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Portfolio Choice with Information-Processing Limits*

Altantsetseg Batchuluun, Yulei Luo, and Eric R. Young†

In this paper, we examine the joint consumption-portfolio decision of an
agent with limited information-processing capacity (rational inattention or RI)
in the sense of Sims (2003) within a non-linear-quadratic (non-LQ) setting.
Our model predicts that, as processing capacity falls, agents choose to hold
less of their savings in the form of risky assets on average; however, they still
choose to hold substantial risky assets with some positive probability. Low
capacity causes households to act as if they are more risk averse and more
willing to substitute consumption intertemporally.

Key Words: Rational inattention; Non-LQ setting; Optimal consumption saving;

Portfolio choice.

JEL Classification Numbers: D53, D81, G11.

1. INTRODUCTION

Standard models of portfolio choice typically make two predictions in-
consistent with data — they predict essentially a 100 percent participation
rate and also a 100 percent portfolio share of risky assets. Even casual
observations using US data show these predictions are far off; as noted in
Guvenen (2009), the participation rate in equity markets is no greater than
50 percent (and historically has been quite a bit smaller), and as noted in
Gabaix and Laibson (2002) the total share of risky assets in total wealth is
around 22 percent. See Tables 1 and 2 for some basic accounts of the U.S.
household portfolios from the U.S. Survey of Consumer Finances (SCF).
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Table 1 shows that a significant proportion of the U.S. households do not
hold stocks either directly or indirectly through stock mutual funds and
other funds in the past ten surveys. Table 2 shows that conditional on
holding stocks the risky share of the financial wealth is less than 100%,
and increases with income, net worth and education attainment.

TABLE 1.

Percent of Families with Stock Holdings (Directly-held Stocks), SCF.

Year (1) Less than (2) High school (3) Some (4) College degree

(percent %) high school degree college or more

1992 10.9(4.5) 29.8(11.1) 40.2(19.2) 58.5(29.4)

1995 15.4(4.5) 32.9(10.7) 43.0(13.4) 61.9(27.5)

1998 17.9(5.0) 41.2(12.9) 53.7(20.6) 69.1(31.4)

2001 16.8(5.6) 44.9(13.0) 55.1(20.0) 76.4(37.1)

2004 14.4(4.7) 41.1(12.4) 48.8(17.7) 72.9(35.3)

2007 20.1(3.9) 42.3(9.3) 54.2(17.4) 75.5(31.6)

2010 15.0(2.2) 39.1(8.1) 46.4(11.3) 72.1(27.2)

2013 13.2(2.8) 35.3(6.4) 44.6(9.4) 72.0(24.9)

Note: Stock holdings here includes: (1) directly-held stock; (2) stock mutual funds: full
value if described as stock mutual fund and 1/2 value of combination mutual funds;
(3) IRAs/Keoghs invested in stock: full value if mostly invested in stock, 1/2 value
if split between stocks/bonds or stocks/money market, and 1/3 value if split between
stocks/bonds/money market; (4) other managed assets w/equity interest (annuities,
trusts, MIAs): full value if mostly invested in stock, 1/2 value if split between stocks/MFs
& bonds/CDs, or “mixed/diversified,” 1/3 value if “other”; and (5) thrift-type retirement
accounts invested in stock full value if mostly invested in stock, 1/2 value if split between
stocks and interest earning assets.

One approach to resolve this inconsistency is to introduce fixed costs of
participation in equity markets (see Gomes and Michaelides 2008 for an
example and references). These models imply that poor households will
typically avoid the equity market, while rich ones will enter (Krusell and
Smith 1997 obtain a similar result without fixed costs). However, these
models typically imply that an agent, once in the equity market, will still
hold a portfolio almost entirely composed of risky assets.

We study this issue in a model with rational inattention (Sims 2003).
The literature on rational inattention is now quite large, so we refrain from
a lengthy citation list and only discuss the papers that deal directly with
the issue at hand (Luo 2010 and Luo and Young 2016).1 Luo (2010) solves a
linear-quadratic (LQ) Gaussian portfolio problem with rational inattention

1Other papers that study limited information and finance include Gennotte (1986),
Gabaix and Laibson (2001), Peng and Xiong (2006), Huang and Liu (2007), Lundtofte
(2008), Wang (2009), Mondria (2010), van Nieuwerburgh and Veldkamp (2010), and
Luo (2017).
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TABLE 2.

Stock Share for Families with Stock Holdings in the 2013 SCF

Income (1) Less than (2) High school (3) Some (4) College degree

percentile high school degree college or more

0− 20% 0.02 0.06 0.07 0.12

20%− 39.9% 0.07 0.12 0.15 0.19

40%− 59.9% 0.13 0.19 0.21 0.26

60%− 79.9% 0.17 0.25 0.28 0.33

80%− 89.9% 0.20 0.29 0.33 0.40

90%− 100% 0.18 0.35 0.36 0.47

Networth (1) Less than (2) High school (3) Some (4) College degree

percentile high school degree college or more

0− 24.9% 0.03 0.07 0.09 0.13

25%− 49.9% 0.07 0.16 0.19 0.25

50%− 74.9% 0.10 0.20 0.25 0.32

75%− 89.9% 0.13 0.29 0.32 0.40

90%− 100% 0.21 0.32 0.37 0.47

and finds that the model can rationalize the low portfolio shares observed
in the data, provided the constraint on information flow is sufficiently tight.
When agents cannot learn immediately from signals, they are exposed to
“long run risk” and therefore demand more compensation to bear it — that
is, they appear “more risk averse” than their preferences would indicate.
The problem with Luo (2010) is that the required information flow limit is
so tight that it may render the LQ approximation highly inaccurate (see
Sims 2005, 2006).2

Luo and Young (2016) address this problem by introducing recursive util-
ity and parameterizing preferences such that agents have a preference for
early resolution of uncertainty. In the presence of long-run risk, households
who dislike late resolution will demand even more compensation for bear-
ing it than expected utility households (who are indifferent to the timing
of uncertainty resolution); this effect amplifies the enhanced risk aversion
and thus matching portfolio shares can be done at higher information flow
limits (roughly double those in Luo 2010). However, one would still worry
that the LQ-Gaussian approximation is inaccurate, and neither model can
address the limited participation rate.

Our goal here is to study the portfolio problem with rational inattention
in its full nonlinear generality. In general this problem is intractable, even

2Luo (2017) also found that RI only has minor effects on optimal consumption
and portfolio rules within a continuous-time constant-absolute-risk-aversion (CARA)-
Gaussian framework.
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numerically. First, the choice variable for the agents is the joint distribu-
tion of states and controls, which is typically very high-dimensional. As
shown in Jung, Kim, Matejka and Sims (2015) and Saint-Paul (2011), the
optimal distribution is typically discrete and has “holes”, meaning it can-
not be described or even approximated by a low-dimensional object; the
LQ-Gaussian setup avoids the curse of dimensionality because the optimal
distribution is Gaussian (see Sims 2003 and Shafieepoorfard and Raginsky
2013). To combat this problem one either solves a model with only one
shock (Tutino 2012) or a very short horizon (Sims 2006, Lewis 2009). Since
background risk plays an important role in portfolio, the first approach is
undesirable, so we adopt the second and study only a two-period portfolio
problem.

Our main result is that the nonlinear RI model can replicate the two key
facts, namely incomplete participation and low risky shares invested in the
stock market conditional on participation, provided the flow constraint is
tight enough (unfortunately we cannot compare the flow constraint to those
in Luo 2010 and Luo and Young 2016, due to the short horizon). More
interesting is that we obtain significant heterogeneity in portfolio holdings,
despite all agents being ex ante identical. Since it is not optimal to choose
a distribution that is degenerate unless information flow is unconstrained,
ex post the agents can “receive” different portfolios from nature — the key
is that the agents are willing to instruct nature to pick from a distribution
that puts positive mass on three very different portfolio weights (roughly
0, 30 percent, and 80 percent). Since most of the mass is on the 30 percent
share, the average portfolio share is only 37 percent, a bit too large relative
to the data but definitely in the ballpark; the model does not replicate the
observed 50 percent participation rate, but we could introduce a fixed cost
of participation to potentially resolve this inconsistency.

Our results are driven by two factors. First, rational inattention en-
hances risk aversion, as noted above. However, rational inattention also
appears to enhance the willingness of households to intertemporally sub-
stitute consumption over time, as the gap between expected current and
future consumption is larger as information flow capacity falls. The com-
bination is precisely the configuration of preferences that the long-run risk
and recursive utility literature (see Bansal and Yaron 2004) needs to gener-
ate realistic asset prices. Thus, our results indicate that rational inattention
could be a method for reconciling the high IES needed to match asset mar-
ket facts with the apparent low estimate evident from consumption data.

This paper is organized as follows. Section 2 presents a full-information
rational expectations (FI-RE) two-period model with consumption and
portfolio choice. Section 3 introduces information-processing constraint
into this otherwise standard model and discusses how to solve the model
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numerically. Section 4 presents the main results. Section 5 concludes.
Appendices contain the derivations that are omitted from the main text.

2. A STANDARD FI-RE TWO-PERIOD PORTFOLIO
CHOICE MODEL

Our main interest in this paper lies with the portfolio problem under
limited information-processing capacity. However, it is convenient to draw
distinctions between solutions with and without these limitations, so here
we present a standard two-period portfolio problem; Samuelson (1969) and
Merton (1969) provide complete analyses of this problem in the case of
HARA-class utility functions in continuous-time. Consider an agent with

an iso-elastic utility function u(c) = c1−γ

1−γ , where γ ≥ 0 is the coefficient of

relative risk aversion (CRRA). This agent faces stochastic current income
e1 and stochastic future income e2 with distributions of g1

(
e1
)

and g2
(
e2
)
,

respectively.
There are two tradable financial assets available to the household, one

risky and one risk-free. The return on the risk free asset is rf and the
return on the risky asset over the period is re. We consider the risky asset
to be a market portfolio of equities with return distribution ϕ (re). Letting
r be the one period gross return to invested wealth, we obtain

r = sred + (1− s) rf = s
(
red − rf

)
+ rf ,

where s is the proportion of wealth invested in the risky asset. In period
1, wealth w1 is simply e1 as the initial wealth is assumed to be 0 and
saving (borrowing) is e1 − c1. In period 2, wealth consists of the return
on savings and future income

(
w1 − c1

)
r + e2. Following Sims (2006), we

assume that second period consumption is equal to wealth.3 For reasons
we will elaborate on more completely later, we discretize both the state
and control space.

The maximization problem for this agent can be written as:

max
{c(w1

i )},{s(w
1
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(
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))
g1
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e1i
)
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(
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)
g1
(
e1i
)
g2
(
e2j

) } .

In period 1, before income is realized the agent makes a contingent plan
for consumption and savings that depends on the realization of e1. This

3In the standard model this assumption is without loss of generality provided utility
is increasing in consumption. In the model with limited information-processing capacity,
households may leave accidental bequests because they are uncertain about their exact
wealth. Adding a consumption choice in the second period is computationally costly
and would not add any new insight.
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specification is equivalent to the usual timing in which the agent makes
consumption-savings plan after the realization of e1, but it will turn out
to be easier to formulate the rational inattention model with this timing.
The plan for period 1 then determines consumption in period 2 based on
the realizations of e2 and re.

We assume that agents can borrow and that consumption in each date
and state must be nonnegative:

c
(
w1
i

)
≥ 0, (1)(

e1i − c
(
w1
i

)) (
s
(
w1
i

) (
red − rf

)
+ rf

)
+ e2j ≥ 0 , (2)

for ∀ i = 1, . . . , I, ∀j = 1, . . . , J , and ∀d = 1, . . . , D. Since this problem
has a continuous and concave objective function and a convex opportunity
set, the following first-order conditions are necessary and sufficient:

c1
(
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i

)−γ
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,

for ∀ i = 1, . . . , I. The first condition is the condition on optimal con-
sumption over time: the discounted marginal utilities are equalized. The
second condition is the condition for optimal (additional) risk taking. We
cannot get a closed-form solution to this problem except in special cases
that are not of interest to us (e.g., quadratic or CARA utility). As shown in
Merton (1969) and Samuelson (1969), one expects the following properties
would hold: (i) optimal portfolio choice s∗ is decreasing in γ, (ii) second
period consumption and s∗ are higher when rf is low relative to β, and
(iii) a mean-preserving spread in the risky asset return decreases s∗.

As in the literature, we can also use a log-linearization method to solve
the FI-RE problem. However, because that method does not work when
information-processing constraints are imposed, we solve this problem nu-
merically. In the next section, we introduce these constraints and study
the portfolio decisions of agents with rational inattention.
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3. A RATIONAL INATTENTION NON-LQ MODEL OF
PORTFOLIO CHOICE

3.1. Introducing Rational Inattention due to Information-Processing
Constraints

We now assume agents have limited information processing capacity in
the sense of Sims (2003). Agents choose the optimal joint probability distri-
bution of consumption, portfolio allocation, and wealth to maximize their
expected lifetime utility. Hence the choice variables with respect to which
we maximize is the joint probability distribution function f(·) of consump-
tion c1 and the share of savings held in the risky asset s with current income
e1. The objective function for the agent is

max
{f(sk,c1r,e1i )}


K∑
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I∑
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u (c1r)+

D∑
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1
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where
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(
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) [
sk
(
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)
+ rf

]
+ e2j

is second-period consumption.
As in the FI-RE case, we assume that agents can borrow and the con-

sumption in each period must be nonnegative. Budget constraints in this
model enforce the nonnegativity requirement; they are satisfied automat-
ically if agents are saving (c1r < w1

i for grid points r and i) but impose
restrictions whenever agents are borrowing (c1r > w1

i ). In the borrowing
case the budget constraints for period 2 take the form

f
(
sk, c

1
r, e

1
i

)
= 0 if

(
w1
i − c1r

) [
sk(red − rf ) + rf

]
+ e2j ≤ 0 , (4)

for ∀d = 1, . . . , D, ∀r = 1, . . . , N , ∀i = 1, . . . , I, ∀j = 1, . . . , J , ∀k =
1, . . .K. The choice set is also restricted by the requirement that the prob-
ability density must be well-defined:

0 ≤ f
(
sk, c

1
r, w

1
i

)
≤ 1 , (5)

where k = 1, . . . ,K, r = 1, . . . , N , and i = 1, . . . , I. Since income is
exogenous, the marginal probability of w1 chosen by the household must
be equal to the probability distribution function of e1:

K∑
k=1

N∑
r=1

f
(
sk, c

1
r, w

1
i

)
= g1

(
e1i
)
, (6)

where i = 1, . . . , I. The final constraint is the information processing
constraint (IPC). To formulate the IPC we need to define the mutual
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information between random variables. The mutual information between
current consumption c1, the share of the risky asset s, and current income
e1, is defined as

I
(
w1; c1, s

)
= H

(
w1
)

+H
(
s, c1

)
−H

(
s, c1, w1

)
,

where I
(
w1; c1, s

)
measures the reduction in uncertainty about w1 made

possible by observing c1 and s, and is always nonnegative. The assumption
of limited information processing capacity κ requires mutual information
not exceed finite capacity; that is, I

(
w1; c1, s

)
≤ κ. Therefore, the IPC is

given by the nonlinear inequality
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−
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K∑
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N∑
r=1

f
(
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1
i

)
log
(
q
(
c1r, sk

))
≤ κ,

where the marginal distribution of consumption in period 1 is q
(
c1, s

)
and

defined by

I∑
i=1

f
(
sk, c

1
r, w

1
i

)
= q

(
c1r, sk

)
, (8)

where r = 1, . . . , N and k = 1, . . . ,K. (See Appendix A.1 for the derivation
of (7).) It is easy to see that this constraint always binds. The following
proposition is straightforward.

Proposition 1. The objective function is continuous and concave and
the constraint set is compact. Therefore,(3) has a solution.

The problem for the information-constrained household is to maximize
(3) with respect to (4)-(7). (See Appendix A.2 for the derivation of the
first-order conditions.) For many points in the discrete outcome space
f
(
sk, c

1
r, w

1
i

)
= 0 may be binding (but obviously not for all of them),

meaning that (3) is a highly-nonlinear problem; furthermore, even for rela-
tively coarse discretizations the number of choice variables and constraints
is very large. Linearization techniques are not applicable, so we solve the
problem directly through a “brute force” method (albeit a highly sophis-
ticated one). Before proceeding to the numerical solutions we examine a
special case: κ = 0. A second special case, κ = ∞, is equivalent to the
standard FI-RE model solved in the previous section. We note also that
the Maximum Theorem and the Envelope Theorem apply to our model, so
that we can state the following results.
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Proposition 2. The policy function for (3) is continuous in κ ≥ 0.

Proposition 3. The value function for (3) is differentiable in κ > 0
and satisfies Dv (κ) > 0.

3.2. Zero Information-Processing Capacity Case

We now consider the κ = 0 case. As noted above, I
(
w1; s, c1

)
measures

the reduction in uncertainty of w1 after observing c1 and s, and it is al-
ways nonnegative. In other words, knowledge about

(
c1, s

)
cannot increase

uncertainty of w1:

I
(
w1; s, c1

)
= H

(
w1
)
−H

(
w1|c1, s

)
≥ 0.

On the other hand, zero information processing capacity requires

I
(
w1; s, c1

)
= H

(
w1
)
−H

(
w1|c1, s

)
≤ 0.

Combining these two inequalities yields:

I
(
w1; s, c1

)
= H

(
w1
)
−H

(
w1|c1, s

)
= 0,

which implies that zero information processing capacity requires that cur-
rent wealth be independent of current consumption and the risky asset
share:

f
(
sk, c

1
r, w

1
i

)
= q

(
sk, c

1
r

)
g
(
e1i
)

.

Agents cannot condition the distribution of the current wealth on the re-
alization of current consumption and the risky asset share, since those
observations carry no usable information. We formally state this result in
the following proposition.

Proposition 4. When κ = 0, the distribution of w1 and the joint dis-
tribution of

(
c1, s

)
are independent.

This case illustrates that households with low processing capacity will
separate their actions from their state, leading to a kind of “inertia” (see
Tutino 2012 for a dynamic illustration of this inertial effect); in a model
with a longer horizon, household decisions will appear sticky as they do not
respond to changes in the state. Note that this collapse looks very much
like increased risk aversion, wherein consumption does not vary much across
states of the world. We will see this effect manifest itself at positive κ as
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well.4 Using the continuity of the solution we note that this case is the
limit as κ→ 0.

3.3. Computation

Our computational method is similar to those used in Sims (2005) and
Lewis (2006). As noted above, we discretize the state and outcome spaces
and permit the agent to attach probabilities to each of those outcomes,
subject to the appropriate restrictions; the choice of probabilities is contin-
uous. We assume that first period income has 16 grid points with values
ranging from 0.01 to 0.16 and second period income has 4 grid points rang-
ing from 0.02 to 0.08. The risky return has 8 grid points ranging from
0.79 to 1.35. For simplicity we assume that both second period income
and the risky return are uniform, and the distribution of first period in-
comes normal with mean 0.085 and standard deviation is 0.023. We also
assume no correlation between labor income and the risky return in the
second period; aggregate data shows little correlation between stock re-
turns and wages at business cycle frequencies, so this assumption seems a
natural benchmark.5 For the outcome space, current consumption has 32
grid points between [0.005, 0.16] and the risky asset share has 41 grid points
between [0, 1]. The risk-free rate is rf = 1.02, the expected excess return is
0.05, and the standard deviation of the risky return is 19.6 percent; these
values are consistent with the premium of US equities over T-bills. We set
β = 0.97 and consider several plausible values of γ.6

The resulting problem has a large number of choice variables and a large
number of constraints, many of which are equality constraints. To solve
this problem, we use the AMPL programming environment as a gateway to
the KNITRO solver.7 We then upload our program to the NEOS Server for
Optimization, a publicly-available resource that implements the AMPL-
KNITRO program (it greatly increases the size of the problem that we can
consider as it uses idle supercomputer resources).8 In total, our problem

4Luo and Young (2016) stress a different manifestation of rational inattention as
enhanced risk aversion when agents have a preference for early resolution of uncertainty
— since rational inattention delays the resolution of consumption risk, it is unappealing
to an agent who prefers to learn early rather than late.

5Heaton and Lucas (2000) study how the presence of background risks influences
portfolio allocations. They find that labor income is the most important source of
wealth and labor income risk is weakly positively correlated with equity returns. Our
results are quite similar when the correlation is close to but not exactly equal to zero;
results from these experiments are available upon request.

6The value for β guarantees that agents will save in some parts of the state space and
borrow in others. The value of β plays no important role here.

7The KNITRO solver is a commercial solver used for large nonlinear problems that com-
bines automatic differentiation with sophisticated Newton-based iterations and active set
methods to handle the constraints.

8The website is http://www.neos-server.org/neos/.
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features 14, 226 choice variables, 1328 linear equality constraints, and 1
nonlinear inequality constraint.

4. MAIN FINDINGS

In this section, we will first solve the FI-RE model numerically and then
solve the model with limited information processing capacity (IPC).

4.1. Standard FI-RE Model

In a standard FI-RE model agents observe the realization of current
wealth with certainty; since their objective functions are strictly concave,
their decisions become deterministic functions of this realization. For com-
parability reasons we solve the FI-RE models using same numerical ap-
proach that we apply to the limited information-processing setting.

FIG. 1. The Share Invested in the Risky Asset (FI-RE)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Current Wealth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
is

k
y
 a

s
s
e

t 
s
h

a
re

γ=2
γ=0.5

Figure 1 shows the risky asset share over the grid of current period
wealth. Agents choose to invest all their savings in the risky asset at
the states with relatively high levels of wealth and choose to borrow at
the risk-free rate at the states with relatively low levels of wealth. The
resulting decision rule is essentially discontinuous; a related but (slightly)
less-extreme result can be found in Krusell and Smith (1997) that is driven
by the absence of insurance markets. The expected risky asset share is 0.95
for the agent with γ = 0.5 and 0.97 for the agent with γ = 2.
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FIG. 2. Optimal Consumption under FI-RE
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Table 3 presents expected (average) consumption in each period for both
γ = 0.5 and γ = 2. The difference between first and second period con-
sumption is smaller for the agent who is less risk averse (γ = 0.5). Figure
2 shows optimal consumption on the grid points for current period wealth.
First period consumption increases as current period wealth increases for
both types of agent. However, the γ = 0.5 agent chooses slightly larger
consumption at lower wealth than the γ = 2 agent and chooses slightly
lower consumption mass at higher current wealth.

TABLE 3.

Mean Consumption in the First- and Second-Period

γ = 0.5 γ = 2

E [c1] 0.0633 0.0624

E [c2] 0.0732 0.0742

The more risk-averse agent is more concerned about the states with very
low consumption in the future, and therefore chooses to borrow in a smaller
portion of the current wealth space and receives lower current consumption
than the less risk-averse agent does. At the states with borrowing, both
types of agents choose to minimize borrowing costs by setting the risky asset
share to be 0, and both types of agents choose to invest all their savings
in the risky asset (to maximize the return) at the states with savings.
Hence, the choice of the risky asset share is discrete with values of 0 and
1 depending on whether the saving is positive or negative. The overall
probability of borrowing is 0.03 for the γ = 2 agent and 0.05 for the γ = 0.5
agent, which is why the γ = 2 agent appears to hold a higher share of risky
assets.
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4.2. Joint Distribution of Current Wealth and Current Con-
sumption

Note that as κ → ∞ the rational inattention model converges to the
FI-RE model; we therefore expect that the benchmark model will ac-
curately represent choices of households whose capacity constraints are
large. How much capacity is sufficient is model-dependent. For the bench-
mark model, the exogenous distribution for the current income is cen-
tered on its mean 0.085, with the entropy of this process being H(e1) =

−
∑I
i=1 g1(ei) log(g1(ei)) = 2.074 nats.9 From the definition of mutual in-

formation we know that the knowledge of current consumption and share
of risky asset can decrease the uncertainty about current wealth at most
by this amount. Hence for κ ≥ 2.074 nats the model gives nearly identical
results as the model with unlimited information processing capacity.

FIG. 3. Joint Distribution of Current Wealth and Consumption (Large κ)
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Shaded plots of the joint densities of c1 and w1 are shown in Figures 3
and 4. The darker the box, the higher the probability weight placed on
the corresponding grid point. For sufficiently large κ, Figure 3 shows that
the agent chooses a distribution with perfect correlation between current
wealth and current consumption and places positive probability only on the
FI-RE solutions. However, as κ decreases the agent allocates probability on
fewer grid points with low consumption. Small κ does not allow the agent
to learn every realization of the current wealth. Thus he wants to be well
informed about the grids with lower wealth to prevent future consumption
close to zero. Figure 4 shows the joint probability distribution of c1and w1of
an agent with κ = 0.1, which allows him to resolve only about 5 percent

9A ‘nat’ is the unit of information flow when entropy is measured relative to the
natural logarithm function. Other measures include the ‘bit’ for base 2 logarithms and
the ‘dit’ or ‘hartley’ for base 10. Throughout the paper we use ‘nat’ as the unit of κ.
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FIG. 4. Joint Distribution of Current Wealth and Consumption (κ = 0.1)
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of the total uncertainty in current wealth. The agent puts probability on
fewer grid points with low consumption and puts probability 0.64 on the
grid point with consumption of 0.055; this collapse of the distribution is a
reflection of the inertial effects (enhanced risk aversion) discussed already
for the κ = 0 case. Note that the correlation between c1 and w1 is 1 under
FI-RE and only 0.36 when κ = 0.1.

4.3. Expected Current and Future Consumption

Figure 5 presents expected current and future consumption across two
values of γ. The key result here is that the “gap” between current and
future average consumption is decreasing in κ. This gap is a measure
of the intertemporal elasticity of substitution, as it reflects the willingness
to let consumption vary deterministically across time. Thus, households
who have low capacity will appear to be more willing to intertemporally
substitute than standard FI-RE agents.

TABLE 4.

Expected Saving Rate under RI

κ ∞ 2 1 0.5 0.3 0.2 0.1 0.05

γ = 2 0.27 0.27 0.28 0.30 0.32 0.33 0.39 0.45

γ = 0.5 0.27 0.26 0.26 0.27 0.28 0.30 0.36 0.43

In the previous section, we observed that the agent with limited informa-
tion processing capacity allocates positive mass to fewer grid points with
low values, resulting in a smoother consumption distribution; for example,
when κ < 0.2 the conditional expectation of consumption is low and al-
most flat across different values of wealth (see Figure 6). As a result of
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FIG. 5. Expected Current Consumption and Future Consumption
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the consumption smoothing over the current states with higher wealth, the
expected “precautionary saving”, the difference between the expected cur-
rent income and the expected current consumption, increases substantially
with smaller κ. Table 4 shows the saving rate, ratio of the expected saving
and the expected current income; as κ gets smaller the saving rate increases
substantially, leading to high future consumption on average. Note that the
increase in future consumption will be smaller for longer horizon models.

FIG. 6. Conditional Expectation of Current Consumption
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4.4. Optimal Share of the Risky Asset

When information processing capacity is large the agent has a lot of in-
formation about current wealth, and thus his decision rule is very similar
to the FI-RE one — allocate positive mass only to “zero risky share, bor-
row” and “risky share equal to one, save”. There is only a small change in
distribution of the risky asset share in response to a reduction in κ until
it gets very small. To choose the optimal distribution of the risky asset
share the agent would like to know if the current wealth is higher or lower
than the threshold level that triggers the switch from saving to borrowing.
This information is available until κ becomes very small. When κ becomes
too small this information cannot be obtained and the agent responds by
allocating probabilities over grid points with a low risky asset share to de-
crease the probability of borrowing at a high interest rate; at the same
time the agent does not want to forego the excess return entirely, so some
probability is still attached to saving with a positive risky share.10

FIG. 7. Joint Distribution of Current Wealth and Portfolio Choice (κ = 2)
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Figures 7 and 8 present the joint distribution of the risky asset share
and the current wealth for information processing capacity of 2 and 0.1,
respectively. At the capacity κ = 0.1, the expected risky asset share is
0.37, which is not that far from the average share cited in Gabaix and
Laibson (2002) and Luo and Young (2016), while for κ = 2 the agent is
putting all of his savings into equities (note the small mass at zero associ-
ated with borrowing). Of particular interest is that, with κ = 0.1, there is
a lot of heterogeneity — the agent puts positive mass in three regions cor-

10This result is consistent with that obtained in Luo (2010), in which less capacity
leads to greater long-run risk and thus reduces the optimal share invested in the risky
asset. Luo and Young (2016) find that low shares can be sustained with higher κ if
agents are averse to late resolution of uncertainty.
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FIG. 8. Joint Distribution of Current Wealth and Portfolio Choice (κ = 0.1)
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responding to nonparticipation (s = 0), modestly-risky portfolios (around
s = 0.3), and highly risky portfolios (around s = 0.8); if we suppose that
this agent is one of infinitely-many identical agents in an economy (and
a suitable law of large numbers applies), then this distribution will also
be the cross-sectional distribution, so the model can reproduce both in-
complete participation in equity markets and low holdings conditional on
participation.11

FIG. 9. Expected Value of the Risky Asset
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Figure 9 shows the expected value of the optimal share of the risky asset
for different levels of information processing capacities. As noted already,

11Models that drive limited participation through fixed costs generally imply that,
once the household enters the market, the share of risky assets is too high. Gomes and
Michaelides (2008) is one example.
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FIG. 10. Joint Distribution of Current Wealth and Risky Asset Share (γ = 0.5, κ =
0.1)
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with high κ the risky asset share is very high (E [s] = 0.975); because the
agent borrows in a small fraction of states, it is below 1. When κ gets low
enough (below roughly κ = 0.2) the average share drops off quickly (for
γ = 2). The level of risk aversion matters a lot when κ is low, which we
can see in Figure 9 (the share does not decline significantly until κ gets
very small if γ = 0.5) and Figure 10 (all the mass is placed on a single
high value for s instead of being spread across several lower values as when
γ = 2).

We want to mention here briefly that the average share E [s] depends on
the initial distribution of labor income. If we introduce a distribution with
more entropy (higher variance), then the curve in Figure 9 shifts down
at every value of κ. Higher entropy means more uncertainty about the
current state, which translates into more uncertainty about future events
and therefore more desire to insure via the risk-free asset. Details of this
experiment are available upon request.

4.5. Welfare Implications of RI

Proposition 3 shows that expected welfare is decreasing in the tightness
of the constraint. Figure 11 illustrates how the change in welfare increases
with the degree of attention for different values of γ. The welfare costs here
can be significant, on the order of 0.03 percent of consumption, if κ is very
small and γ is large, but generally are modest for relatively high values of κ.
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Of course, one must take the numbers from a two-period model with some
caution, but they indicate that the general result from the LQ-Gaussian
literature that the costs of RI are small (see Luo and Young 2010) may be
missing a crucial piece of the picture. Since the large welfare losses come
when κ is small, they only arise for parameterizations in which the optimal
decisions are decidedly non-Gaussian, and are therefore excluded from the
existing studies. However, the large costs also arise precisely in the region
of the parameter space where portfolio decisions look most like the data,
so we should consider whether they hold up in more general environments.

FIG. 11. Welfare Change
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4.6. Correlation Between Income and Risky Asset Returns

In the previous analysis, we assumed zero correlation between labor in-
come and the return to the risky asset. However, the empirical evidence on
the correlation between labor income and equity returns shows non-zero or
weak negative and positive correlations for various population groups. It is
worth noting that estimating the correlation between individual labor in-
come and the equity return is complicated by the lack of data on household
portfolio choice that has both time-series and panel dimension, and by the
difficulty of identifying households’ unanticipated income shocks. Never-
theless, several studies have tried to estimate these effects. For example, as
estimated in Davis and Willen (2000), the correlation between aggregate
equity returns and labor income shocks ranges from −0.25 for the least
educated men to 0.25 or more for college-educated women. Heaton and
Lucas (1999) found that the correlation between the entrepreneurial risk
and the equity return was about 0.2. A standard FI-RE portfolio choice
model predicts that less-educated investors should be more heavily invested
in the stock market while college graduates and entrepreneurs should put
less wealth in the stock market. We examined the benchmark model with
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FIG. 12. Expected Risky Asset Share
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FIG. 13. Joint Distribution of Risky Asset Share and Current Wealth
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negative (−0.25) and positive (0.25) correlation between labor income and
the risky return. Overall, the results are similar to that obtained in the
zero correlation case as the expected risky asset shares and expected cur-
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FIG. 14. Joint Distribution of Risky Asset Share and Current Wealth
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FIG. 15. Expected Risky Asset Share
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rent consumptions decrease with the degree of attention. Figure 12 shows
that the expected share invested in the risky asset for various degrees of
the information processing constraint. When there is a negative correlation
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between labor income and the risky asset return, the agent’s behavior is
very similar to the zero correlation case when κ is sufficiently high (e.g.,
when κ > 0.4). However, they will hold much larger share of the risky asset
than in the zero correlation case when κ is sufficiently low (e.g., κ < 0.2).
In contrast, when there is a positive correlation between labor income and
the return to the risky asset, agents hold smaller share of the risky asset
than that in the zero correlation case, which is similar to the FI-RE model.
Figures 13 and 14 illustrate the joint distributions of the current wealth
and risky asset shares for information processing capacity of 3 and 0.1,
respectively. At the capacity κ = 3, the expected risky asset share is 0.79,
where the agent is putting positive mass around 0 and 0.8. Positive corre-
lation between labor income and the return to the risky asset prevents the
agent to invest all his saving in risky asset. At the capacity κ = 0.1, the
expected share of the risky asset is 0.35. Capacity constrained agent puts
larger probability around 0.3. Figure 15 shows that the share invested in
the risky asset for agents with large capacity (κ = 3) and small capacity
(κ = 0.1).

5. CONCLUSION

We have studied the role of rational inattention — limited information-
processing capacity — in a standard two-period portfolio choice problem.
Our model is capable of producing an empirically-reasonable share of risky
assets in a portfolio for modest levels of risk aversion; in addition, it can
produce nonparticipants and households with low risky asset shares. The
effect of rational inattention is twofold. First, low processing capacity com-
presses the distribution of consumption across values of current wealth, an
effect similar to an increase in risk aversion. Second, the high precautionary
savings that rational inattention generates leads to a large gap between ex-
pected current and expected future consumption, making households look
like they have high elasticities of intertemporal substitution. The combina-
tion therefore reproduces the parameter combination identified as crucial
for generating resolutions to the equity premium puzzle.

In this paper, for simplicity, we implicitly assumed the uncertainty to be
fully resolved in the future; consequently it may have dampened the effects
of rational inattention. To fully understand the impact of RI on individual’s
and macroeconomic behavior we need a more general model with multiple
periods. We are currently exploring the possibility of using “approximate
dynamic programming” tools — see Powell (2007) — to break the severe
curse(s) of dimensionality that RI problems pose and explore longer horizon
problems.
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APPENDIX A

A.1. DERIVATION OF IPC

The size of the information produced by the stochastic process is mea-
sured by its entropy H(·), following Shannon (1948). H(X), the entropy
of a discrete random process X (which is a measure of the expected uncer-
tainty in X), is defined by

H (X) = −
∑
x

p (x) log (p (x)) .

Entropy measures the information provided by a random process about
itself.1 Mutual information is a measure of the information contained in one
process regarding another process. Suppose {X,Y } is a random process.
The average mutual information between X and Y is defined by

I (X;Y ) = H (X) +H (Y )−H (X,Y )

We can also write the mutual information in a more intuitive way using
the conditional entropy as

I (X;Y ) = H (X)−H (X|Y ) = H (Y )−H (Y |X) ,

where

H (X|Y ) = E [− log (p (X|Y ))] =
∑
y

H (X|Y = y) p (y)

is the conditional entropy of the jointly-distributedX and Y , andH (X|Y ) ≤
H (X) with equality if and only if X and Y are independent (that is, con-
ditioning on a second random variable can never increase entropy).

In our model, mutual information between the current consumption, sav-
ings and the random vector of income in period 1 is given by

I
(
e1; c1, s

)
= H

(
e1
)
−H

(
e1|c1, s

)
or equivalently

I
(
e1; c1, s

)
= H

(
e1
)

+H
(
c1, s

)
−H

(
e1, c1, s

)
.

1See Cover and Thomas (1991) for a textbook treatment on this topic.
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Writing the entropy explicitly yields

K∑
k=1

N∑
r=1

I∑
i=1

f
(
sk, c

1
r, e

1
i

)
log
(
f
(
sk, c

1
r, e

1
i

))
−

I∑
i=1

g1
(
e1i
)

log
(
g1
(
e1i
))

−
K∑
k=1

N∑
r=1

q
(
c1r, sk

)
log
(
q
(
c1r, sk

))
.

This expression is constrained to be smaller than the channel capacity, giv-
ing rise to (7). Since entropy is a concave function, the resulting constraint
set is convex.

A.2. DERIVING FIRST-ORDER CONDITIONS

The first-order conditions for f(·) ∈ (0, 1) are

Ukri − vi

1 + log
(f(sk,c1r,w1

i )
q(c1r,sk)

)
− f(sk,c1r,w1

i )
q(c1r,sk)

=
Umns − vs

1 + log
(f(sm,c1n,w1

s)
q(c1n,sm)

)
− f(sm,c1n,w

1
s)

q(c1n,sm)

for ∀k = 1, . . . ,K, r = 1, . . . , N , and i = 1, . . . , I, where

Ukri = u
(
c1r
)
+β

D∑
d=1

J∑
j=1

u
((
w1
i − c1r

) [
sk
(
red − rf

)
+ rf

]
+ e2j

)
ϕ (red) g2

(
e2j
)

is the expected lifetime utility at the state with consumption c1r, the risky
asset share sk, and wealth w1

i . The agent chooses optimal probabilities
over different states such that the utility per marginal mutual information
are equated across different states.

Proposition 5. The agent allocates higher relative probability over the
states with higher expected utility if vi = vs.

Suppose vi = vs and Ukri > Umns. Then

f
(
sk, c

1
r, w

1
i

)
q (c1r, sk)

−log

(
f
(
sk, c

1
r, w

1
i

)
q (c1r, sk)

)
<
f
(
sm, c

1
n, w

1
s

)
q (c1n, sm)

−log

(
f
(
sm, c

1
n, w

1
s

)
q (c1n, sm)

)
.

Let ϕ (x) = x − log (x). Then Dϕ (x) < 0 if 0 < x < 1, so
f(sk,c1r,w

1
i )

q(c1r,sk)
>

f(sm,c1n,w
1
s)

q(c1n,sm) .
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