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Comovement of Home Prices: A Conditional Copula Approach

Lei Hou, Wei Long, and Qi Li*

Even though housing markets in different areas are relatively localized, re-
gional home prices have become closely correlated and tend to be simulta-
neously affected by many national economic factors. In this paper, through
the dynamic copula model, we confirm that regional home price dependence
is time-varying and the conventional time-invariant copulas underestimate the
degree of dependence during economic expansions and recessions. In essence,
the U.S. residential real estate market has become more integrated since the
mid-1980s. Using the conditional copula model, we further identify how the
dependence among regional housing markets evolves along with some funda-
mental economic factors such as unemployment rate and interest rate. These
findings can help investors and home buyers to better identify and evaluate
the systematic risk in the nationwide housing market.
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1. INTRODUCTION

The U.S. housing market over the past two decades fluctuated substan-
tially and provides a vivid example about the formation and burst of an
economic bubble. As pointed by Shiller (2007), the recent housing boom
was led by the more than 10% yearly increase in several west coastal cities
(Los Angeles, San Diego, San Francisco and Seattle), then spilled into other
areas such as Boston and Denver and eventually became an unprecedented
national boom. After 2006, home prices were rapidly depreciating and
became stabilized until recently.

It is intuitive to understand the comovement of localized home prices
within the same region. There is a sizable literature in finance about conta-
gion and herding effect to explain such a phenomenon. For example, Allen
and Gale (2000) find that investors tend to engage in risk shifting and this
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kind of behavior can lead to bubbles in asset prices and increase the prob-
ability of general default. Transactions in housing market are usually debt
financed, therefore the probability of bubble formation and collapse is also
relatively higher when a small liquidity preference shock hits the market.
However, the recent boom in housing price is a nationwide phenomenon and
the effect of state- or regional-specific factors should be relatively small. Del
Negro and Otrok (2007) investigate how local components affect housing
price and find that only historical comovement can be attributed to lo-
cal components, while the expansionary monetary policy drive the recent
housing boom. Besides monetary policy, the fluctuation in home prices
also provides some insights about how housing markets from different geo-
graphic areas became correlated through several national economic factors.
Fu (2007) explores the possible factors influencing the national home price
movements and concludes that those factors, such as monetary policy, de-
mographics, real economic activity and inflation rate, account for about
one-fourth of local home price volatility. Kallberg, Liu and Pasquariello
(2014) investigate the comovement among home prices for 14 metropolitan
areas during 1992-2008 and confirm that the substantial home price in-
crease in the sample period can be attributed to the covariation of several
fundamental and systematic real and financial factors. Landier, Sraer and
Thesmar (2017) show that the integration of banking industry explains up
to one fourth of the rise in house price correlation.

The main contribution of this study is that we implement the copula
model to examine the dynamic dependence structure among difference U.S.
regions. It is the stylized fact that the correlation among financial markets
is dynamic since the seminal work by Erb, Harvey and Viskanta (1994)
and Longin and Solnik (1995). Engle (2002) proposes a widely used dy-
namic correlation coefficient (DCC) method to detect and estimate the
time-varying correlation coefficient between two financial assets. Kallberg
et al. (2014) use a dynamic factor model to estimate how correlation coef-
ficients among 14 largest cities in US evolve over time. Copula is another
useful tool to estimate dependence structure. Copula theory is built on the
Sklar’s theorem (1959), which claims that a multivariate distribution can
be fully characterized by its marginal distributions and a copula — a multi-
variate distribution function with uniform [0,1] marginals. Compared with
other methods such as DCC and Kallberg et al. (2014)’s dynamic factor
model, copula has several superiorities. First, marginals of a copula could
be from different distribution families and estimated nonparametrically,
while DCC usually assumes a multivariate normal distribution or Student-
t distribution and the dynamic factor model imposes some restrictions on
residuals that cannot be explained by several common factors. Second,
copula with high dimension can model the dependence among multiple as-
sets simultaneously. DCC is built on multivariate GARCH models, but
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only pairwise dynamic correlation can be meaningfully obtained from the
estimated correlation matrix. Third, different types of copula can estimate
different dependence structure. For example, when a recession occurs and
all financial markets crash simultaneously, a Clayton copula can be used
to estimate the degree of dependence among these markets. Fourth, and
of the greatest importance in the study of financial dependence, copula
uses measures of concordance such as Kendall’s τ and can capture the
asymptotic tail dependence which is usually nonlinear, while both DCC
and Kallberg et al. (2014)’s dynamic factor model only gives linear corre-
lation coefficients, which tends to underestimate the degree of dependence
when extreme events such as price boom or burst of bubble occurs. Since
the recent fluctuation in housing price is extreme and substantial, copula
model can be a useful tool to analyze the shift in dependence structures.

There is a growing literature about the application of copula model in
economic research. Since Li (2000) and Embrechts et al. (2002), copula
has been extensively used in finance and risk management. Besides, copula
is also used to evaluate the comovement in housing prices. Zimmer (2012)
finds that the widely-used Gaussian copula underestimates the interdepen-
dence across four heavily shocked housing markets (California, Neveda,
Arizona and Florida) in the midst of the housing crisis, because the Gaus-
sian copula predicts asymptotically independence for both tails and fails
to capture the dependence across different areas when an extreme event
happens (e.g., the collapse of a housing bubble). He recommends a combi-
nation of the Gumbel and Clayton copula which has the ability to capture
the dependence at both tails. Zimmer (2015) extends to higher dimensional
copulas by using the vine copulas and concludes that multivariate vine cop-
ulas are more suitable to model comovement in home prices, but does not
examine how the dependence changes along the business cycle. Figure 1
provides a direct but intuitive example about how the dependence struc-
ture of home prices in New York and Boston changes as the unemployment
rate — arguably one of the most important economic indicators and closely
tracked by investors and policy makers — evolves along the business cycle.
Using the monthly Case-Shiller Index between 1990 and 2016 as the proxy
of home prices in the two cities, in Figure 1a, we find that home prices
tend to increase simultaneously when the unemployment rate is relatively
low (< 4.8%). On the contrary, Figure 1b indicates that housing markets
in both cities tend to contract when lay-off becomes pervasive (> 6.8%),
because simultaneous decrease in home prices appears to be more frequent
when the unemployment rate is high. This example implies the necessity
of a conditional copula which can detect how the magnitude of dependence
(copula’s parameter) changes along with other covariates.

In this study, we contribute to the literature by examining the dynamic
dependence in housing markets across 9 U.S. census divisions through the
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FIG. 1. Scatterplots of Case-Shiller Index in New York and Boston at different
unemployment levels between 1990 and 2016.
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(a) Unemployment ≤ 4.8
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(b) Unemployment ≥ 6.8

conditional copula model, which is firstly proposed by Patton (2006) to
estimate the dependence in exchange rate market and further extended
by Hafner and Reznikova (2010), Acar, Craiu and Yao (2011) and Abegaz,
Gijbels and Veraverbeke (2012). Under conditional copula, the dependence
structure, measured by the copula parameter, is allowed to be adjusted for
covariates such as time and other economic variables. Since the real estate
industry is an important component of the national account and home price
is sensitive to other economic factors, conditional copula provides great
flexibility for researchers to analyze how dependence structure evolves along
with those economic factors. First, if the dependence indeed exists among
regional housing markets, we would like to examine the pattern of the
dependence path and how the degree of dependence changes over the past
few decades, especially during booming and crisis periods when the linear
correlation coefficient tends to underestimate the magnitude of dependence.
Second, U.S. economy has experienced five economic recessions since the
mid-1970s and macro economic factors such as GDP growth, unemployment
rate and monetary policies have substantially changed. If the dependence
structure across housing markets indeed correlates to the business cycle,
we are interested in investigating how the degree of dependence evolves
along with the level of those fundamental economic factors. To address the
two questions, we respectively adopt the semiparametric dynamic copula
model proposed by Hafner and Reznikova (2010) and the semiparametric
estimation of conditional copula model by Abegaz, Gijbels and Veraverbeke
(2012). Specifically, if τ ∈ (−1, 1) denotes the correlation coefficient of
housing markets in different areas, we aim to respectively extend it to τ(t)
and τ(x): the former is a function of time t while the latter is a function
of a covariate x.
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We collect the 1976-2016 House Price Index for 9 U.S. census divisions
from the Federal Housing Finance Agency. Our analysis confirms that
home price dependence among the nine regions is dynamic: The comove-
ment among regional housing markets was weak before the mid-1980s but
became substantially strengthened since then. In other words, the U.S.
residential real estate market has become more integrated since the mid-
1980s. The housing crisis in 2006 further consolidated the dependence
structure and the association among regional housing market in 2016 was
the highest since the end of 1990s. On the contrary, both DCC and Kall-
berg et al. (2014) underestimate the increased dependence during 1990s.
Through conditional copula model, we also identify the relationship be-
tween the dependence structure and several fundamental economic factors.
We find that the degree of dependence is stronger when the per capita
personal real income decreases (increases) and when the unemployment
is high (low). This is intuitive because economic crisis will dampen the
demands for new houses while a boom will spur the demands. Loose mon-
etary policy such as low interest rate will also spur demands for houses.
We further find that comovement among markets is evident when the ra-
tio of debt payments in disposable income is high, which usually happens
in times of boom or when the nationwide housing market is over-heated,
like the bubbling period before the 2008 global economic crisis. However,
when a crisis is looming and banks enforce stringent and less flexible loan
policy, the deleveraging process will squeeze the percentage of residential
investment in GDP and we find that regional housing markets will also
exhibit strong dependence. Even though we can not claim the causal rela-
tionship between the dependence and those economic factors because there
exists many other local idiosyncratic factors which may also contribute to
the dependence structure, the evolving patterns of dependence along with
those factors can help investors and home buyers to analyze and identify
the potential systematic risk before buying new houses.

The remaining parts of the paper are organized as follows. We briefly
introduce basics of a copula model in Section 2. Section 3 discusses the
semiparametric estimation of conditional copulas. Data and preliminary
results for dynamic copula are included in Section 4 and Section 5. We
estimate how dependence evolves along with a series of economic factors in
Section 6. Section 7 concludes.

2. A BRIEF OF COPULA

Suppose we have a series of p−dimensional vectors of random variables
{Xt}Tt=1, where Xt = (Xt1, . . . , Xtp)

′. Let F (x) and f(x) be the joint
distribution and density function of X ∈ Rp, and Fi(xi) and fi(xi) be
the marginal distribution and density function of Xi, respectively, where
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1 ≤ i ≤ p. Then, xi = F−1i (ui), where F−1i (·) is the inverse probabil-
ity transformation function or quantile function for xi and ui = Fi(xi) is
uniformly distributed over [0, 1] by the probability integral transformation.
By Sklar (1959), the joint distribution of the p−dimensional vectors can be
written as

F (x1, x2, . . . , xp) = F (F−11 (u1), F−12 (u2), . . . , F−1p (up)) = C(u1, u2, . . . , up),

where C(·) is the copula function associated with the joint distribution.
Thus, a copula is a multivariate distribution function with uniform marginal
distributions on [0, 1]. Sklar’s theorem proves that, if F1, F2, . . . , Fp are
continuous, the copula function defined above is unique. Conversely, for
any marginal distribution Fi and any copula function C, the function
C(F1(·), F2(·), . . . , Fp(·)) is a multivariate distribution function with marginal
distributions F1, F2, . . . , Fp. In other word, the copula function C and all
the marginal functions F1, F2, . . . , Fp are not necessarily of the same distri-
bution family, which provides great flexibility when empirical users need to
specify a multivariate distribution. In addition, according to Sklar’s the-
orem, if C is continuous, one can separate the univariate marginals from
the copula which represents the dependence structure. Specifically, if we
assume Fi(·) is differentiable and C is p times differentiable, we have

∂pF (x1, x2, . . . , xp)

∂x1∂x2 · · · ∂xp
= c(u1, u2, . . . , up)× f1(x1)× · · · × fp(xp),

where c(u1, u2, . . . , up) is the density of C(u1, u2, . . . , up). Thus, the density
of F could be expressed as the product of the copula density and the uni-
variate marginal densities and it is obvious that the copula has all the infor-
mation about the dependence structure among the p−dimensional vectors.
A copula function is related to the joint cumulative distribution function
via C(F1(x1), F2(x2), . . . , Fp(xp); θ) = F (x1, x2, . . . , xp), where the param-
eter θ characterizes dependence among the p covariates. This dependence
parameter is closely related to the dependence measures such as Kendall’s
τ , Spearman’s ρ and tail dependence coefficients. For application to finan-
cial data, the dependent parameter is of great interests as it describes the
comovement of stocks. The estimation of the copula model is well studied,
see Fan and Patton (2014) for a review of the copular model and their
applications in economics.

There are many different types of copulas and they exhibit different de-
pendence structure. In Table 1 we provide a summary of four widely-used
copulas in empirical studies: Gaussian, Clayton, Gumbel and Frank. For
the ease of exposition, Table 1 only displays bivariate copula cases and
Nelsen (2006) provides more thorough and extensive summary of copulas.
Gaussian copula is flexible in that it captures both positive and negative
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dependence. Clayton copula exhibits asymmetric dependence and is able
to capture the lower tail dependence. Contrary to Clayton, Gumbel copula
exhibits upper-tail dependence. For example, in the context of home price
fluctuation, if we believe the housing markets tend to crash together during
the recession period, the Clayton copula should be a better choice as it is
able to exhibit the lower-tail dependence. For empirical users, one impor-
tant question is how to choose a copula function that accurately specify the
dependence structure among the marginals. For the goodness-of-fit tests
and model selection, the widely used methods are the Kolmogorov-Smirnov
(KS) test, the Cramér-von Mises (CvM) test (see Rémillard, 2010) and the
Bayesian Information Criterion (BIC) method. Since θ is not directly com-
parable among copulas, it is usually converted to measures of concordance
such as Kendall’s τ (Nelsen, 2006) which is bounded on (−1, 1). Table 1
also documents how to convert θ to Kendall’s τ for the four copulas.

TABLE 1.

Summary of Gaussian, Clayton, Gumbel and Frank Copula

Copula Function Form θ Domain Kendall’s τ

Gaussian CGaussian(u1, u2; θ) = ΦG(Φ−1(u1),Φ−1(u2); θ) −1 < θ < 1 2
π

arcsin (θ)

Clayton CClayton(u1, u2; θ) = (u−θ
1 + u−θ

2 − 1)−1/θ 0 < θ <∞ θ
θ+2

Gumbel CGumbel(u1, u2; θ) = exp (−(ũθ1 + ũθ2)1/θ) 1 ≤ θ <∞ 1− 1
θ

Frank CFrank(u1, u2; θ) = − 1
θ

log
[
1 + (e−θu1−1)(e−θu2−1)

e−θ−1

]
θ ∈ R \ {0} 1− 4

θ
+ 4

θ2

∫ θ
0

t
et−1

dt

Note: Φ is the CDF of the standard normal and ΦG(·, ·) is the standard bivariate normal with correlation
parameter θ. ũ1 = − log u1 and ũ2 = − log u2.

3. SEMIPARAMETRIC ESTIMATION TO CONDITIONAL
COPULAS

A conditional copula becomes necessary when there exists a covariate
Z whose influence on the dependence structure among X1, X2, . . . , Xp can
be modelled by C(u1, u2, . . . , up; θ(z)), where θ(z) is a function of the co-
variate. Put differently, if such a covariate exists, the dependence of C on
z is fully determined by the dependence of θ on z. Therefore, our main
target is to estimate the unknown function θ(z) which can be modelled
as a polynomial of degree q. As mentioned in the previous section, the
parameter space Θ is different for many copula families, while polynomial
function can take any values on the real line. Acar, Craiu and Yao (2011)
and Abegaz, Gijbels and Veraverbeke (2012) respectively propose a semi-
parametric method to estimate conditional copulas. Both suggest to use a
transformation function ψ {θ(z)} = η(z) such that θ(z) = ψ−1 {η(z)} ∈ Θ
if ψ−1 exists. Manner and Reznikova (2012) provide a list of transforma-
tion functions for each copula family. Assuming that the (q+ 1) derivative
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of the function η exists for each point z, for an observation Zi in the neigh-
borhood of z, following Acar et al. (2011) and Abegaz et al. (2012), we
approximate η(Zt) by a Taylor expansion:

η(Zt) ≈ η(z) + η′(z)(Zt − z) + · · ·+ η(q)(z)(Zt − z)q/q!
≡ β0 + β1(Zt − z) + · · ·+ βq(Zt − z)q,

where βj = η(j)(z)/j! for j = 0, 1, 2, . . . , q. We further define the joint
and continuous marginal distribution of (X1, X2, . . . , Xp), conditionally on
Z = z, as Fz(X1, X2, . . . , Xp) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xp ≤ xp|Z =
z), F1z(X1) = P (X1 ≤ x1|Z = z), . . . , Fpz(X1) = P (Xp ≤ xp|Z = z).
Then, if Zt is near z, c {F1z(X1t), F2z(X2t), . . . , Fpz(Xpi)|θ(Zi)} can be ap-

proximated as c
{
F̂1z(X1t), F̂2z(X2t), . . . , F̂pz(Xpt)|ψ−1(η(Zt))

}
=

c
{
F̂1z(X1t), F̂2z(X2t), . . . , F̂pz(Xpt)|ψ−1(β0 + β1(Zt − z) + . . .+ βq(Zt − z)q)

}
,

where F̂jz denotes the estimated conditional distribution of Xj given Z = z
for j = 1, 2, . . . , p. In Acar et al. (2011), the marginals are assumed to
be known, which is very unlikely in empirical applications. Abegaz et al.
(2012) extend to estimate the unknown marginals by the Nadaraya-Watson

estimator. Specifically, F̂jz(x) =
∑T
t=1 ωt(z) ·I(Xjt ≤ x), where

∑T
t=1 ωt =

1 or holds asymptotically, ωt(z) = Kh(Zt−z)∑T
t=1Kh(Zt−z)

, Kh(·) = K(·/h)/h is a

kernel function with bandwidth h and I(·) is an indicator function.
After estimating the nonparametric estimates of the marginals, Abegaz

et al. (2012) propose to maximize the following copula-based local pseudo
log-likelihood function:

L(β) =
T∑
t=1

log c
[
F̂1z(X1t), . . . , F̂pz(Xpt)|ψ−1(β0 + β1(Zt − z) + · · ·+ βq(Zt − z)q)

]
KhT (Zt − z)

(1)

with respect to β = (β0, β1, . . . , βq)
′. The smoothing parameter h in

equation (1) depends on the sample size T : the sequence h = hT converges
to zero as T extends to infinity. Denoting the local polynomial maximum
pseudo log-likelihood estimators as β̂ = (β̂0, β̂1, . . . , β̂q)

′, we can estimate

η(z) and its derivatives η̂(j)(z) through ηj(z) = j!β̂j for j = 0, 1, 2, . . . , q.

Consequently, the estimator of θ(z) can be written as θ̂(z) = ψ−1(η̂(z)) =
ψ−1(β0) and then an estimator of copula function C(u1, . . . , up|θ(z)) at
data point z can be obtained. Abegaz et al. (2012) suggest a sufficiently
fine grid of z−values in the definition domain of the covariate Z to estimate
the entire function θ(z). Under some standard conditions, Abegaz et al.

(2012) prove that, as T →∞, there exists solutions β̂ of the log-likelihood

equations ∂L(β)/∂βj = 0 for all j = 0, 1, 2, . . . , q such that β̂j is consistent
for estimating ηj(z) = η(j)(z)/j! for j = 0, 1, . . . , q.
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In practice, there are two important issues on using semiparametric es-
timation methods. The first is the bandwidth selection. Abegaz et al.
(2012) derive the theoretically optimal bandwidth and provide a rule-of-
thumb practical bandwidth selector.1 Besides, they also mention two al-
ternative classic methods: leave-one-out cross validation (LOOCV) and
Akaike Information Criterion (AIC). In our analysis we mainly use the
LOOCV to obtain the optimal bandwidth. The second issue is model se-
lection. The copula family is numerous and it is crucial for empirical users
to know which copula is the appropriate one. But in the real world, the
true copula is unknown to researchers and the accuracy of the estima-
tion is not directly comparable among different copulas. Therefore, we
need to set a criterion for the model selection problem. In this study,
we use the cross-validated prediction error (CVPE) method proposed in
Acar et. al (2011). Suppose we want to choose the best one from the
candidate copula set {Ck : k = 1, 2, . . . ,K}. For the kth candidate, the
selected optimal bandwidth is denoted to be hkopt and the estimated con-

ditional copula’s parameter is θ̂
(−t)
hkopt

with the point (X1t, X2t, . . . , Xpt, Zt)

left out. Correspondingly, the kth candidate copula model can be written

as Ck(u1t, u2t, . . . , upt|θ̂(−t)hkopt
(Zt)) with t = 1, 2, . . . , T and k = 1, 2, . . . ,K.

For the joint distribution of u1, u2, . . . , up, we use the conditional expecta-
tion to estimate the predictive ability for each copula in the candidate set.
Specifically, for u1,

Ê
(−t)
k (u1t|u2t, . . . , upt, Zt) =

∫ 1

0

u1ck(u1, u2t, . . . , upt|θ̂(−i)hkopt
(Zt))du1.

Thus, the CVPE or the model selection criterion is defined as

CV PE(Ck) =

T∑
t=1

{[
u1t − Ê(−t)

k (u1t|u2t, . . . , upt, Zt)
]2

+ · · ·

+
[
upt − Ê(−t)

k (upt|u1t, . . . , u(p−1)t, Zt)
]2}

,

and the copula candidate that yields the minimum CVPE is selected.

4. DATA

We collect quarterly Housing Prices Index (HPI) in nine census divisions
(New England (NE), Middle Atlantic (MA), East North Central (ENC),
West North Central (WNC), South Atlantic (SA), East South Central

1See p. 55 in Abegaz et al. (2012).
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(ESC), West South Central (WSC), Mountain (MT) and Pacific (PA))
from U.S. Federal Housing Finance Agency (FHFA). The data span from
1975:Q1 to 2016:Q4, a period witnesses five recessions.2 Figure 2 demon-
strates the path of each division’s percentage changes from the preced-
ing quarter in HPI and the five economic recessions (indicated by the five
shaded areas). The greatest volatility in home price happened in the late
1970s and early 1980s. Since then, home prices in most areas became less
volatile and appeared to follow an upward trend. The sharp turnaround
happened in 2006, the eve of the subprime mortgage crisis caused substan-
tial drop in home price for almost the whole country. Of the nine census
divisions, the Pacific division (including California, Oregon, Washington,
Alaska and Hawaii) displays the greatest fluctuation in home price after
2000. This finding is consistent with Shiller (2007), who points out that
the recent nationwide home price boom that started in 1998 was triggered
by the sharp home price increase in west coastal cities.

FIG. 2. Quarterly Percentage Change of HPI in 9 Census Divisions

P
er

ce
nt

1980 1990 2000 2010

−
5

0
5

10

ENC
ESC
MA
MT
NE
PAC
SA
WNC
WSC

Note: Shaded areas indicate U.S. economic recessions.

Table 2 documents the descriptive statistics of the quarterly HPI growth
rate in each division. The average growth rates are positive in all areas. The
estimated first-order autocorrelation coefficients ρ̂1 are positive and statis-
tically different from zero. However, preliminary examinations suggested
that autoregressive residuals and autoregressive conditional heteroscedas-
ticity exist in all areas, while the Ljung-Box test indicates that the series of
growth rate are serially correlated up to the fourth-order. To avoid spurious
dependence, we follow Chen and Fan (2006) and use AR(p)-GARCH(1,1)
models for filtering, while the order of AR, p, is selected based on Bayesian
Information Criterion (BIC). For example, we fit a series of growth rate to

2According to NBER, the five recession periods are Jan-Jul 1980, Jul 1981-Nov 1982,
Jul 1990-Mar 1991, Mar 2001-Nov 2001 and Dec 2007-Jun 2009.
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TABLE 2.

Descriptive Statistics

Census Division µ σ Skewness Kurtosis ρ̂1 LB(4)

(p−value) (p−value)

New England 0.0133 0.0207 -0.3292 3.0127 0.540
(0.00)

196.91
(0.00)

Middle Atlantic 0.0116 0.0188 0.4089 4.3577 0.358
(0.00)

100.69
(0.00)

East North Central 0.0093 0.0124 -0.4723 5.1899 0.599
(0.00)

188.58
(0.00)

West North Central 0.0022 0.0138 1.0254 7.6951 0.252
(0.00)

87.61
(0.00)

South Atlantic 0.0105 0.0158 -0.2513 5.9615 0.461
(0.00)

147.89
(0.00)

East South Central 0.0099 0.0143 0.5985 9.5373 0.085
(0.07)

42.68
(0.00)

West South Central 0.0098 0.0137 0.3657 5.3837 0.457
(0.00)

163.31
(0.00)

Mountain 0.0116 0.0185 -0.3755 4.3248 0.568
(0.00)

195.35
(0.00)

Pacific 0.0155 0.0225 -0.4068 4.6189 0.834
(0.00)

371.25
(0.00)

Note: This table documents the summary of quarterly growth rate of for the 9 U.S. census
divisions from 1975:Q1 to 2016:Q4. µ is the mean, σ is the standard deviation. ρ̂1 is the first-
order autocorrelation with p−value in parenthesis. LB(4) is the Ljung-Box test to the fourth
order autocorrelation with p−value in parenthesis.

TABLE 3.

Results of AR(p)-GARCH(1,1) filtering

Census Division AR(p) part (up to order 3) GARCH(1,1) part

γ ω α1 β1
(p−value) (p−value) (p−value) (p−value)

New England 0.489
(0.00)

, 0.089
(0.30)

, 0.297
(0.00)

0.000
(0.22)

0.112
(0.02)

0.848
(0.00)

Middle Atlantic 0.483
(0.00)

, −0.082
(0.27)

, 0.467
(0.00)

0.000
(0.07)

0.285
(0.00)

0.668
(0.00)

East North Central 0.468
(0.00)

, −0.166
(0.08)

, 0.346
(0.00)

0.000
(0.18)

0.255
(0.01)

0.760
(0.00)

West North Central 0.351
(0.00)

, 0.098
(0.24)

0.000
(0.04)

0.266
(0.00)

0.714
(0.00)

South Atlantic 0.401
(0.00)

, 0.112
(0.11)

, 0.232
(0.00)

0.000
(0.05)

0.272
(0.00)

0.684
(0.00)

East South Central 0.298
(0.00)

, 0.036
(0.64)

, 0.331
(0.00)

0.000
(0.00)

0.343
(0.00)

0.631
(0.00)

West South Central 0.452
(0.00)

, −0.070
(0.29)

, 0.371
(0.00)

0.000
(0.05)

0.488
(0.00)

0.509
(0.00)

Mountain 0.472
(0.00)

, −0.036
(0.69)

, 0.350
(0.00)

0.000
(0.16)

0.269
(0.00)

0.720
(0.00

Pacific 0.732
(0.00)

, −0.087
(0.40)

, 0.255
(0.00)

0.000
(0.19)

0.257
(0.02)

0.603
(0.00)
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an AR(1)-GARCH(1,1) process specified as

yit = δi + γi1yi,t−1 + εit,

where yit denotes the growth of home price at time t for division i and
εit = σit× eit with eit following a Normal distribution with mean zero and
conditional variance defined as

σ2
it = ωi + αi1ε

2
i,t−1 + βi1σ

2
i,t−1.

The results of AR(p)-GARCH(1,1) for each division are presented in Ta-
ble 3. For some divisions, an AR(2) process is sufficient to capture the
autocorrelation of the quarterly growth while others need an AR(3) pro-
cess. Table 3 summarizes the coefficients of AR(p)-GARCH(1,1) filtering
and most of the results are statistically significant. After estimation, a new
series of ỹit (i = 1, 2, . . . , 9) are calculated as

ỹit =
ε̂it√

ω̂i + α̂i1ε̂2i,t−1 + β̂i1σ̂2
i,t−1

.

Thus, we create a new “filtered” series (ỹ1t, ỹ2t, . . . , ỹ9t) which excludes
the potential autoregressive and GARCH effect. In the next step, we will
substitute the filtered HPI growth rates into copulas to estimate how the
dependence structure, measured by the copula parameter, evolves with
respect to some macroeconomic factors such as GDP growth and unem-
ployment rate.

5. TIME-VARYING DEPENDENCE STRUCTURE

Before examining how the dependence structure across different areas
adjusts to some fundamental economic factors, we first investigate whether
the dependence itself is time-varying over the 40 years.

One widely used parametric method to estimate such a dynamic correla-
tion in multivariate models is the dynamic conditional correlation (DCC)
respectively proposed by Tse and Tsui (2002) and Engle (2002). They as-
sume that, for k assets, the conditional correlation matrix ρt follows the
model

ρt = (1− γ1 − γ2)ρ + γ1ρt−1 + γ2Ψt−1,

where γ1 and γ2 are scalar parameters, ρ is a k×k positive-definite matrix
with unit diagonal elements, and Ψt−1 is the k×k correlation matrix. Engle
(2002) proposes that ρt = DtQtDt, where Qt = (qij,t)k×k is a positive-
definite matrix that satisfies Qt = (1−γ1−γ2)Q̄+γ1ηt−1η

′
t−1+γ2Qt−1 and
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Dt = diag(1/
√
q11,t, . . . , 1/

√
qkk,t). Here, ηt is the standardized innovation

vector, Q̄ is the unconditional covariance matrix of ηt, and γ1 and γ2
are nonnegative scalar parameters. Dt matrix is a normalizing matrix to
make ρt is a correlation matrix. Engle (2002) recommends a two-step
method to estimate this model. Hafner and Reznikova (2010) propose a
semiparametric method to estimate the dynamic copula which allows the
copula parameter to vary over time. Their semiparametric method includes
the estimation of the marginals at the first stage and the estimation of the
copula parameter after replacing unknown marginals with the estimated
ones at the second stage. In our case, we impose log transformation on

c(F1(x1t), F2(x2t), . . . , F9(x9t)) =
∂9C

∂F1∂F2 · · · ∂F9
· f1 × f2 × · · · × f9,

which is the pdf version of F (x1t, x2t, . . . , x9t) = C(F1(x1t), F2(x2t), . . . , F9(x9t); θ).
Then, we obtain the log likelihood for a sample with T observations:

L(θ) =

T∑
t=1

Lτ (θ)

=

T∑
t=1

{
log

∂9Cτ (F1(x1t), F2(x2t), . . . , F9(x9t)

∂F1∂F2 · · · ∂F9

}

+

T∑
t=1

{log f1(x1t) + · · ·+ log f9(x9t)}

= LC(θ) + LV .

Since the second term, LV , does not contain θ, we concentrate on the first
term LC(θ) to estimate θ. In this analysis, for simplicity, we estimate all
the marginals via rescaled empirical CDFs at the first stage:

F̂i(xi) =
1

T + 1

T∑
t=1

I(xit ≤ xi), i = 1, 2, . . . , 9,

where I(·) is an indicator function. We replace the unknown marginals
with the estimated empirical CDFs. Then, at the second stage, define the
local likelihood function

L̃(θ;h, τ) =

T∑
t=1

l(F̂1(x1t), F̂2(x2t), . . . , F̂9(x9t); θ) ·Kh(t/T − τ),

where τ ∈ [0, 1], l(F̂1(x1t), F̂2(x2t), . . . , F̂9(x9t); θ) = log Cθ(F̂1(x1t),F̂2(x2t),...,F̂9(x9t))

∂F̂1∂F̂2···∂F̂9
,

Kh(·) = K(·/h)/h is the kernel function with bandwidth h selected through
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an Extended Residual Square Criterion (ERSC) suggested by Fan et al.
(1998). Then, the local likelihood estimator of the function θ(τ) could be
obtained through

θ̂(τ) = arg max
θ
L̃(θ;h, τ).

FIG. 3. Transform to Kendalls τ of the estimated time-varying copula dependence
parameter θ(τ) for the nine census divisions.
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(d) Frank

We apply this method to Gaussian, Clayton, Gumbel and Frank copula,
respectively. Since different copulas’ parameters are not directly compara-
ble, we convert the time-varying copula parameter θ̂t into Kendall’s τt and
plot them (solid line) in Figure 3. All the four copulas display similar pat-
terns of Kendall’s τ over the 40 years. For model selection, following Hafner
and Reznikova (2010), we choose Gaussian copula because it exhibits the
lowest BIC among the four candidates for the case of time-invariant copula
parameters as shown in Table 4. The plot displays how the dependence
structure across the 9 housing markets evolved over 1975-2016. Before the
mid-1980s, regional home prices appeared to be mutually irrelevant because
of the low association. This is consistent with our observation in Figure 2
which exhibits some volatility before the mid-1980s. Since then, the depen-
dence started an upward trend, increasing remarkably from 0.1 to 0.7 in
2000. After a temporary adjustment during early 2000s, following the col-
lapse of the housing market in 2006, regional home prices resumed strong
association as was in the 1990s. For comparing purposes, we additionally
calculate the Kendall’s τ obtained from each time-invariant copula and
draw it in the plot (blue dot-dashed line), respectively. The time-invariant
Kendall’s τs appear to underestimate the strengthened dependence after
1990s but overestimate the low degree of association before 1980. Such a
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difference should be expected because the time-invariant Kendall’s τ is a
balance of strong and weak dependence in regional home prices over the
whole sample period. According to Figure 3, the correlation of regional
housing prices indeed behaved differently over the 40 years and the degree
of association was strengthened after the recent recession.

TABLE 4.

Fit of Gaussian, Clayton, Gumbel and Frank for the 9 Census Divisions with
the estimated time-invariant dependence parameter θ and Kendall’s τ .

Copula BIC τ
(S.E.)

θ
(S.E.)

Gaussian −230.882 0.28
(0.00)

0.426
(0.021)

Clayton −221.282 0.21
(0.00)

0.528
(0.036)

Gumbel −230.800 0.38
(0.00)

1.626
(0.073)

Frank −153.162 0.28
(0.00)

2.687
(0.173)

As we discussed earlier, compared with DCC and the dynamic factor
model by Kallberg et al. (2014), the main advantage of copula is that it
is able to detect the nonlinear dependence structure among multiple as-
sets simultaneously and identify their comovement during some extreme
scenarios. For comparing purposes, we also apply DCC and calculate the
pairwise dynamic correlations between several regions. Figure A1 in the
supplementary appendix shows that even though DCC finds fluctuating
correlations between regional housing markets, it does not effectively cap-
ture the sharp increase in dependence among these regions during the most
recent housing price boom. Kallberg et al. (2014)’s dynamic factor model
indeed finds the strengthened correlation among the 14 large U.S. cities
since 2000, but fails to identify the remarkable comovement during the
1990s. This comparison provides further evidence on copula’s ability to
capture the tail dependence among multiple assets. In the next section, we
will use the conditional copula to investigate how the correlation adjusts
to some fundamental economic factors.

6. ESTIMATION RESULTS

We collect 6 national economic factors from the Federal Reserve Eco-
nomic Data (FRED): quarterly growth of per capita real GDP (GDP ),
residential investment as a percent of GDP (INV ), mortgage debt service
payments as a percent of disposable personal income (DEBT ), civilian
unemployment rate (UNE), quarterly growth of real disposable personal
income (INC), and real federal funds rate (RINT ). All these factors can,
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to some extent, mirror the macroeconomic situation and are tracked closely
by investors and policy makers.

FIG. 4. Quarterly percentage change of GDP (Q2:1975-Q4:2016) and four copulas’
paths of Kendall’s τ along with the quarterly percentage change of GDP. The percentage
change of GDP is calculated based on the real GDP inflated by 2009 dollar. The shaded
areas represent the date of U.S. recessions computed by NBER.
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Revenue from housing market is an important source of the national
account and housing’s combined contribution to GDP is about 15-18% on
average (Bureau of Economic Analysis). Figure 4a displays the quarterly
growth of per capita real GDP from 1975 to 2016 and it is evident that
per capita GDP declined substantially during the five recessions. We plot
the relationship between the interdependence across the 9 regional housing
markets and the growth of GDP in Figure 4b. According to Figure 4b, all
four types of copula exhibit similar paths of Kendall’s τ and the magnitude
of dependence is relatively larger when the economy becomes contracted.
In other words, regional home prices tend to crash simultaneously when a
recession is looming. But such a lower-tail dependence is weakened when
GDP resumes positive growth. Kendall’s τ decreases from 0.3 to about 0.1.
In general, the magnitude of dependence is low when we use GDP as the
covariate. One possible explanation is that, as indicated in Figure 2, the
comovment across housing markets in different areas are not substantial
or only appeared in some of those areas during the normal periods due
to some regional-specific idiosyncratic factors which are not controlled by
conditional copulas.

Housing’s contribution to GDP is mainly through two channels. The
first channel is the consumption spending on housing services, which in-
creased from 3,992 billion dollars in 1980 to 11,572 billion dollars in 2016
(Bureau of Economic Analysis). The second channel is the residential in-
vestment, which includes construction of new single-family and multifamily
structures, residential remodeling, production of manufactured homes, and
brokers fees. From 1980 to 2005, the residential investment increased from
333 billion dollars to 873 billion dollars, but then sharply dropped to 382
billion dollars in 2010. Shiller (2007) identifies that residential investment is
highly correlated with the business cycle and, as documented in Figure 5a,
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FIG. 5. Residential investment as percent of GDP (Q2:1975-Q4:2016) and four
copulas’ paths of Kendall’s τ along with residential investment as percent of GDP. The
shaded areas represent the date of U.S. recessions computed by NBER.

P
er

ce
nt

1980 1990 2000 2010

3
4

5
6

(a) Residential Investment (INV ) as

Percent of GDP

3 4 5 6

0.
1

0.
2

0.
3

0.
4

0.
5

E
st

im
at

es
 o

f K
en

da
ll'

s 
ta

u

Gaussian
Clayton
Gumbel
Frank

(b) Kendall’s τ by INV

residential investment as a percent of GDP has notably decreased during
four marked recessions, except for the one in 2001. Figure 5b shows that the
degree of dependence is larger when the portion of residential investment
in GDP is low. In other words, it implies that the strongest interdepen-
dence is expected when the residential investment level remarkably drops,
which usually occurs in times of crisis. This finding is consistent with the
result conditional on GDP growth, and compared with Figure 4b, the de-
gree of dependence becomes much larger when using the ratio of residential
investment in GDP as the covariate.

FIG. 6. Mortgage debt service payments as a percent of disposable personal income
(DEBT ) (Q1:1980-Q4:2016) and four copulas’ paths of Kendall’s τ along with mortgage
debt service payments as a percent of disposable personal income. The shaded areas
represent the date of U.S. recessions computed by NBER.
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(b) Kendall’s τ by DEBT

We then examine how the dependence structure adjusts to the mort-
gage debt service payments as a percent of disposable personal income.
Since most housing transactions are debt financed, this ratio can partially
measure the individual average debt payment ability. As displayed in Fig-
ure 6a, the percentage of mortgage payment is prominently high during all
five recessions, and then sharply dropped in the midst of recessions. For ex-
ample, in the eve of the latest recession in 2007-2008, the ratio of mortgage
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debt payments in disposable personal income reached its historical high at
about 7.1%. However, following the burst of housing bubble, banks have
tightened their lending criteria and adjustable rate mortgages become less
common. At the end of 2016, the ratio of mortgage debt service payments
to disposable income decreased to only 4.5%. Landier et al. (2017) provide
further evidence about how banking integration propagate regional home
price movement to other states: When banks face idiosyncratic shocks and
have branches in multiple states, their lending activity induces home price
comovement. Such an integration among banks could, to some extent,
explain why mortgage debt level is useful to monitor home price depen-
dence, because the banking integration since 1980s makes mortgage debt
becomes more convenient and attainable. In Figure 6b, all four copulas
give similar patterns of Kendall’s τ along with the ratio of mortgage debt
payments. The dependence is weak when the portion of mortgage pay-
ments is low, but becomes strengthened as the ratio increases. During the
so called “irrational exuberance” (Shiller, 2007) and when consumers ex-
press mass desires to buy homes, mortgage debts will build up rapidly and
home prices in different regions will increase simultaneously, leading to the
stronger interdependence.

FIG. 7. Quarterly unemployment rate (Q2:1975-Q4:2016) and four copulas’ paths
of Kendall’s τ along with the unemployment rate. The shaded areas represent the date
of U.S. recessions computed by NBER.
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(b) Kendall’s τ by UNE

High unemployment rate is another feature of economic recessions. Fig-
ure 7b indicates that, during the “normal” time or when the unemployment
rate is moderate, the association among regional home prices seems to be
weak. When job cuts become pervasive, financial pressure caused by lay-off
will lower the demand for new houses so that home prices tend to move
down. On the other hand, low unemployment rate will spur demands for
new houses, and such a high demand will lead to an increase in price, as
evidenced by 1990s. Under this circumstances, the association in home
prices will also become stronger. Following this argument, we find similar
U-shape Kendall’s τ curves in Figure 8, which displays how the dependence
changes along with the quarterly growth of real personal income. It implies
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that both substantial increase and decrease in personal income will lead to
remarkable synchronization in home prices.

FIG. 8. Quarterly percentage change of real per capita income (Q2:1975-Q4:2016)
and four copulas’ paths of Kendall’s τ along with the quarterly percentage change of
real per capita income. The shaded areas represent the date of U.S. recessions computed
by NBER.

P
er

ce
nt

1980 1990 2000 2010

−
4

−
2

0
2

4

(a) Quarterly Change of Real Income

(INC)

−4 −2 0 2 4

0.
2

0.
4

0.
6

0.
8

E
st

im
at

es
 o

f K
en

da
ll'

s 
ta

u

Gaussian
Clayton
Gumbel
Frank

(b) Kendall’s τ by INC

FIG. 9. Quarterly real federal funds rate (Q2:1975-Q4:2016) and four copulas’ paths
of Kendall’s τ along with the quarterly real federal funds rate. The quarterly real federal
funds rate is computed by subtracting the rate of increases of the CPI (all items less
shelter) for the past 12 months. The shaded areas represent the date of U.S. recessions
computed by NBER.
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Interest rate is another factor that affects consumers’ desire to buy
houses. During a booming period, the Fed tends to increase the federal
funds rate to cool down the over-heated economy and speculative invest-
ment. High interest rate will increase consumers’ cost and thus dampen
their demands for new homes, leading to a reduction in housing prices.
On the contrary, in times of crisis, to stabilize the economy, the Fed often
chooses to decrease the interest rate. Figure 9a shows the real federal funds
rate computed by subtracting the rate of increases of the CPI (all items
less shelter) for the past 12 months decreased sharply in all the five reces-
sion since 1975. Correspondingly, demands for houses will be spurred by
the low interest rate and the loose monetary policy, leading to a new wave
of increase in home price. This hypothesis is confirmed by Figure 9b. It
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shows that the degree of interdependence across the nine divisions is rather
low when the real interest rate is high. When the Fed gradually decreases
the interest rate, the interdependence becomes strengthened and its degree
will be increased to about 0.6 - 0.8.

In summary, adopting the semiparametric estimation to the conditional
copula, we find that the dependence across regional housing markets indeed
adjusts to different levels of the fundamental economic factors. Regional
housing markets tend to crash simultaneously in times of crisis due to the
dampened demands for new houses, which is in line with Rodriguez (2007),
Zimmer (2012) and Kallberg et al. (2014). Rapid expansion in personal
mortgage debt is anther important reason for strengthened synchronization
among regional housing markets. On the other hand, we find that home
price is not monotonically correlated to unemployment rate and personal
income. Such an interesting finding implies that correlation in home price
is partially determined by the demand side: a booming economy and an
active labor market generate more demands for houses and spur home price,
while a dim economy and lowered income dampen housing demands and
lead to a downward comovment. For policy makers, our findings provide
further evidence that demand and desire of purchasing houses exhibit large
impact on home price. Policies aiming to encourage personal mortgage
and labor participation will not only spur home price, but also promote
synchronization among regional housing markets.

There are a number of caveats to these findings. One concern is that
there exists many other regional and even metro-specific idiosyncratic fac-
tors that drive the comovement within that area and those factors may
explain a large portion of the volatility (Fu, 2007). Our analysis only con-
siders how national factors, such as interest rate, affect the dependence
structure. However, considering that the recent boom in housing price is
a nationwide phenomenon, we believe that the effect of state- or regional-
specific factors is relatively small. The second limitation is that, even
though the comovement adjusts to the six national economic factors, we
can not identify which are the determinants of dependence, because many
factors are closely correlated to each other. One way to select the useful
covariates is to extend the current univariate x in θ(x) to a p−dimension,
say θ(xt), where xt = {x1t, x2t, . . . , xtp}′, and then choose those exhibit
strong explaining power to the variation of the copula parameter θ under
certain selection criterion. This will extend the current conditional copula
to a single index copula, which deserves another research in the future and
is beyond the scope of this study.
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7. CONCLUSION

We adopt a semiparametric method to study how the dependence across
housing markets in nine U.S. census divisions evolves along with several
economic indicators. We first prove that the U.S. residential real estate
market have become more integrated since the mid-1980s and the conven-
tional time-invariant copula fails to capture the substantially strengthened
association during the economic expansion periods. Then we identify the
relationship between the dependence and six fundamental economic fac-
tors and conclude that the association among regional housing markets is
affected by the macro economic situation and the monetary policy. Even
though conditional copula is unable to identify the causal relationship be-
tween the dependence structure and those economic factors, our findings
will help investors and home buyers to analyze and evaluate the system-
atic risk in the nationwide housing market. A more thorough analysis to
identify which factors determine the dependence structure requires a more
generalized conditional copula model, which will inspire more comprehen-
sive researches in the future.

APPENDIX

FIG. 1. Time-varying correlations estimated by DCC. SA = South Atlantic, NE =
New England, ESC = East South Central, MA = Middle Atlantic, MT = Mountain.
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