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Uniqueness and Determinacy of the Romer (1990) Model*

Rongsheng Tang, Gaowang Wang, and Jin Wang†

Romer (1990) solves a steady state (or balanced growth path) of his famous
model by a smart conjecture and the proof of uniqueness and the saddle-point
stability is examined under a simplified version (Arnold, 2000a, 2000b). Our
paper provides a proof in the full model with the method of reduction of dimen-
sionality. Moreover, we introduce a set of policy instruments which improve
the monopolistic competitive equilibrium allocation up to social optimum.
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1. INTRODUCTION

Endogenous growth theory has greatly improved economists’ understand-
ing of how technological change generates persistent economic growth.
Romer’s (1990) model of endogenous technological change, is the most
influential endogenous growth model with costly R&D activities. Romer
(1990) solves a steady state (or a balanced growth path) by an ingenious
conjecture and develops important economic intuitions on the steady state,
and the proof of the uniqueness and saddle-point stability of the steady
state open is examined under a simplified version (Arnold, 2000a, 2000b).
Our paper provides a proof in the full model with the method of reduction
of dimensionality.

In this paper, we solve the Romer model by changing a four-dimensional
dynamic system describing the Romer economy into a three-dimensional
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one. This method of reduction of dimensionality is developed by Mulligan
and Sala-i-Martin (1993) and used by Benhabib and Perli (1994) and Ben-
habib, Perri and Xie (1994). We prove that the steady state exists uniquely
and is saddle-point stable in both the decentralized economy and the social
planner economy. That is, we give a complete characterization of the solu-
tion of the Romer model. Besides, due to the welfare loss of the monopoly
production of the producer durables, the equilibrium growth rate is lower
than the optimal growth rate in the Romer model. To examine whether
the government does play a role in reducing the welfare cost, we introduce
a set of policy instruments which improve the monopolistic competitive
equilibrium allocation up to social optimum.

In the literature, some authors have discussed partially about this is-
sue. By simplifying the Romer model, Arnold (2000a, 2000b) examines the
saddle-point stability of a conjectured steady state for the monopolistic
competitive equilibrium and the social optimum respectively. This simpli-
fication misses some important information, such as how to comprehend
and write down the consumer’s budget constraint correctly. Asada, Semm-
ler and Novak (1998) investigates attentively the steady state of the social
optimum in the Romer model in a very complicated way. By introducing
the complementarity between the intermediate goods or externalities, other
authors derive more complex dynamics such as (expectational) indetermi-
nacy (Benhabib, Perri and Xie, 1994; Asada, Semmler and Novak, 1998;
Evan, Honkapohja and Romer, 1998) and Hopf bifurcation (Slobodyan,
2007).

The remainder of the paper is organized as follows. In section 2, we solve
the decentralized economy of the Romer model and prove the existence,
uniqueness and stability of the steady state. In section 3, we examine the
social planner economy. In section 4, we introduce a set of policy rules in
the decentralized economy to support the social optimum. Finally, Section
5 concludes.

2. THE DECENTRALIZED ECONOMY OF THE ROMER
MODEL

2.1. The model set-up and the equilibrium dynamic system

There are three sectors in the production side of the economy: a final-
good sector, an intermediate-goods sector and a research sector. The final-
good sector utilizes human capital, HY t, labor, L, and all intermediate
goods, {xit, i ∈ [0, At]}, to produce the final good with the generalized

Cobb-Douglas production function, Yt = Hα
Y tL

β
∫ At
i=0

x1−α−β
it di. The profit
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maximization problem of the representative firm in the final-good sector is:

max
HY t,L,xit

Hα
Y tL

β

∫ At

i=0

x1−α−β
it di− wHtHY t − wLtL−

∫ At

i=0

pitxitdi.

The marginal productivity conditions for human capital and raw labor
force are1:

αHα−1
Y t Lβx1−α−β

t At = wHt, H
α
Y tβL

β−1x1−α−β
t At = wLt, (1)

and the (inverse) demand function for intermediate good i is

pit = Hα
Y tL

β (1− α− β)x−α−βit , i ∈ [0, At] . (2)

Each intermediate good is produced by a monopolistic firm. The decision
process of any monopolistic firm can be separated into two steps. Step 1: it
pays the price PAt to buy the patent for producing intermediate good i in
the competitive patents market, which is the sunk cost for the monopolistic
firm. Since the patents market is competitive, the price of new design i
is the discounted present value of the profits flow extracted by firm i, i.e.,
PAt =

∫∞
τ=t

πτ exp
(
−
∫ τ
s=t

rsds
)
dτ .2 Differentiating it on both sides with

respect to t yields the differential equation of PAt,

·
PAt = rtPAt − πt. (3)

Step 2: in the monopoly pricing problem, monopolistic firm i rents capital
(as variable costs) and produces intermediate good i to meet the demand
of the final-good sector for its products, i.e., (2). It is assumed that the
unit cost for any intermediate good is the same η (> 0) units of capital.
Solving the monopoly pricing problem of any intermediate good i, namely,
πit = max

pit,xit
pitxit − rtηxit, we have the symmetric monopolistic pricing

formula:

pit =
rtη

(1− α− β)
≡ pt, (4)

where rtη is the marginal cost for producing additional unit of any inter-
mediate good, and 1/ (1− α− β) (> 1) is the mark-up over the marginal
cost. Thus all monopolistic firms set the same monopoly price pt, pro-
duce the same amount xt (due to (2)), and earn the same monopoly

1Notice that the expressions for the marginal productivity conditions have utilized
the symmetric property of the model that will be derived in the subsequent analysis.

2We omit the superscript of P i
At because of the derived symmetric property of the

model.
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profit πt = (α+ β) ptxt. Furthermore, the total capital stock is related
to the durable goods that are actually used in production by the rule

Kt =
∫ At
i=0

ηxitdi = ηxtAt.
The research sector uses the knowledge stock At and human capital HAt

to produce new knowledge, namely,

·
At = δAtHAt = δAt (H −HY t) , (5)

where the second equality follows from the fact that the sum of the human
capital used in the research sector HAt and in the final-good sector HY t

must be equal to the total stock of human capital in the economy H. Free
mobility and no arbitrage require that the rental rate of human capital
must be equal in the research sector and in the final-good sector, namely,

PAtδAt = wHt = αHα−1
Y t Lβx1−α−β

t At. (6)

The representative consumer’s utility maximization problem is summa-
rized as follows:

max
Ct,Kt

∫ ∞
t=0

e−ρt
C1−σ
t − 1

1− σ
dt,

subject to the flow budget constraint (FBC)3:

·
Kt = wHtHY t + wLtL+ rtKt +

∫ At

i=0

πitdi− Ct, (7)

where ρ ∈ (0, 1) is the time discount rate and 1/σ ∈ (0,+∞) is the elas-

ticity of intertemporal substitution (EIS). The Euler equation is:
·
Ct/Ct =

1
σ (rt − ρ). Substituting (2), (4), and Kt = ηxtAt into the Euler equation
leads to the dynamic equation of consumption

·
Ct
Ct

=
1

σ

[
(1− α− β)

2
ηα+β−1Hα

Y tL
βK
−(α+β)
t A

(α+β)
t − ρ

]
. (8)

3Note that HY t (rather than H) enters the budget constraint of the representative
consumer. The part HY t of the total human capital stock H is determined endogenously
both by the utility-maximizing behaviors of consumers and the profit-maximizing be-
haviors of the firms in the final-good sector. The other part HAt of H is pinned down by
the market-clearing condition of human capital rather than the optimum in the research
sector. If we replace HY t by H in the FBC, then there will be inconsistancy between
the FBC and the resource constraint in competitive equilibrium.
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Putting (1), (2) and (4) into (7) gives us the dynamic equation of physical
capital

·
Kt

Kt
= ηα+β−1Hα

Y tL
βK
−(α+β)
t A

(α+β)
t − Ct

Kt
, (9)

which is essentially the resource constraint.
Substituting Kt = ηxtAt into (6) and taking logarithmic derivative on

both sides with respect to t give us

·
PAt
PAt

= (α+ β − 1)

·
At
At

+ (α− 1)

·
HY t

HY t
+ (1− α− β)

·
Kt

Kt
.

Plugging (2), (4), and (6) into (3) turns out to

·
PAt
PAt

= (1− α− β)
2
ηα+β−1Hα

Y tL
βK
−(α+β)
t A

(α+β)
t − δ

Λ
HY t,

where Λ = α/ (α+ β) (1− α− β). Combining the above two equations
and using (5) and (9) yield us the dynamic equation of HY t:

·
HY t

HY t
=

{
(1−α−β)(α+β)

1−α ηα+β−1Hα
Y tL

βK
−(α+β)
t A

(α+β)
t +

δΛ(1−α−β)+δ
Λ(1−α) HY t − (1−α−β)

1−α
Ct
Kt
− (1−α−β)δH

1−α

}
. (10)

The dynamic system composed of the four differential equations (5), (8),
(9) and (10) describes the equilibrium dynamics of the model economy,
with two state variables (K,A), two control variables (C,HY ), and two
initial conditions K0, A0.

2.2. Saddle-point stability of the balanced growth path

To study the transitional dynamics implied by the model, we reduce the
dimensionality of the problem from four to three by a change of variable
very similar to those used in Mulligan and Sala-i-Martin (1993), Benhabib
and Perli (1994), and Benhabib, Perli and Xie (1994). Thus we define

yt ≡ η(1−α−β)/(α+β)Kt/At and qt ≡ Ct/Kt. Since
·
yt/yt =

·
Kt/Kt −

·
At/At

and
·
qt/qt =

·
Ct/Ct −

·
Kt/Kt, we have:

·
yt
yt

= y
−(α+β)
t Hα

Y tL
β − qt − δ (H −HY t) , (11)
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·
HY t

HY t
=

(1− α− β) (α+ β)

1− α
y
−(α+β)
t Hα

Y tL
β +

δΛ (1− α− β) + δ

Λ (1− α)
HY t

−1− α− β
1− α

qt −
1− α− β

1− α
δH, (12)

·
qt
qt

=

(
(1− α− β)

2

σ
− 1

)
y
−(α+β)
t Hα

Y tL
β − ρ

σ
+ qt. (13)

This is a reduced three-dimensional dynamic system in yt, HY t and qt;
its dynamics is equivalent to that of the original four-dimensional system
in the sense that its steady states correspond to the BGPs of the original
four-dimensional model. Then the unique steady state (BGP) is solved as

y∗ =

(
H∗αY Lβ (1− α− β)

2
(1 + σΛ)

ρ+ δHσ

) 1
α+β

,

H∗Y =
Λ (ρ+ δHσ)

δ (1 + σΛ)
, (14)

q∗ =
(ρΛ− δH) (1− α− β)

2
+ (ρ+ δHσ)

(1− α− β)
2

(1 + σΛ)
.

Substituting (14) into (5), we solve the equilibrium growth rate on the
BGP as

g∗ =
δH − ρΛ

1 + σΛ
, (15)

which is exactly the conjectured equilibrium BGP in Romer (1990).
Before studying the stability of the equilibrium BGP, we talk about the

parameter values in the model. Due to H∗Y ∈ (0, H), we know from (14)
that

δH − ρΛ > 0. (16)

For the convergence of the objective function on the BGP, we need to
impose the restriction ρ− (1− σ) g∗ > 0, implying that

σ >
δH − ρ (1 + Λ)

δH
. (17)

Hence if the equilibrium BGP in Romer model makes sense, then the two
restrictions on parameter values, (16) into (17), will be implicitly assumed.

Then we examine the stability of the BGP. For this purpose, we de-

fine zt ≡ y
−(α+β)
t Hα

Y tL
β , w1 ≡ (1− α− β) (α+ β) / (1− α) and w2 ≡
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(1− α− β)
2
/σ − 1. Linearizing the three-dimensional dynamic system

composed of (11)-(13) around the steady state (14), we obtain the Jaco-
bian matrix evaluated at the steady state, namely,

J =


− (α+ β) z∗

(
αz∗

H∗
Y

+ δ
)
y∗ −y∗

− (α+ β)w1z
∗H∗

Y

y∗ αw1z
∗ + δΛ(1−α−β)+δ

Λ(1−α) H∗Y −
1−α−β

1−α H∗Y
− (α+ β)w2z

∗ q∗
y∗ αw2z

∗ q∗
H∗
Y

q∗

 .
It is easy to know that

det (J) = −δ (α+ β) (1− α− β)
2

(1 + 1/σΛ)

1− α
z∗q∗H∗Y = Π3

i=1λi < 0.

(18)
The negative determinant of the Jacobian matrix establishes that two pos-
sibilities will occur: (i) there is one negative eigenvalue and two other
eigenvalues with negative real parts; (ii) there is one negative real eigen-
value and two other eigenvalues with positive real parts. Now we examine
the sign of the trace of the Jacobian matrix,

trace (J) =

(
(ρ+ δHσ)

[
2− 2α− β + α (α+ β) + Λ (1− α− β)

2
]

− (δH − ρΛ) (1− α) (1− α− β)

)
(1 + σΛ) (1− α) (1− α− β)

=

3∑
i=1

λi.

(19)
Obviously, the denominator of the trace (J) is positive. Then the sign of
trace (J) is identical to its numerator. And the positivity of the numerator
is equivalent to the inequality

σ >
(1− α) (1− α− β)

A
− ρ

δH

[
1 +

Λ (1− α) (1− α− β)

A

]
≡ Ξ, (20)

where

A ≡ 2− 2α− β + α (α+ β) + Λ (1− α− β)
2
> 0.

Due to (16), we have

δH − ρ (1 + Λ)

δH
− Ξ =

δH − ρΛ

δH

A− (1− α) (1− α− β)

A
> 0. (21)

Combining equations (17) and (21), we know that (20) holds, which tells
that the trace of the Jacobian matrix is positive. Hence case (ii) holds. The
number of the stable eigenvalue is equal to the number the state variable,
which establishes that the BGP is saddle-point stable. Given the initial
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values of the state variables, the economy converges to the unique steady
state along the unique stable manifold.

3. SOCIAL PLANNER ECONOMY AND SOCIAL OPTIMUM

3.1. Optimal growth path

In this section we present the optimal optimum of the Romer (1990) by
reviewing the social planner economy. The social planner maximizes the
representative agent’s objective function

max
Ct,Kt

∫ ∞
t=0

e−ρt
C1−σ
t − 1

1− σ
dt,

subject to the social resource constraint

·
Kt = ηα+β−1Hα

Y tL
βK

1−(α+β)
t A

(α+β)
t − Ct,

and the knowledge accumulation equation

·
At = δAt (H −HY t) ,

with the given initial values of capital and knowledge (K0, A0). Applying
Pontryagin’s maximum principle and arranging these necessary conditions,
we derive the following four-dimensional dynamic system with respect to
Ct, Kt, At and HY t as follows:

·
Ct
Ct

=
1

σ

[
(1− α− β) ηα+β−1Hα

Y tL
βK
−(α+β)
t A

(α+β)
t − ρ

]
, (22)

·
Kt

Kt
= ηα+β−1Hα

Y tL
βK
−(α+β)
t A

(α+β)
t − Ct

Kt
, (23)

·
At
At

= δ (H −HY t) , (24)

·
HY t

HY t
=

(1− α− β) + β/α

(1− α)
δHY t −

(1− α− β)

1− α
Ct
Kt

+
(α+ β) δH

1− α
. (25)

Using the reduction of dimension similar to the above section and setting
yt ≡ η(1−α−β)/(α+β)Kt/At and qt ≡ Ct/Kt, we obtain the following equiv-
alent three-dimensional dynamic system:

·
yt
yt

= y
−(α+β)
t Hα

Y tL
β − qt − δ (H −HY t) , (26)



UNIQUENESS AND DETERMINACY OF THE ROMER (1990) MODEL 79

·
HY t

HY t
=

(1− α− β) + β/α

(1− α)
δHY t −

(1− α− β)

1− α
qt +

(α+ β) δH

1− α
, (27)

·
qt
qt

=

(
(1− α− β)

σ
− 1

)
y
−(α+β)
t Hα

Y tL
β − ρ

σ
+ qt. (28)

3.2. Stability of the optimal BGP

The steady state (or BGP) of the social planner economy is solved as

Ho
Y =

ρ− δH (1− σ)

δ (σ + β/α)
,

yo =

(
Ho
Y L

β (1− α− β) (β + ασ)

βρ+ δHσ (α+ β)

) 1
α+β

, (29)

qo =

{
ρ [α (1− α− β) + β]−

δH (α+ β) (1− α− β − σ)

}
(1− α− β) (β + ασ)

,

with the optimal growth rate

go =
δH − ρΘ

σΘ + (1−Θ)
, (30)

where Θ ≡ α/ (α+ β). Due to Ho
Y ∈ (0, H) and ρ − (1− σ) go > 0, we

need to impose the following two assumptions:

δH > ρΘ, σ > 1− ρ

δH
. (31)

Define zt ≡ y
−(α+β)
t Hα

Y tL
β , φ1 ≡ (1− α− β + β/α) / (1− α), φ2 =

(1− α− β) / (1− α), and φ3 ≡ (1− α− β) /σ − 1. To examine the stabil-
ity property of the steady state, we linearize the dynamic system (26)-(28)
around the steady state (29) and derive the Jacobian matrix

Jo =

 − (α+ β) zo
(
αzo

HoY
+ δ
)
yo −yo

0 δφ1H
o
Y −φ2H

o
Y

− (α+ β)φ3z
o q

o

yo αφ3z
o qo

HoY
qo

 .
Under Assumption (31), we find that the determinant of the Jacobian

matrix Jo is negative,

det (Jo) = −δ (α+ β) [1− α− β + β (1− α− β) / (ασ)]

1− α
zoqoHo

Y < 0,



80 RONGSHENG TANG, GAOWANG WANG, AND JIN WANG

and the trace of the Jacobian matrix Jo is positive,

trace (Jo) =
σ − 1

σ

βρ+ δHσ (α+ β)

β + ασ
+
ρ

σ
+

(1− α− β)α+ β

1− α
ρ− δH (1− σ)

β + ασ
> 0,

which establish that there is a stable eigenvalue corresponding to the unique
state variable yt of the dynamic system (26)-(28). Therefore the steady
state (or BGP) of the social planner economy of the Romer model is also
a local saddle.

4. POLICY ANALYSIS

It is easy to know from (15) and (30) that the optimal growth rate is
larger than the equilibrium growth rate, i.e., go > g∗, which displays that
monopoly brings about welfare cost in the decentralized economy. Whether
there exist appropriate policy instruments improving equilibrium growth,
we will give a definite answer to this question.

Similar to Arnold (2000), we assume that the government has two policy
instruments at its disposal: subsiding each intermediate-good producer
s (> 0) dollars per dollar of revenues and paying a fraction 1 − θt of the
R&D outlays in the research sector. Then the profit-maximization problem
of any intermediate good i is changed into

πsit = max
xit

(1 + s)Hα
Y tL

β (1− α− β)x1−α−β
it − rtηxit.

The monopoly pricing formula is solved as

pst =
1

(1− α− β) (1 + s)
rtη, (32)

where 1/ (1− α− β) (1 + s) is the new mark-up. Thus all monopolistic
firms earn the same profit πt = (1 + s) (α+ β) ptxt. Since the research
sector only affords the share θt ∈ (0, 1) of the wage cost of the human
capital employed in the research sector, the no-arbitrage condition of the
allocation of human capital is changed as

PAtδAt = θtwHt = θtαη
α+β−1Hα−1

Y t LβK1−α−β
t Aα+β

t . (33)

The flow budget constraint of the representative consumer is changed as
follows

·
Kt = wHtHY t + wLtL+ rtKt +

∫ At

i=0

πitdi− Ct − Tt, (34)
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where Tt is the lump-sum tax. Thus the Euler equation is also

·
Ct
Ct

=
1

σ
(rt − ρ) . (35)

The balanced budget constraint of the government is

s

∫ At

i=0

pitxitdi = Tt. (36)

Combining (2), (32), and (35) gives us the dynamic equation of con-
sumption

·
Ct
Ct

=
1

σ

[
(1 + s) (1− α− β)

2
ηα+β−1Hα

Y tL
βK
−(α+β)
t A

(α+β)
t − ρ

]
. (37)

Plugging (1), (32), and the balanced budget of the government into (34)
yields

·
Kt

Kt
= ηα+β−1Hα

Y tL
βK
−(α+β)
t A

(α+β)
t − Ct

Kt
. (38)

Substituting (33) and (32) into the differential equation
·

PAt = rtPAt − πt
leads to

·
PAt
PAt

= (1 + s) (1− α− β)
2
ηα+β−1Hα

Y tL
βK
−(α+β)
t A

(α+β)
t − (1 + s) δ

Λ

HY t

θt
.

(39)
Taking logarithmic derivatives with respect to t on both sides of (33) and
combining it with (5), (38) and (39), we know that

·
HY t

HY t
=

 1
1−α

·
θt
θt

+ (1−α−β)
1−α [1− (1− α− β) (1 + s)] ηα+β−1Hα

Y tL
βK
−(α+β)
t A

(α+β)
t

− (1−α−β)
1−α

Ct
Kt
− (1−α−β)δH

1−α +
[
(1− α− β) + 1+s

Λθt

]
δHY t
1−α

 .

(40)
Using the same definition as Section 2, we obtain the following dynamic

system about (y,Hy, q) as follows:

·
yt
yt

= y
−(α+β)
t Hα

Y tL
β − qt − δ (H −HY t) , (41)

·
HY t

HY t
=

 1
1−α

·
θt
θt

+ (1−α−β)
1−α [1− (1− α− β) (1 + s)] y

−(α+β)
t Hα

Y tL
β

− 1−α−β
1−α qt − 1−α−β

1−α δH +
[
(1− α− β) + 1+s

Λθt

]
δHY t
1−α

 ,

(42)
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·
qt
qt

=

(
(1− α− β)

2

σ
(1 + s)− 1

)
y
−(α+β)
t Hα

Y tL
β + qt −

ρ

σ
. (43)

To obtain the same allocation as the one of optimal growth path, we
compare the dynamic system with (41)-(43) with the one with (11)-(13).

Obviously, if (1 + s) (1− α− β)
2
/σ − 1 = (1− α− β) /σ − 1, i.e., s =

(α+ β) / (1− α− β), then (43) is the same as (13). Substituting s =
(α+ β) / (1− α− β) into (42) and comparing it with (10), we know that
they are the same thing if θt follows the following differential equation

·
θt
θt

=

(
β

α
− 1 + s

Λθt

)
δHY t + δH. (44)

Then the steady state of the dynamic system composed of (41)-(44) can be
solved as follows:

H∗∗Y =
ρ− δH (1− σ)

δ (σ + β/α)
, y∗∗ =

(
H∗∗Y Lβ (1− α− β) (β + ασ)

βρ+ δHσ (α+ β)

) 1
α+β

,

θ∗∗ =
ρ− δH (1− σ)

δHσ + β
α+β ρ

, q∗∗ =
ρ [α (1− α− β) + β]− δH (α+ β) (1− α− β − σ)

(1− α− β) (β + ασ)
.

Then the associated equilibrium growth rate is derived as the optimal
growth rate, namely,

g∗∗ = go =
δH − ρΘ

σΘ + (1−Θ)
, (45)

where Θ ≡ α/ (α+ β). Note that under the implied parameter values in
the social planner economy, we have θ∗∗ ∈ (0, 1). Therefore, we have found
out a monopolistic competition with a set of policy instruments (s, θt, Tt)
satisfying (36) and (44), which supports the social optimum allocation.

5. CONCLUSION

In this paper, by utilizing the reduction of dimensionality, we prove the
existence, uniqueness and saddle-point stability of the steady state (or
BGP) of the Romer (1990) model in both the decentralized and centralized
economy. We provide a full characterization of the solution of the Romer
model, which has not been done in the literature. Besides, we find out
the optimal growth path can be achieved by subsidies to R&D financed by
lump-sum taxation.
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