .
2 First, both expressions indicate that the bias results from

the original and demeaned data are robust, up to the order of approxima-
tion, to the distribution of the error term. They hold under both normal
and nonnormal distributions. Second, the mean estimator µ̂T from the orig-
inal data is unbiased, up to the order of approximation, whereas µ̃T (= ȳ)
is always unbiased. Third, when θ is positive, the demeaned model tends
to overestimate the moving average parameter, but the original model can
overestimate (when 1 > θ > 0.5) or underestimate (when 0 < θ < 0.5). We
also see the demeaned model may overestimates θ more than the original
model when 1 > θ > 0.5. For negative θ, both models tend to underes-
timate, but the magnitude of the the bias is more severe for the original

2Simulations results, not reported here, largely support the described patterns of β̂T

and β̃T in finite samples.
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model than the demeaned model. Lastly, both models tend to underesti-
mate the variance, and the approximate downward bias from the original
model is two times that from the demeaned model.

3. CONCLUDING REMARKS

We have used the MA(1) model to demonstrate the effects of demeaning
the data on the estimation of model parameters in finite samples. By work-
ing out the approximate bias results, we see that the QMLEs can behave
quite differently in finite samples. In particular, for the MA parameter θ,
when 1 > θ > 0.5, the degree of overestimation from the demeaned data
may be more than that from the original data in finite samples. Thus when
the MA parameter is of direct interest, it is not advisable for us to demean
the data if its magnitude is moderately large.3

APPENDIX: DERIVATION OF BIASES OF β̂T AND δ̃T

For notational convenience, define a = C−1ι, A∗1 = A1 + A′1, A2 =
2A2

1+A′1A1, A3 = A3
1+A′1A

2
1, A4 = A3

1+A′1A
2
1, and denote D0 = D′D,

Di = D′AiD, λj = ε′Djε, di = T−1tr(Di), and d = (2d0d2 − 2d21 −
d2)/(2σ4

0). Note that E(λi) = Tσ2
0di.

First, for the stochastic expansion of β̂T −β0, we take derivatives of (5)
and have

H1 =

 − a
′a

Tσ2 −a
′A∗1ε
Tσ2 − a′ε

Tσ4

−a
′A∗1ε
Tσ2 −ε

′A2ε
Tσ2 −ε

′A1ε
Tσ4

− a′ε
Tσ4 −ε

′A1ε
Tσ4 − ε′ε

Tσ6 + 1
2σ4

 ,

H2 =

 0 2a′A1a
Tσ2

a′a
Tσ4

2a′A1a
Tσ2

2a′A3ε
Tσ2

a′A∗1ε
Tσ4

a′a
Tσ4

a′A∗1ε
Tσ4

2a′ε
Tσ6

2a′A1a
Tσ2

2a′A3ε
Tσ2

a′A∗1ε
Tσ4

2a′A3ε
Tσ2

6ε′A4ε
Tσ2

ε′A2ε
Tσ4

a′A∗1ε
Tσ4

ε′A2ε
Tσ4

2ε′A1ε
Tσ6

a′a
Tσ4

a′A∗1ε
Tσ4

2a′ε
Tσ6

a′A∗1ε
Tσ4

ε′A2ε
Tσ4

2ε′A1ε
Tσ6

2a′ε
Tσ6

2ε′A1ε
Tσ6

3ε′ε
Tσ8 − 1

σ6

 .

3In Stock and Watson (2007), where the simple MA(1) is used in describing the
inflation rate change for the post-1984 US economy, the estimated MA parameter is
above 0.5.
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By substitution, the stochastic expansion of β̂T − β0 has

β−1/2 =

 a′ε
a′a
ε′A1ε
σ2tr(A2)
ε′ε
T − σ

2

 ,

β−1 =


−a

′A∗1εε
′A1ε

σ2tr(A2)a′a
+ 2a′A1aa

′εε′A1ε
σ2tr(A2)(a′a)2

3tr(A3
1+A

′
1A

2
1)(ε

′A1ε)
2

σ4tr3(A2)
− ε′A1εε

′A2ε
σ4tr2(A2)

− ε′aa′A∗1ε
σ2tr(A2)a′a

+ a′A1aε
′aa′ε

σ2tr(A2)(a′a)2
+ ε′A1ε

σ2tr(A2)

−ε
′aa′ε
Ta′a −

(ε′A1ε)
2

Tσ2tr(A2)

 .

Note that A1 is strictly lower triangular. Then E(ε′A1ε) = σ2tr(A1) = 0,

so E(β−1/2) = 0 and the second-order bias of β̂T is given by E(β−1). The
first element of E(β−1) corresponds to

E(µ̂− µ) = −a
′A∗1E(εε′A1ε)

σ2tr(A2)a′a
+

2a′A1aa
′E(εε′A1ε)

σ2tr(A2)(a′a)2
+ o(T−1)

= 0 + o(T−1),

since v′E(εε′A1ε) = E(ε3i )v
′diag(A1) = 0 for any vector v.

For evaluating the biases of θ̂ and σ̂2, we need expectations of second-
order quadratic forms in ε. From Ullah (2004, p. 187), for any matricesN1

andN2, E(ε′N1εε
′N2ε) = σ4[γ2tr(N1�N2)+tr(N1)tr(N2)+tr(N1N2)

+tr(N ′1N2)], where � is the Hadamard (element by element) product op-
erator and γ2 is the excess kurtosis coefficient of the distribution of εt. Since
A1 is strictly lower triangular, tr(A1) =tr(A1A1) =tr(A1�A1) =tr(A1�
A2) = 0. This leads to

E(θ̂ − θ) =
3tr(A3

1 +A′1A
2
1)tr(A′1A1)

tr3(A2)
− tr[A∗1(A2 +A′2)]

2tr2(A2)

− a′A1a

tr(A2)a′a
+ o(T−1),

E(σ̂2 − σ2) = −σ
2

T
− σ2tr(A′1A1)

T tr(A2)
+ o(T−1),

which suggests that up to order O(T−1), E(θ̂−θ) and E(σ̂2−σ2) are both
robust to the distribution of the data. In fact, given special structure of the
matrix A1, one can verify that a′a = T (1 + θ)−2 + O(1), a′A1a = T (1 +
θ)−3 +O(1), tr(A2) = T (1−θ2)−1 +O(1), tr(A′1A1) = T (1−θ2)−1 +O(1),
tr[A∗1(A2 +A′2)] = −8Tθ(1−θ2)−2 +O(1), and tr(A3

1 +A′1A
2
1) = −Tθ(1−

θ2)−2 +O(1). Upon substitution, the bias result (7) follows.
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Next, for the bias of δ̃T , by taking derivatives of (6), we can write

H1 =

(
− λ2

Tσ2 − λ1

Tσ4

− λ1

Tσ4 − λ0

Tσ6 + 1
2σ4

)
, H2 =

(
6λ3

Tσ2
λ2

Tσ4
λ2

Tσ4
2λ1

Tσ6

λ2

Tσ4
2λ1

Tσ6
2λ1

Tσ6
3λ0

Tσ8 − 1
σ6

)
.

Given this, the stochastic expansion from Bao and Ullah (2007) yields the
following:

θ̃T − θ0 =
3d31d2λ

2
0

8d3T 2σ16
+

d1d
2
2λ

2
0

8d3T 2σ16
− 3d0d1d

2
2λ

2
0

8d3T 2σ16
− 3d21d3λ

2
0

8d3T 2σ16
+

3d0d
2
1d3λ

2
0

4d3T 2σ16
− d41λ0λ1
d3T 2σ16

+
d0d

2
1d2λ0λ1

2d3T 2σ16
+

d22λ0λ1
8d3T 2σ16

− d0d
2
2λ0λ1

2d3T 2σ16
+
d20d

2
2λ0λ1

2d3T 2σ16
− 3d1d3λ0λ1

4d3T 2σ16

+
3d0d1d3λ0λ1
d3T 2σ16

− 3d20d1d3λ0λ1
d3T 2σ16

− d31λ
2
1

d3T 2σ16
+

3d0d
3
1λ

2
1

2d3T 2σ16
− 3d1d2λ

2
1

8d3T 2σ16

+
3d0d1d2λ

2
1

2d3T 2σ16
− 3d20d1d2λ

2
1

2d3T 2σ16
− 3d3λ

2
1

8d3T 2σ16
+

9d0d3λ
2
1

4d3T 2σ16
− 9d20d3λ

2
1

2d3T 2σ16

+
3d30d3λ

2
1

d3T 2σ16
− 3d31d2λ0

4d3Tσ14
− d1d

2
2λ0

4d3Tσ14
+

3d0d1d
2
2λ0

4d3Tσ14
+

3d21d3λ0
4d3Tσ14

− 3d0d
2
1d3λ0

2d3Tσ14

+
d41λ1
d3Tσ14

− d0d
2
1d2λ1

2d3Tσ14
− d22λ1

8d3Tσ14
+

d0d
2
2λ1

2d3Tσ14
− d20d

2
2λ1

2d3Tσ14
+

3d1d3λ1
4d3Tσ14

−3d0d1d3λ1
d3Tσ14

+
3d20d1d3λ1
d3Tσ14

+
3d31d2
8d3σ12

+
d1d

2
2

8d3σ12
− 3d0d1d

2
2

8d3σ12
− 3d21d3

8d3σ12

+
3d0d

2
1d3

4d3σ12
+

d1d2λ
2
0

2d2T 2σ12
− 3d21λ0λ1

2d2T 2σ12
+

d2λ0λ1
4d2T 2σ12

− d0d2λ0λ1
2d2T 2σ12

− d1λ
2
1

d2T 2σ12

+
2d0d1λ

2
1

d2T 2σ12
− d1λ0λ2

4d2T 2σ12
+
d0d1λ0λ2
2d2T 2σ12

− λ1λ2
4d2T 2σ12

+
d0λ1λ2
d2T 2σ12

− d20λ1λ2
d2T 2σ12

+
d31λ0

2d2Tσ10
− d1d2λ0

2d2Tσ10
− d0d1d2λ0

2d2Tσ10
+

3d21λ1
2d2Tσ10

− d0d
2
1λ1

d2Tσ10
− d0d2λ1

2d2Tσ10

+
d20d2λ1
d2Tσ10

+
d1λ2

4d2Tσ10
− d0d1λ2

2d2Tσ10
− d31

2d2σ8
+
d0d1d2
2d2σ8

− d1λ0
2dTσ6

− λ1
2dTσ6

+
d0λ1
dTσ6

+
d1

2dσ4
+ oP (T−1),
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σ̃2
T − σ2

0 = − 3d21d
2
2λ

2
0

8d3T 2σ14
− d32λ

2
0

8d3T 2σ14
+

3d0d
3
2λ

2
0

8d3T 2σ14
− 3d31d3λ

2
0

4d3T 2σ14
+

3d31d2λ0λ1
2d3T 2σ14

+
d1d

2
2λ0λ1

2d3T 2σ14

−3d0d1d
2
2λ0λ1

2d3T 2σ14
− 3d21d3λ0λ1

2d3T 2σ14
+

3d0d
2
1d3λ0λ1

d3T 2σ14
− d41λ

2
1

d3T 2σ14
+
d0d

2
1d2λ

2
1

2d3T 2σ14

+
d22λ

2
1

8d3T 2σ14
− d0d

2
2λ

2
1

2d3T 2σ14
+

d20d
2
2λ

2
1

2d3T 2σ14
− 3d1d3λ

2
1

4d3T 2σ14
+

3d0d1d3λ
2
1

d3T 2σ14
+

3d21d
2
2λ0

4d3Tσ12

−3d20d1d3λ
2
1

d3T 2σ14
+

d32λ0
4d3Tσ12

− 3d0d
3
2λ0

4d3Tσ12
+

3d31d3λ0
2d3Tσ12

− 3d31d2λ1
2d3Tσ12

− d1d
2
2λ1

2d3Tσ12

+
3d0d1d

2
2λ1

2d3Tσ12
+

3d21d3λ1
2d3Tσ12

− 3d0d
2
1d3λ1

d3Tσ12
− 3d21d

2
2

8d3σ10
− d32

8d3σ10
+

3d0d
3
2

8d3σ10

− 3d31d3
4d3σ10

− d22λ
2
0

2d2T 2σ10
+

2d1d2λ0λ1
d2T 2σ10

− d21λ
2
1

d2T 2σ10
+

d2λ
2
1

2d2T 2σ10
− d0d2λ

2
1

d2T 2σ10

− d21λ0λ2
2d2T 2σ10

− d1λ1λ2
2d2T 2σ10

+
d0d1λ1λ2
d2T 2σ10

− d21d2λ0
2d2Tσ8

+
d22λ0

2d2Tσ8
+
d0d

2
2λ0

2d2Tσ8

+
d31λ1
d2Tσ8

− d1d2λ1
d2Tσ8

− d0d1d2λ1
d2Tσ8

+
d21λ2

2d2Tσ8
+

d21d2
2d2σ6

− d0d
2
2

2d2σ6
+

d2λ0
2dTσ4

− d1λ1
dTσ4

− d2
2dσ2

+ oP (T−1).

To evaluate the approximate biases of θ̃T and σ̃2
T , we need to work out

E(λi00 λ
i1
1 λ

i2
2 ) with i0 + i1 + i2 ≤ 2. When i0 + i1 + i2 = 1, say, i0 = 0, i1 = 1,

i2 = 0, E(λi00 λ
i1
1 λ

i2
2 ) = Tσ2

0d1. When i0 + i1 + i2 = 2, we can use Ullah
(2004, p. 187) again on expectations of quadratic forms in ε.

Given the special structures of the matrices involved in the quadratic
forms, one can verify the following table, which gives the order and value, up
to the order of approximation, of each term needed in taking expectations
of θ̃T − θ0 and σ̃2

T − σ2
0 :

Term Order Approximate Value Term Order Approximate Value
d0 O(1) 1 E(λ20) O(T 2) T 2σ4

d1 O(T−1) −T−1(1 + θ)−1 E(λ0λ1) O(T ) −Tσ4(1 + θ)−1

d2 O(1) (1− θ2)−1 E(λ0λ2) O(T 2) T 2σ4(1− θ2)−1

d3 O(1) −θ(1− θ2)−2 E(λ21) O(T ) Tσ4(1− θ2)−1

d O(1) 0.5(1− θ2)−1σ−4 E(λ1λ2) O(T ) −Tσ4(1 + 3θ)(1− θ2)−2

Substituting the above terms into E(θ̃T − θ0) and E(σ̃2
T − σ2

0) yields (8).
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