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This paper considers a general class dynamic optimal problem with incen-
tive compatible constraints. The first-order conditions are derived using the
Lagrange multiplier method. Applied the methods developed here, the optimal
taxation problems studied by Mirrlees (1971) and Golosov et al. (2003) for
more general form utility function are reexamined in this paper. The explicit
solutions for optimal income taxations are derived in this paper. Finally, we
present numerical solutions for optimal income taxations.
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1. INTRODUCTION

Many interesting economic problems involve multiple decision makers in
complex environments coupled with information asymmetry. For example,
Mirrlees (1971) assumes asymmetric information in a planner’s economy
and derives the logistical relationship between optimal labor taxation and
labor ability (private information). Rogerson (1985a, 1985b) use a dual
approach to find the first-order optimal conditions in a static principle-
agent problem. Golosov et al. (2003) and Golosov and Tsyvinski (2006)
use the method developed by Rogerson (1985a, 1985b) to study optimal
indirect taxation in a dynamic environment in which the agent’s skill is
private information and follows arbitrary stochastic processes. Their work
extends Mirrlees’ (1971) famous framework to a dynamic framework and
shows that positive capital taxation is the Pareto optimal choice.

The dual approach developed by Rogerson (1985a, 1985b) should con-
struct a minimized problem that delivers the same utility to all types as
the candidate optimum and satisfies the resource feasibility in all periods.
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However, the method cannot be extended directly to a dynamic frame-
work. To apply the dual approach, Golosov et al. (2003) and Golosov
and Tsyvinski (2006) assume that the utility is separable in leisure and
consumption to examine the optimal capital income taxation. Farhi and
Werning (2010) consider the optimal insurance arrangements in a dynamic
Mirrlees economy under the life cycle context. If the utility function is not
separable, then a disturbance in consumption will not only affect the util-
ity from consumption but also the labor supply, which in turn will affect
production. Thus, the dual approach will not work. The separability of
consumption and leisure in the utility function plays an important role in
solving the problem.

On the other hand, Golosov et al. (2003), in contrast, consider only
the optimal capital income tax. Recently, Golosov et al. (2010) consider
the optimal labor taxation in the framework of Golosov et al. (2003).
Applying the Mirrlees envelope theorem (Mirrlees, 1971), they derive the
explicit solution for the optimal labor income taxation under the following
specified utility function

U(c, l) =
1

ψ
exp[−ψ(c− 1

γ
lγ)],

where ψ and γ are positive constants. However, Golosov et al. (2010)
cannot depict the optimal taxation rules as the functions of agents’ private
information; they alternatively provide the relationship between the taxa-
tion rules and agents’ income. However, Golosov et al. (2010) cannot deal
with the problem with the consideration of both capital and labor income
taxations. This is because the dual approach will not work because a dis-
turbance in consumption will also affect the labor supply when both labor
and capital income taxes are considered.

In fact, Mirrlees (1971), Golosov et al. (2003), and Golosov et al. (2010)
can be also viewed as the extensional framework of optimal dynamic mech-
anism design, which is consistent with the classical principal-agent frame-
work. Pavan et al. (2009) summarize the first order conditions in more
general optimal dynamic mechanism design problems. He also uses the
Mirrlees envelope theorem to derive the first-order conditions. Garrett and
Pavan (2009) apply the same approach presented in Pavan et al. (2009)
to investigate the optimal incentive scheme for a manager who faces costly
effort decisions and stochastically varying ability over time. They assume
that both the principal and agent are risk-neutral and derive the closed
form solution. This paper focuses mainly on the evolution of the agent’s
ability and demonstrates how the shock affects the compensations of the
manager.

Both the optimal capital and labor income taxations in a uniform frame-
work, and the optimal income taxation under more general utility function
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are important problems that remain to be solved. These are the main
aims of this paper. We use the Lagrange multiplier method to deal with
a class of more general dynamic optimization problems with asymmetric
information, and use the method developed here to reexamine the optimal
labor income tax and capital income tax in the framework of Golosov et
al. (2003).

The remainder of the paper is organized as follows. In Section 2, we
introduce mathematic results of functional space. In Section 3, we use
the Lagrange multiplier method to deal with general dynamic optimization
problems with private information, in which we apply the truth-telling
constraint. In Section 4, we re-examine optimal income taxation in both
the static and dynamic frameworks. We obtain an optimal income taxation
similar to that of Mirrlees (1971), Golosov et al. (2003), and Golosov and
Tsyvinski (2006). However, we deal with more general forms of the utility
function and with both capital income tax and labor income tax. Section
5 specifies the utility and production functions and presents the numerical
solutions for optimal income taxation. We offer our conclusions in Section
5.

2. SOME MATHEMATICAL RESULTS

In this section, we review useful mathematical results that are important
in the argument that follows.

2.1. Frechet Differentiation

Suppose that (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are two function spaces, and that
N is the set of all linear maps from X to Y . A continuous map Λ ∈ N is
said to be differentiable at point x ∈ X if there exists A ∈ N such that

Λ(x′)− Λ(x) = A(x′ − x) + o(‖x′ − x‖X), for any x′ ∈ X. (1)

A is the Frechet differentiation of Λ at x, which we denote as δx∗Λ. Note
that the Frechet differentiation is an extension of ordinary differentiation
in the Rn space. When Y = R, we call Λ a functional. We state some
important properties of Λ in the following propositions.

Proposition 1. Suppose that Λ : X → R is differentiable on X and
there exists x∗ ∈ U ⊂ X such that Λ(x) ≤ Λ(x∗) for all x ∈ U . Then,

δx∗Λ = 0. (2)

Proof. The proof is easy and we omit it for simplicity.
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Proposition 1 is an extension of the traditional optimization problem in
Rn.

Example 2.1. If X = C[0, 1] is the set of all continuous functions on
[0, 1] and Λ(x) = f(x(1/2)), then

δxΛ(η) = f ′(x(1/2))η(1/2) for all η ∈ X.

Because δxΛ is also a functional, from Proposition 1, δxΛ = 0 means that

f ′(x(1/2))η(1/2) = 0 for all η ∈ X,

which indicates that f ′(x(1/2)) = 0.

Example 2.2. Suppose that X is the set of all integrable functions in
the probability space (Ω,F , µ), and Λ(x) =

∫
f(x)dµ. Then,

δxΛ(η) =

∫
f ′(x)ηdµ for all η ∈ X.

Furthermore, δxΛ = 0 means that f ′(x) = 0.

Definition 2.1. Λ is a functional on X that is concave if for every
x, y ∈ X and any λ ∈ [0, 1] we have

Λ(λx+ (1− λ)y) ≤ λΛ(x) + (1− λ)Λ(y). (3)

Furthermore, Λ is strictly concave on X if for any x 6= y and λ ∈ (0, 1)

Λ(λx+ (1− λ)y) < λΛ(x) + (1− λ)Λ(y). (4)

The following proposition connects the Frechet differentiation and this
concavity.

Proposition 2. If Λ is differentiable and concave on X, then for every
x and y ∈ X

Λ(x)− Λ(y) ≥ δxΛ(x− y). (5)

Proof. The proof is similar to that for X = Rn, and we thus omit it.
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2.2. The Lagrange Functional

In this section, we consider a discrete-time dynamic optimization prob-
lem. First, we define the basic space NT ×Ω, where NT = {1, . . . , T} is the
subset of natural numbers and Ω is the sample space. The (Ω,F , µ) is a
probability space with the increasing filtration F = {Ft : t ∈ NT }, F is the
union of all Ft in F, and µ is the measurement on Ω. We define a sequence
of function spaces

Mt = {x : Ω→ R, x is bounded and x ∈ Ft}, t ∈ NT , (6)

where R is a set of all real numbers. We then define the norm on Mt as
‖x‖ = max

ω∈Ω
|x(ω)|. It follows from Stokey et al. (1989) and Stokey (2009)

that (Mt, ‖.‖) is a Banach space.
The dynamic optimization problem is

P1 : max
xt,ut∈Mt

E[

T∑
t=1

βt−1f(xt, ut)], (7)

subject to

xt+1 = g(xt, ut, εt+1), t = 1, . . . , T − 1, (8)

with the given initial condition x1.
Here, xt, ut ∈Mt are state and control variables, respectively. β ∈ (0, 1)

is the discount factor and εt ∈ Mt is the stochastic disturbance. f and g
are continuous and differentiable functions that are concave with respect
to (x, u).

To solve the optimization problem, we define the Lagrange functional as

L(x, u, z) = E

[
T∑
t=1

βt−1f(xt, ut)

]
+

T−1∑
t=1

〈zt+1, g(xt, ut, εt+1)− xt+1〉, (9)

where zt ∈Mt, t = 2, . . . , T is the associated Lagrange multipliers and 〈., .〉
is the inner product, which is defined as 〈x, y〉 = E(xy) =

∫
xydµ.

This leads to the following proposition.

Proposition 3. If (x∗t , u
∗
t ), t = 1, . . . , T is a solution for the optimiza-

tion problem (P1), then there exists z∗t ∈ Mt, t = 2, . . . , T such that
(x∗t , u

∗
t , z
∗
t ) is a local saddle point of the functional L(x, u, z), namely, there

exists ε > 0 such that

L(x∗, u∗, z) ≥ L(x∗, u∗, z∗) ≥ L(x, u, z∗), (10)

for any x ∈ B(x∗, ε), u ∈ B(u∗, ε), and z ∈ B(x∗, ε).
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The proof is presented in the Appendix.
We can use Frechet differentiations to find the optimal conditions for the

optimization problem (P1). The first-order conditions are δ(x∗,u∗)L = 0.
The proof is rather easy, and we omit it.

3. DOPS WITH INCENTIVE COMPATIBLE CONSTRAINTS

In this section, we consider a generalized dynamic optimal problem with
incentive compatible constraints. There are two decision makers, A and B.
In examples of this problem, Golosov et al. (2003) consider an economy
with a social planner and agents, and Rogenson (1985a, 1985b) considers
an economy with a principle and an agent. For convenience, we call A
the social planner and B the agent. The social planner allocates economic
resources, and each agent has his or her own private information that is
hidden to the social planner. However, the social planner wants each agent
to report his or her private information. We call this strategy the truth-
telling strategy, following the studies of Mirrlees (1971, 1976) and Diamond
and Mirrlees (1986).

3.1. The Basic Settings

Suppose that there is an infinite number of long-lived agents situated
in the real interval [0, 1]. Each agent is indexed by j, j ∈ [0, 1] and has
private information θt in period t. We suppose that θt is independent and
identically distributed (i.i.d) across agents, and that {θt}, t = 1, . . . , T is
defined on a probability space (Ω,F , µ) that is adapted to the increasing
filtration F = {Ft}, t = 1, . . . , T , where F is the union of all of the elements
in F.

In each period, the agent with private information θ is rewarded f(x, u, θ)
through the allocation x, u, where x is the state variable and can be deemed
as the resource and u is the control variable.

As the social planner aims to maximize the sum of rewards for the agents
in the economy, from Uhlig (1996) we obtain

max
xj
t ,u

j
t

∑
j∈[0,1]

T∑
t=1

βt−1f(xjt , u
j
t , θ

j
t ) = max

xt,ut

Eθ[

T∑
t=1

βt−1f(xt, ut, θt)], (11)

where Eθ is the expectation on the random variables θt and β ∈ (0, 1) is
the discount factor.

There are two types of constraints. The first comprises the resource
constraints

xt+1 = g(xt,Λ(ut, θt)); t = 1, . . . , T − 1, (12)
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where Λ(ut, θt) = (Λ1(ut, θt), . . . ,Λm(ut, θt)) is a functional of the random
variables ut and θt and is defined as the aggregate effect of private infor-
mation and resource allocations on resource accumulation.

The other type of constraint for the social planner is the incentive com-
patible constraint (IC). Suppose that the social planner wants the agent
to report his or her private information to enable the allocation of social

resources. A report strategy is defined as maps σ : ΘT → Θ
T

, and the set
of all report strategies is denoted by Σ. Under report strategy σ, we denote
the discounted gains for the agent with private information θ ∈ ΘT as

W (σ, θ) =

T∑
t=1

βt−1f(xt(σ(θ)), ut(σ(θ)), θt). (13)

σ∗ is a truth-telling strategy if σ∗(θ) = θ for all θ. Thus, an allocation is
incentive compatible (IC) if

W (σ∗, θ) ≥W (σ, θ) for any θ ∈ ΘT , σ ∈ Σ. (14)

The dynamic optimization problem with IC constraints can then be sum-
marized as

P2: max
xt,ut

Eθ

[
T∑
t=1

βt−1f(xt, ut, θt)

]
,

subject to the resource constraints (12) and the IC constraints (14) with
the given initial condition x1.

In the next subsection, we use the Lagrange method to solve the opti-
mization problem (P2). For simplification, we assume that xt ∈ R and
ut ∈ Rn.

3.2. Optimal Conditions

In this section, we use the Lagrange method to find the optimal condi-
tions for the dynamic optimization problem (P2). First, the IC constraint
(14) can be rewritten as

T∑
t=1

βt−1f(xt(θ
′), ut(θ

′), θt) ≤
T∑
t=1

βt−1f(xt(θ), ut(θ), θt), (15)

for any θ ∈ ΘT and θ′ ∈ ΘT .
To solve the optimization problem, we define the Lagrange functional

L(x, u) = Eθ[

T∑
t=1

βt−1f(xt, ut, θt)] +

T∑
t=1

βt−1λt(g(xt,Λ(ut, θt))− xt+1)

+ Eθ′,θλ(θ′, θ)
T∑
t=1

βt−1(f(xt(θ), ut(θ), θt)− f(xt(θ
′), ut(θ

′), θt)), (16)
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where λ(θ′, θ) : ΘT ×ΘT −→ R are the Lagrange multipliers1 for the IC
constraint (15) and λt, t = 1, 2, . . . , T are the Lagrange multipliers for the
resource constraints (12). It is easy to find that λ(θ′, θ) is measurable on
F × F , and that λt is a non-stochastic number.

This leads to the following proposition.

Proposition 4. The optimal conditions for the optimization problem
P2 are

λt = βλt+1gx(xt+1(θ),Λ(ut+1(θ), θt+1))

+ βE[(1 + Eθ′λ(θ′, θ))fx(xt+1(θ), ut+1(θ), θt+1)] (17)

− βE
[
λ(θ, θ′)fx(xt+1(θ), ut+1(θ), θ′t+1)

]
and

λt

m∑
j=1

gΛj
(xt,Λ(ut, θt))δuiΛj(ut, θt)

= −(1 + Et[Eθ′λ(θ′, θ)])fui(xt(θ), ut(θ), θt)

+ Et [Eθ′ [λ(θ, θ′)fui(xt(θ), ut(θ), θ
′
t)]] , (18)

where δuiΛj is the Rize reprentative of the Frechet differentiation of Λj
with respect to ui at t.

Proof. The Lagrange functional (16) can be rewritten as

L(x, u) =

T∑
t=1

βt−1 [(1 + Eθ′ [λ(θ′, θ)])f(xt(θ), ut(θ), θt)]

−
T∑
t=1

βt−1Eθ′ [λ(θ, θ′)f(xt(θ), ut(θ), θ
′
t)]

+

T∑
t=1

βt−1λt(g(xt,Λ(ut, θt))− xt+1).

We then obtain the optimialities by taking the Frechet differentiations
of L with respect to xt and uit, i = 1, . . . , n.

〈λt − βλt+1gx(xt+1,Λ(ut+1, θt+1)), η〉
= 〈β(1 + Eθ′ [λ(θ′, θ)])fx(xt+1(θ), ut+1(θ), θt+1), η〉 (19)

− 〈βEθ′
[
λ(θ, θ′)fx(xt+1(θ), ut+1(θ), θ′t+1)

]
, η〉

1Here, λ(θ′, θ) means that an agent has private information θ but reports θ′.
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〈(1 + Eθ′ [λ(θ′, θ)])fui(xt(θ), ut(θ), θt)− Eθ′ [λ(θ, θ′)fui(xt(θ), ut(θ), θ
′
t)]

+ λt

m∑
j=1

gΛj
(xt,Λ(ut, θt))δuiΛj(ut, θt), ξ〉 = 0 (20)

for all ξ ∈ Ft and η ∈ R.
From equations (19) and (20), it is easy to see that equations (17) and

(18) hold.

Proposition 4 can be used to deal with more general dynamic optimiza-
tion problems with incentive compatible constraints. From equations (17)
and (18), we can derive the “inverse Euler equation” similar to Golosov
et al. (2003) and many other existing literatures. To understand these
conditions more intuitional, we define

λ̃(θ, θt) = 1 + Eθ′ [λ(θ′, θ)− λ(θ, θ′)
fx(xt(θ), ut(θ), θ

′
t)

fx(xt(θ), ut(θ), θt)
],

and

µi(θ, θt) = 1 + Eθ′ [λ(θ′, θ)− λ(θ, θ′)
fui(xt(θ), ut(θ), θ

′
t)

fui(xt(θ), ut(θ), θt)
].

Then, equations (17) and (18) can be rewritten as

λt = β [λt+1gx(xt+1(θ),Λ(ut+1(θ), θt+1))]+βE[λ̃(θ, θt+1)fx(xt+1(θ), ut+1(θ), θt+1)],

and

λt

m∑
j=1

gΛj
(xt(θ),Λ(ut(θ), θt))δuiΛj(ut(θ), θt) = −Et [µi(θ, θt)] fui(xt(θ), ut(θ), θt).

Furthermore, we define

ϕi(t) =
fui(xt(θ), ut(θ), θt)∑m

j=1 gΛj (xt(θ),Λ(ut(θ), θt))δuiΛj(ut(θ), θt)
,

and

ψi(t) = gx(xt(θ),Λ(ut(θ), θt))

−
m∑
j=1

gΛj (xt(θ),Λ(ut(θ), θt))δuiΛj(ut(θ), θt)
fx(xt(θ), ut(θ), θt)Et[λ̃(θ, θt)]

fui(xt(θ), ut(θ), θt)Et [µi(θ, θt)]
.
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Therefore, we have

λt = β [λt+1Eψi(t+ 1)] , (21)

and

λt = −Et [µi(θ, θt)]ϕi(t). (22)

From equations (21) and (22), we can derive a generalized inverse Euler
equation similar to that in Golosov et al. (2003) and Golosov and Tsyvin-
ski (2006). However, the method developed here is more general, and can
be deal woth more general dynamic problems with asymmetric informa-
tion. In the next section, we will apply this method to study the optimal
income taxations in an general economic system with incentive compatible
constraints.

4. THE OPTIMAL INCOME TAXATIONS

In public finance and macroeconomics research, attempts to incorporate
information asymmetry into economic models to study the optimal fiscal
policy begin with Mirrlees (1971). He derives the optimal labor income
tax and asserts the logistic relationship between the optimal labor income
tax rate and the agent’s ability (private information). His seminal findings
have encouraged many scholars to step into this area. Golosov et al. (2003)
extend Mirrlees’ (1971) static framework to a dynamic framework to ana-
lyze the optimal capital income tax. Golosov et al. (2003) do not consider
the optimal labor income tax, and we cannot compare the optimal labor
income tax in the static and dynamic frameworks. In this section, we apply
the Lagrange method to re-examine Mirrlees’ (1971) optimal labor income
tax in a static environment and the Golosov et al. (2003) optimal income
taxes (capital income tax and labor income tax) in a dynamic environment.

4.1. The Static Mirrlees Model

The framework of the static Mirrlees model is simple. The agent’s la-
bor ability θ is a random variable on the measurable space (Ω,F , µ), and
the range of θ is Θ. Thus, an agent’s effective labor supply l is l × θ,
which we denote as y. The agent’s utility function is defined by his or her
consumption c and the labor supply l, which mathematically is U(c, y/θ).

4.1.1. Social planner’s economy

Suppose that the production function is H(Y ), where Y =
∫
y(θ)dµ is

the aggregate effective labor supply in the economy.
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The optimal allocation problem for the social planner is

max
c(θ),y(θ)

∫
U(c(θ), y(θ)/θ)dµ (23)

subject to the resource constraint∫
c(θ)dµ = H(

∫
y(θ)dµ), (24)

and IC constraints

U(c(θ), y(θ)/θ) ≥ U(c(θ′), y(θ′)/θ), for any θ, θ′ ∈ Θ. (25)

From equations (17) and (18), the optimal conditions for this optimiza-

tion problem can be easily obtained as

λ = (1 +Eθ′λ(θ′, θ))Uc(c(θ), y(θ)/θ)−Eθ′ [λ(θ, θ′)Uc(c(θ), y(θ)/θ′)] , (26)

and

−λH ′(Y ) = (1 + Eθ′λ(θ′, θ))Ul(c(θ), y(θ)/θ)/θ

−Eθ′ [λ(θ, θ′)Ul(c(θ), y(θ)/θ′)/θ′] , (27)

where λ is the Lagrange multiplier for the resource constraint (24) and

λ(θ′, θ) is the Lagrange multipliers for the IC constraints (25).

To obtain some interesting results, we place further restrictions on U(c, l).

Case 1. U(c(θ), y(θ)/θ′) = u(c(θ), y(θ)/θ)v(θ, θ′) with v(θ, θ) = 1.

In this case, we let λ(θ) = 1 + Eθ′ [λ(θ′, θ)(1 − v(θ, θ′))], which means

that equations (26) and (27) become

λ = λ(θ)uc(c(θ), y(θ)/θ) and − λH ′(Y ) = λ(θ)ul(c(θ), y(θ)/θ)/θ.

This gives

−ul(c(θ), y(θ)/θ)/θ = uc(c(θ), y(θ)/θ)H ′(Y ). (28)

Case 2. U(c(θ), y(θ)/θ′) = u(c(θ))− v(y(θ)/θ)w(θ, θ′) with w(θ, θ) = 1.

In this case, equations (26) and (27) become

λ = (1 + Eθ′(λ(θ′, θ)− Eθ′λ(θ, θ′))u′(c(θ)),

and

λH ′(Y ) = (1 + Eθ′λ(θ′, θ)− Eθ′ [λ(θ, θ′)w(θ, θ′)])v′(y(θ)/θ)/θ.
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This gives

v′(y(θ)/θ)/θ =
1 + Eθ′ [λ(θ′, θ)− λ(θ, θ′)]

1 + Eθ′ [λ(θ′, θ)− λ(θ, θ′)w(θ, θ′)]
u′(c(θ))H ′(Y ). (28)

Equation (29) is the same as the optimal conditions in Mirrlees (1971) with

the the separable utility function.

Case 3. U(c(θ), y(θ)/θ′) = u(c(θ))v(y(θ)/θ′).

In this case, we let

λ(θ, y) = 1 + Eθ′

[
λ(θ′, θ)− λ(θ, θ′)

v(y/θ′)

v(y/θ)

]
and

µ(θ, y) = 1 + Eθ′

[
λ(θ′, θ)− λ(θ, θ′)

v′(y/θ′)θ

v′(y/θ)θ′

]
.

The optimal conditions (26) and (27) can be deduced to

v′(y(θ)/θ)/θ

v(y(θ)/θ)
=
λ(θ, y)

µ(θ, y)

u′(c(θ))

u(c(θ))
H ′(Y ). (29)

Equations (28), (29), and (30) determine the optimal conditions under

the three specified utility function, we will use them to derive the optimal

labor income taxation accordingly.

4.1.2. Decentralized economy

To derive the implementation mechanism, we consider a decentralized

economy. Suppose that there is a representative firm in the economy and

that agents work in it to earn income. The government levies a labor

income tax in its budget.

Agents.

An agent with ability θ aims to maximize his/her utility under the budget

constraint, that is,

max
c,y

U(c(θ), y(θ)/θ)

subject to the budget constraint

c(θ) = (1− τw)ωy(θ) + χ(θ), (30)

where ω is the wage rate, τw is the labor incoem tax rate, and χ(θ) is

government’s transfer.
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It is easy to derive the optimal condition

−Ul(c(θ), y(θ)/θ)/θ = (1− τw)ωUc(c(θ), y(θ)/θ). (31)

Firms.

The firm’s profit maximization π = maxY H(Y )− ωY indicates that

ω = H ′(Y ). (32)

Government.

Under the balance budget constraint, government’s transfer equals the

tax revenue, namely, ∫
χ(θ)dµ =

∫
τwωy(θ)dµ+ π. (33)

Macroeconomic equilibrium.

Combining equations (31), (32), (33), and (34), we obtain the optimal

conditions in the macroeconomic equlibrium

−Ul(c(θ), y(θ)/θ)/θ = (1− τw)H ′(Y )Uc(c(θ), y(θ)/θ), (34)

and ∫
c(θ)dµ = H(

∫
y(θ)dµ). (35)

Equations (35) and (36) can be used to derive the optimal labor income

taxation.

4.1.3. Optimal taxations

In this subsection, we will derive the optimal taxations by setting the

tax policy in the decentralizaed economy implement the social optimum.

We will consider three cases respectively.

In case 1. Equation (35) is compared to equation (28) to give an optimal

labor income tax rate of zero.

In case 2. Equation (35) is compared to equation (29) to give an optimal

labor income rate of

τw(θ) =
Eθ′ [λ(θ, θ′)(1− w(θ, θ′))]

1 + Eθ′ [λ(θ′, θ)(1− w(θ, θ′))]
, (36)

which is dependent on agent’s labor ability θ.
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In case 3. Under the specified utlity form in this case, the optimal

condition (35) can be rewritten as

v′(y(θ)/θ)/θ

v(y(θ)/θ)
= (1− τw)

u′(c(θ))

u(c(θ))
H ′(Y ).

Comparing the above equation with equation (30), the optimal labor

income tax rate can be easily obtained as

τw =
Eθ′ [λ(θ, θ′)( v(y/θ′)

v(y/θ) −
v′(y/θ′)θ
v′(y/θ)θ′ )]

1 + Eθ′ [λ(θ′, θ)− λ(θ, θ′) v
′(y/θ′)θ
v′(y/θ)θ′ ]

. (37)

Remark 4.1. Under the specified utility function in case 1, the optimal
labor income tax rate is zero, which is the same as in many studies, such
as those of, Chamley (1986) and Judd (1985) etc. Many familiar utility
functions satisfy assumption in case 1. For example, suppose that

U(c, l) =
(cωl−ε)1−σ

1− σ
,

where ω, ε, and σ > 0 are constants. Then,

U(c, y(θ)/θ′) =
(cω(y(θ)/θ′)−ε)1−σ

1− σ
=

(cω(y(θ)/θ)−ε)1−σ

1− σ
(θ/θ′)−ε(1−σ).

It is easy to find that the optimal labor income tax is zero with this utility
function.

Remark 4.2. Under the separable utility in case 2, equation (38) gives
the optimal labor income tax rate, which is similar to that of Mirrlees
(1971). For example, suppose that the utility function

U(c, l) = u(c)− lα,

for 0 < α < 1. Then,

U(c, y(θ)/θ′) = u(c)− (y(θ)/θ)α(θ/θ′)α,

and w(θ, θ′) = (θ/θ′)α.
Thus, for the agent with the greatest ability, where θ ≥ θ′, we have

τw(θ) ≤ 0, and for the agent with the least ability we have τw(θ) ≥ 0. We
can also use numerical simulation to find the logistic relationship between
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the labor income tax rate and the agent’s ability, but for simplicity we omit
this discussion and instead consider the dynamic Mirrlees model.

Remark 4.3. Case 3 presents the optimal labor income tax for more
general utility funtions, for example, similar to Golosov et al. (2010),

U(c, l) = − 1

ψ
exp[−ψ(c− 1

γ
lγ)],

where γ and ψ are positive constant.

4.2. The Dynamic Mirrlees Model

In this section, we re-examine the model introduced in Golosov et al.

(2003) and give its explicit solution. Golosov et al. (2003) consider an

environment in which an agent’s skill is private information. Following

Golosov et al. (2003), we define an agent’s utility by his or her consump-

tion ct and the amount of time spent working in period t by lt, which

mathematically is U(ct, lt). We assume that θt is the agent’s skill vector in

period t and that both θt and lt are private information of the agent. We

present the framework briefly in the following. More details can be found

in the Golosov et al. (2003).

4.2.1. Decentralized economy

The foregoing sections tell the story for a planner’s economy. In this

section, we implement the optimal allocation from the planner’s economy

in a decentralized economy, following the framework of Chamley (1986).

Agents.

Suppose that the government levies a capital income tax and a labor

income tax, denoted as τkt and τwt , respectively. Further, suppose that an

agent at time t only knows his or her own ability θt, but does not know his

or her ability θs for all s > t. The agent thus faces future uncertainty, and

must determine the consumption and labor supply by solving the following

problem

max
ct,yt

E[

∞∑
t=1

βt−1U(ct, yt/θt)], (38)

subject to

At+1 = (1− τkt )rtAt + (1− τwt )wtyt − ct + χt, (39)
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with the given initial asset A0.

Here, At is the agent’s asset at time t, rt and wt are the market interest

rate and wage rate, respectively, and χt is the government’s transfer.

The first-order conditions can be easily derived as

Uc(ct, yt/θt) = βEt{(1− τkt+1)rt+1Uc(ct+1, yt+1/θt+1)}, (40)

and

(1− τwt )wtUc(ct, yt/θt) = −Ul(ct, yt/θt)/θt, (41)

where Uc and Ul are the partial differentiations of consumption c and labor

l = y/θ, respectively.

Firms.

Suppose that output is produced by firms with capital and efficient labor

input. The production function is thus neoclassical. The profit maximiza-

tion problem for firms is then

max
kt,yt

f(kt,

∫
ytdµ)− rtkt − wt

∫
ytdµ+ (1− δ)kt,

where kt and
∫
ytdµ are the aggregate capital and aggregate labor force,

respectively, and δ is the rate of depreciation of capital.

The first-order conditions are

rt = fk(kt,

∫
ytdµ) + 1− δ, wt = fy(kt,

∫
ytdµ), (42)

where fy(kt,
∫
ytdµ) is the partial differentiation of the aggergate effective

labor
∫
ytdµ at time t.

Equilibrium.

In macro-equilibrium, kt =
∫
Atdµ and

∫
χtdµ = 0, and we thus have

kt+1 = (1− τkt )rtkt + (1− τwt )wt

∫
ytdµ−

∫
ctdµ. (43)

This is just the resource constraint of the economy.

Substituting equation (43) into equations (41) and (42), we arrive at

Uc(ct, yt/θt) = βEt{(1−τkt+1)

[
fk(kt+1,

∫
yt+1dµ) + 1− δ

]
Uc(ct+1, yt+1/θt+1)},

(44)



OPTIMAL INCOME TAXATIONS WITH INFORMATION ASYMMETRY 215

and

(1− τwt )fy(kt,

∫
ytdµ)Uc(ct, yt/θt) = −Ul(ct, yt/θt)

θt
. (45)

The dynamics for a competition economy are thus described by equations

(44), (45), and (46).

4.2.2. Social planner’s economy

Similar to Golosov et al. (2003), the social planner can observe the

effective labor yt = ltθt for the agent and use the truth-telling mechanism

to obtain private information. The social planner maximizes the social

welfare subject to the social resource constraints and incentive compatible

constraints. This gives the following dynamic optimization problem.

max
ct,yt

Eθ[

∞∑
t=1

βt−1U(ct, yt/θt)], (46)

subject to

kt+1 = f(kt,

∫
ytdµ)−

∫
ctdµ+ (1− δ)kt, (47)

and

W (σ∗, θ) ≥W (σ, θ), (48)

with the given initial condition k1, where W (σ, θ) is defined as

W (σ, θ) = Eθ[

∞∑
t=1

βt−1U(ct(σ(θt)), yt(σ(θt))/θt)].

Similar to equations (17) and (18), the optimal conditions can be easily

derived as

λt = βλt+1Rt+1, (49)

λt = Et [(1 + Eθ′λ(θ′, θ))]Uc(ct(θ), yt(θ)/θt)

− Et [Eθ′ [λ(θ, θ′)Uc(ct(θ), yt(θ)/θ
′
t)]] , (50)

and

−λtfy(kt,

∫
ytdµ) = Et [1 + Eθ′λ(θ′, θ)]Ul(ct(θ), yt(θ)/θt)/θt

− Et [Eθ′ [λ(θ, θ′)Ul(ct(θ), yt(θ)/θ
′
t)/θ

′
t]] , (51)
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where Rt = fk(kt,
∫
ytdµ) + 1− δ.

Equations (50), (51), and (52) determine the competitive equilibrium.

Similar to the static Mirrlees economy, we specify the following cases.

Case 1. U(c(θ), y(θ)/θ′) = u(c(θ), y(θ)/θ)v(θ, θ′) with v(θ, θ) = 1.

We denote λ(θ) = Eθ′ [λ(θ′, θ)−λ(θ, θ′)] and λ̃(θt, θ
′
t) = 1+Eθ′ [λ(θ′, θ)−

λ(θ, θ′)v(θt, θ
′
t)]. Equations (50), (51), and (52) then become

λt = βλt+1Rt+1, (52)

λt = Et [λ(θ)]uc(ct(θ), yt(θ)/θt), (53)

and

−λtfy(kt,

∫
ytdµ) = Et [λ(θ)]ul(ct(θ), yt(θ)/θt)/θt. (54)

Note that λt ∈ R, and we thus obtain

uc(ct(θ), yt(θ)/θt) = βRt+1
1

Et[1/uc(ct+1(θ), yt+1(θ)/θt+1)]
, (55)

and

−ul(ct(θ), yt(θ)/θt)/θt = fy(kt,

∫
ytdµ)uc(ct(θ), yt(θ)/θt). (56)

Equation (56) is an inverse Euler equation that is the same as used by

Golosov et al. (2003). Comparing equations (45) and (46) with equations

(56) and (57) gives

τwt = 0 (57)

and

Et
[
(1− τkt+1)Rt+1uc(ct+1(θ), yt+1(θ)/θt+1)

]
= Rt+1

1

Et[1/uc(ct+1(θ), yt+1(θ)/θt+1)]
.

Thus,

τkt+1 = 1− 1

uc(ct+1(θ), yt+1(θ)/θt+1)Et[1/uc(ct+1(θ), yt+1(θ)/θt+1)]

+
ε

uc(ct+1(θ), yt+1(θ)/θt+1)
, (58)

where ε satisfies Et [ε] = 0.



OPTIMAL INCOME TAXATIONS WITH INFORMATION ASYMMETRY 217

If τkt+1 ∈ Ft, then τkt+1 has the unique solution

τkt+1 = 1− 1

Et [uc(ct+1(θ), yt+1(θ)/θt+1)]Et[1/uc(ct+1(θ), yt+1(θ)/θt+1)]
.

(59)

Remark 4.4. Equation (58) indicates that the optimal labor income tax
rate is zero under case 1, which is similar to the static case previously stated.
Equation (59) presents the optimal capital income tax rate, which states
that many tax policies can be applied to implement the social optimum.
This conclusion can be compared with that of Zhu (1992), who studies
optimal taxation in an economy with production shocks.

Furthermore, if τkt+1 ∈ Ft, then we derive the same optimal capital in-

come tax rate as Golosov et al. (2003). Similarly, because

1− 1

Et [uc(ct+1(θ), yt+1(θ)/θt+1)]Et[1/uc(ct+1(θ), yt+1(θ)/θt+1)]
> 0,

we know that τkt+1 > 0. However, the utility form used here is non-

separable.

Case 2. U(c(θ), y(θ)/θ′) = u(c(θ))− v(y(θ)/θ)w(θ, θ′) with w(θ, θ) = 1.

This case is similar to that of Golosov et al. (2003), except that the

utility is separable. We let λ̃(θ, θ′) = 1+Eθ′ [λ(θ′, θ)−λ(θ, θ′)w(θt, θ
′
t)] and

define λ(θ) as that of case 1, the optimal conditions are then

u′(ct(θ)) = βRt+1
1

Et[1/u′(ct+1(θ))]
, (60)

and

v′(y(θt)/θt)/θt =
Et [λ(θ)]

Et[λ̃(θ, θt)]
Fy(kt,

∫
ytdµ)u′(ct(θ)). (61)

Comparing equations (45) and (46) with equations (61) and (62) gives

τkt+1 = 1− 1

Et [u′(ct+1(θ))]Et[1/u′(ct+1(θ))]
, (62)

and

τwt =
Et{Eθ′ [λ(θ, θ′)(1− w(θt, θ

′
t))]}

1 + Et{Eθ′ [λ(θ′, θ)]− Eθ′ [λ(θ, θ′)w(θt, θ′t)]}
. (63)

Remark 4.5. With the same function as that of Golosov et al. (2003),
equation (63) states the same optimal capital income tax. However, equa-
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tion (64) presents the same optimal labor income tax rate as that of Mirrlees
(1971).

For these two cases, we derive the same capital income tax rate but

different optimal labor income tax rates. Under the non-separable utility

function, the disturbance of consumption and labor supply not only affect

the resource constraint, but also the IC constraints.

Case 3. U(c(θ), y(θ)/θ′) = u(c(θ))v(y(θ)/θ′).

In this case, the first-order conditions (45) and (46) for the decentralized

economy can be reduced as:

u′(c(θt))v(y(θt)/θt) = β(1− τkt+1)Rt+1Et[u
′(c(θt+1))v(y(θt+1)/θt+1)],

(64)

and

(1− τwt )Fy(kt,

∫
ytdµ)u′(c(θt))v(y(θt)/θt) = −u(c(θt))v

′(y(θt)/θt)

θt
. (65)

As for the social planner economy, let

λ̃(θ, yt, θ
′
t) = 1 + Eθ′ [λ(θ′, θ)− λ(θ, θ′)

v(yt/θ
′
t)

v(yt/θt)
],

and

µ(θ, yt, θ
′
t) = 1 + Eθ′ [λ(θ′, θ)− λ(θ, θ′)

v′(yt/θ
′
t)θt

v′(yt/θt)θ′t
].

Then, we can rewrite equations (50), (51), and (52) as

λt = βλt+1Rt+1,

λt = Et[λ̃(θ, yt, θ
′
t)]u
′(c(θt))v(y(θt)/θt),

and

−λtFy(kt,

∫
ytdµ) = Et [µ(θ, yt, θ

′
t)]u(c(θt))v

′(y(θt)/θt)/θt.

Therefore, we further have

u′(c(θt))v(y(θt)/θt) = βRt+1
1

Et[1/u′(c(θt+1))v(y(θt+1)/θt+1)]
, (66)
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and

Et[λ̃(θ, yt, θ
′
t)]

Et [µ(θ, yt, θ′t)]
Fy(kt,

∫
ytdµ)u′(c(θt))v(y(θt)/θt) = −u(c(θt))v

′(y(θt)/θt)

θt
.

(67)

Equation (67) restates the “Inverse Euler Equation” as that in Golosov

et al. (2003) and many existing literatures. Comparing it with (65) and

assuming τkt+1 ∈ Ft, then

τkt+1 = 1− 1

Et [uc(ct+1(θ), yt+1(θ)/θt+1)]Et[1/uc(ct+1(θ), yt+1(θ)/θt+1)]
.

(68)

Similarly, comparing equation (68) with equation (66), we have

τwt =
Et{Eθ′ [λ(θ, θ′)(

v(yt/θ
′
t)

v(yt/θt)
− v′(yt/θ

′
t)θt

v′(yt/θt)θ′t
)]}

1 + Et{Eθ′ [λ(θ′, θ)]− Eθ′ [λ(θ, θ′)
v′(yt/θ′t)θt
v′(yt/θt)θ′t

]}
. (69)

Remark 4.6. Equations (70) gives the similar optimal labor income
taxation to Golosov et al. (2010), where he specifies the utility function as

U(c, l) = − 1

ψ
exp[−ψ(c− 1

γ
lγ)].

In fact, we can rewrite this utility function as

U(c, l) = − 1

ψ
exp(−ψc) exp(ψlγ/γ),

which is just the same forms as Case 3 here.

Furthermore, we not only give the optimal labor income taxation but also

the optimal capital income taxation. Using the dual approach developed

by Rogerson (1985), we cannot deal with both the capital and labor income

taxations. So in case 3, we have included the case in Golosov et al. (2010)

and provide all income taxation by applying the Lagrange multiplier.

5. NUMERICAL RESULTS

In this section, we use the second-order approximation method presented

by Schmitt-Grohe and Uribe (2004) to simulate the mentioned static and

dynamic Mirrlees models. First, we give the optimal labor income taxation

in both the static and dynamic Mirrlees models. We also present the op-

timal capital income taxation in the dynamic Mirrlees model. Second, we
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provide comparative static results and give the effects of some important

parameters on the optimal taxation rules. Finally, we calculate the tax

burdens for different population groups.

To simulate the model, we specify the utility function as

u(c, l) =
c1−σ − 1

1− σ
− lγ , (70)

where σ > 0 and γ > 0 are positive constants.

In the static Mirrless model, we specify the production function asH(y) =

yα, where 0 < α < 1 is a constant. For the dynamic Mirrlees model, we

specify the production function as f(k, l) = kαl1−α.

We assume that the stochastic process {θt} is uniformly distributed on

the interval [2, 22]. To make the simulation results more convincing, we

identify the common parameters in the model as T = 30 being the periods

for which the economy lasts, the discountor for utility, β = 0.9, and γ = 2.

To allow comparison, we set the parameters σ = 2 and σ = 3, α = 0.3,

and α = 0.6. We set the representative time as t = 5, t = 10, t = 15, and

t = 20 to test the trends of the policies as times go.

Figure 1 presents the optimal labor income taxation in the static Mirrlees

model.

FIG. 1. The Optimal Labor Income Tax in the Static Mirrlees Model

2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

16

18

θ
t

Tt
y

Labor Income Taxations

Figure 1 depicts the relationship between labor income taxation and

labor ability in the static Mirrlees (1971) model; the corresponding param-

eters are set as σ = 2, γ = 0.5, and α = 0.7. The logistic curve states that

the optimal taxation rules are to give agents incentives in two ways. The

marginal tax of a person with labor ability θ ≥ 16 will decrease as their

labor ability increases, which will give the person the incentive to provide
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more effective labor. The marginal tax of the rest of people will increase

as their labor ability increases. Agents with medium labor ability pay the

highest marginal tax.

In the case of the dynamic Mirrlees model, we suppose that the gov-

ernment’s transfer policy is set to equalize each person in society. The

associated capital income tax T kt = τkt rtk, is indeed a function of τkt . Fig-

ures 2 and 3 state the optimal capital and labor income tax rates via the

agent’s labor ability, respectively.

FIG. 2. The Optimal Capital Income Tax in the Dynamic Mirrlees Model
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FIG. 3. The Optimal Labor Income Tax in the Dynamic Mirrlees Model
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Labor Income Taxation in Dynamic Economics

Similar to the previous discussion, both the optimal labor income tax

and capital income tax are positive. Furthermore, Figure 2 shows that the

optimal capital income tax rate is a decreasing function of the agent’s labor

ability. Similar to Figure 1 in the static Mirrlees model, Figure 3 also states
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a logistic relationship between the optimal labor income tax rate and the

agent’s labor ability.

The reason for the negative relationship between the government’s capi-

tal income tax and the agent’s labor ability is that the government should

give agents with higher labor ability the incentive to accumulate more.

The logistic relationship between the optimal labor income tax rate and

the agent’s labor ability can be explained in line with Mirrlees (1971) as

that, the government should give agents with higher labor ability the incen-

tive to work more, because the marginal labor income tax decreases with

the agents’ labor ability.

5.1. Comparative Static Results

In this subsection, we report the effects of certain parameters on the

optimal taxations. For simplicity, we consider two parameters, relative

risk aversion σ and capital/output ratio α, and inspect their effects on the

optimal taxation rules. We set σ = 2, σ = 3, and α = 0.3, α = 0.6 for the

experiment.

5.1.1. Optimal capital income taxation via σ and α

Figures 4 and 5 present the effects of relative risk aversion σ and capi-

tal/output ratio α on the optimal capital income taxation.

FIG. 4. The Effects of σ to the Capital Income Tax
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Figure 4 depicts that the curves of the labor ability and capital income

tax become convex to the origin as the coefficient of the relative risk aver-

sion σ increases. Because we set the time t = 10, the two subfigures are

decreasing curves. Note that the curve with σ = 3 lies above that with

σ = 2, which shows that as the relative risk aversion increases, the tax

burden will increase. The effects of capital/output ratio α on the optimal

capital income tax is similar to the effects of σ, which are depicted in Figure

5.
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FIG. 5. The Effects of α to the Capital Income Tax

2 4 6 8 10 12 14 16 18 20 22
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

θt

τt
k

α=0.3

2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

θt

τt
k

α=0.5

5.1.2. Optimal labor income taxation via σ and α

The following figures consider the effects of parameters σ and α on the

optimal labor income taxation.

FIG. 6. The Effects of σ to the Labor Income Tax
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FIG. 7. The Effects of α to the Labor Income Tax
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Figure 6 illustrates the effects of the coefficient of relative risk aversion

σ. The logistic curve become flatter as σ increases, and the tax increases

at the same time. With σ increasing, the agents care more about their con-

sumption and thus the decreasing marginal labor income tax for the agent

with medium labor ability raises that actor’s confidence about consump-

tion. Hence, the curve becomes more flat. With the same reasoning, we

also report the effects of capital/output ratio α in Figure 7. As α increases,

the labor income decreases relatively, which in turn decreases the marginal

labor income tax for the agent with medium labor ability and the logistic

curve again appears to be flatter.

5.2. The Distribution of the Tax Burden

In this subsection, we investigate the tax burden for different groups of

the population. Letting t = 10 and πt be the ratio of the tax burden for

the agent with labor ability θt that lies in [12− γ, 12 + γ], the relationship

between γ and πt is summarized in the Table 1.

TABLE 1.

The relationship between γ and πt.

γ 1 2 3 4 5 6 7

πt 21.9% 40.2% 62.3% 86.4% 90.2% 93.1% 94.3%

From Table 1, we know that agents with labor ability θt ∈ [11, 13]

contribute 21.9% of the tax in the economy. Agents with labor ability

θt ∈ [8, 16] contribute over 85% of the tax in the economy. It is obvious

that the tax burden is increasing with the increasing amount of people.

However, after the agents with θt ∈ [8, 16], the magnitude of tax burden is

increasing slow. For agents with labor ability from the interval [11, 13] to

[8, 16], the tax burden increases from 21.9% to 86.4%. However, for agents

with labor ability from [8, 16] to [5, 19], the tax burden only increases from

86% to 94%. This is consistent with the logistic relationship of the labor

income tax rate and the agent’s labor ability.

Letting γ = 5, Tables 2 and 3 present the relationship between the tax

burden and other parameters.

TABLE 2.

The tax burden for the agents with θt ∈ [7, 17].

σ 1.5 2 2.5 3 4 5 6 7

πt 94.3% 90.2% 89.3% 87.3% 86.9% 86.0% 85.4% 83.0%
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From Table 2, we know that an increase in σ, the tax burden for a

population group decreases. This conclusion is consistent with the above

comparative static conclusion, which states that both the capital and labor

income tax decrease as σ increases.

TABLE 3.

The tax burden for the agents with θt ∈ [7, 17].

α 0.3 0.35 0.4 0.45 0.5 0.55 0.6

πt 90.2% 90.4% 91.3% 91.8% 93% 93.8% 96.0%

Table 3 presents the effects of capital/output ratio α on the tax burden

for the agents with labor ability θt ∈ [7, 17]. As the capital income share

increases, the tax burden for this group also increases.

6. CONCLUSIONS

In this paper, we use the Lagrange multiplier method to find the first-

order conditions for a class of general dynamic optimization problems with

incentive compatible (IC) constraints. Using the method developed, we

re-examine the optimal income tax of the Mirrlees (1971) economy and the

Golosov et al. (2003) economy for a more general economy. First, we con-

sider both capital income tax and the labor income tax rate. The optimal

capital income tax is the same as that derived by Golosov et al. (2003),

and the optimal labor income tax under the static and dynamic frameworks

are similar. Second, we consider an economy with a non-separable utility

function. We find that the optimal labor income tax rate under both the

static and dynamic frameworks is zero. Furthermore, the optimal income

tax rate may not be unique, as there is a large class of policies that can be

used to implement the social optimum. This is similar to the conclusion

derived in Zhu’s (1992) model with production shocks.

The method developed here is more general, it can be used to deal with

many interesting problems in economics that involve information asymme-

try. For example, we could consider a more complex information structure,

or extend the method to an economy with multi-level governments. In

the latter case, there would be three kinds private information: that from

agents via both local and fiscal governments, and that between govern-

ments. Similarly, there would be three kinds of IC constraints. This is

an interesting topic for further study. We could also discuss an economy

with evolving private information. However, applying the method to the

situation in which the assumption of homogenous agents in this economy is
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extended to heterogeneous agents, which has been accomplished by Costa

and Werning (2001), would prove rather difficult.

Further research can also focus on the implementation mechanism of the

optimal taxation rules. Golosov et al. (2006) and Kocherlakota (2005)

point out that the government issues the optimal tax policies; however,

there still exist the cheating behavior. Even if they have provided the im-

plementation mechanism, the resulting implementation procedure is too

complicated to be applied directly. In fact, we can follow Kocherlakota

(2005) to investigate the labor ability recognition scheme, which is de-

pendent only on the current observable variables-the consumption and the

income. According to the optimal taxation rules, we can finalize the concise

implementation mechanism. Also, Pavan (2009)’s implementation mecha-

nism for the principal-agent economy can be adopted for the further re-

search.

APPENDIX: PROOF OF PROPOSITION 3

Proof. Because (x∗, u∗) is a solution to problem (P1), we have x∗t+1 =

g(x∗t , u
∗
t , εt+1, t), and then

L(x∗, u∗, z) = L(x∗, u∗, z∗) = E[

T∑
t=1

βt−1f(x∗t , u
∗
t )]. (A.1)

Thus, the first inequality of equation (10) is proven.

Denote M = ΠT
t=1Mt ×ΠT

t=1Mt and N = ΠT
t=2Mt, and define

Λ1 : Λ1(x, u) = E[

T∑
t=1

βt−1f(xt, ut)], (A.2)

Λ2 : Λ2(x, u)t+1 = g(xt, ut, εt+1, t)− xt+1, t = 1, . . . , T − 1. (A.3)

As f and g are continuous and differentiable functions, Λ1 : M → R and

Λ2 : M → N are differentiable functionals.

For any z ∈ N , define

L(x, u, z) = Λ1(x, u) + 〈z, Λ2(x, u)〉. (A.4)

Because f and g are concave, Λ1 and Λ2 are concave with respect to (x, u).

Thus, δ(x∗,u∗)Λ1 is linear functional from M to R. From the Rieze Rep-

resentation Theorem, we know that there exists η∗ ∈M such that for any

ξ ∈M ,

δ(x∗,u∗)Λ1(ξ) = 〈η∗, ξ〉. (A.5)
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In contrast, δ(x∗,u∗)Λ2 is a linear map from M to N. Let A be the accom-

panying element, which means that it is a linear map from N to M that

satisfies for ξ ∈M and ζ ∈ N ,

〈ζ, δ(x∗,u∗)Λ2(ξ)〉 = 〈A(ζ), ξ〉. (A.6)

We can thus choose z∗ ∈ N , such that A(−z∗) = η∗, which gives

L(x, u, z∗) = Λ1(x, u) + 〈z∗,Λ2(x, u)〉. (A.7)

Because (x, u) is an element of the vector space M , we abbreviate it as

m = (x, u). The concavity of Λ1 implies that

Λ1(m∗)− Λ1(m) ≥ δm∗Λ1(m∗ −m) = 〈η∗,m∗ −m〉. (A.8)

Substituting A(−z∗) = η∗ into equation (A.8) gives

〈η∗,m∗ −m〉 = 〈A(−z∗),m∗ −m〉 = 〈−z∗, δm∗Λ2(m∗ −m)〉, (A.9)

for any z∗ ∈ N .

As the functional 〈z∗,Λ2(m)〉 is concave, from proposition 2 we obtain

〈z∗,Λ2(m∗)〉 − 〈z∗,Λ2(m)〉 ≥ 〈z∗, δm∗Λ2(m∗ −m)〉. (A.10)

Because Λ2(m∗) = 0, we rewrite (A.10) as

〈z∗,Λ2(m)〉 ≤ 〈−z∗, δm∗Λ2(m∗ −m)〉. (A.11)

Thus, we arrive at

Λ1(m∗)− Λ1(m) ≥ 〈z∗,Λ2(m)〉, (A.12)

which implies that

L(x∗, u∗, z∗) ≥ L(x, u, z∗). (A.13)

This completes the proof.
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