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Moral Hazard and Investment-Cash-Flow Sensitivity

Hengjie Ai, Kai Li, and Rui Li*

We develop a dynamic model of investment with moral hazard and provide a
micro-foundation for financing constraints. In the model, standard investment-
cash-flow sensitivity regressions will find a small coefficient on Tobin’s Q and
a large and significant coefficient on cash flow. Our calibration replicates the
empirical fact that larger and more mature firms are less financially constrained
but have higher investment-cash-flow sensitivity. Our theory therefore resolves
the long-standing puzzle of the existence of the investment-cash-flow sensitivity
and the seemingly weak relationship between investment-cash-flow sensitivity
and the severity of financing constraints documented by Kaplan and Zingales
(1997) and many others.
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1. INTRODUCTION

The neoclassical investment theory implies that firms’ investment should
not respond to any other variables after controlling for Tobin’s Q, or the
ratio of firms’ market value to the replacement cost of their capital stock.
Empirically, however, regressions of investment on Tobin’s Q and cash
flow typically have a large coefficient on cash flow and a small coefficient
on Tobin’s Q. The significant investment-cash-flow sensitivity in the data
presents a serious difficulty to the frictionless neoclassical investment theory
and is typically interpreted as the result of financing constraints. It is nat-
ural to ask what theory of financing constraints can quantitatively account
for the observed investment-cash-flow sensitivity in the data. However, any
such attempt faces the following challenge: Empirically, investment-cash-
flow sensitivity is often negatively related to other measures of financing
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constraints (Kaplan and Zingales (1997)). In particular, larger and older
firms, which are often thought to be less financially constrained, typically
have higher investment-cash-flow sensitivity than smaller and younger ones.

In this paper, we embed moral hazard into an otherwise standard neo-
classical model of investment to provide a resolution of the above puzzle.
Financing constraints endogenously arise as the result of optimal contract-
ing under agency frictions. In our model, even after controlling for Tobin’s
Q, investment responds to cash-flow shocks because the later carry valu-
able information useful for incentive provision. More importantly, under
the optimal contract, larger and more mature firms are less financially
constrained. Nevertheless, they exhibit significantly stronger investment-
cash-flow sensitivity than do smaller and younger ones, as in the data.

In our model, entrepreneurs have access to a productive project in which
cash flows depend on capital input but are also subject to shocks that
are unobservable to outside investors. Because entrepreneurs do not have
enough wealth, outside investors need to cover temporary losses due to
the unexpected cash flow shocks in order to continue the project. Moral
hazard arises because entrepreneurs can secretly steal output for private
consumption. In this environment, we show that the optimal dynamic
contract has the following three predictions. First, because of the presence
of moral hazard, it is optimal for outside investors to finance the project on
a scale lower than its first-best level. That is, moral hazard endogenously
leads to financing constraints. In our setup, unobservable cash flow shocks
enter multiplicatively into the production function. As a result, increases
in capital input lower its marginal product and raise the level of noise
in output. Because efficiency requires equalizing the marginal product of
capital to its marginal cost, which includes both the physical cost and the
agency cost of capital, moral hazard leads to a lower level of investment
due to the endogenous financing constraint.

Second, the optimal contact requires investment to respond positively
to shocks to firms’ cash flow even after controlling for Tobin’s Q. To pre-
vent entrepreneurs from diverting firms’ cash flow, the optimal contract
rewards high output by providing more capital and punishes low output by
tightening the financing constraint. While Tobin’s Q is a strictly increasing
function of the marginal (physical) product of capital, cash flow contains
independent information that is informative about the entrepreneur’s hid-
den action. Because under the optimal contract, investment and financing
are used for incentive provision, they optimally responds to shocks in cash
flow that are orthogonal to Tobin’s Q.

Third, the magnitude of investment-cash-flow sensitivity increases with
firm size and decreases with the tightness of firms’ financing constraint. In
the presence of moral hazard, investment-cash-flow sensitivity is used as a
tool for incentive provision: Following a sequence of positive performances,
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the financing constraint is relaxed and the probability of inefficient liquida-
tion diminishes. As a result, large and mature firms in our model are less
financially constrained, and the marginal agency cost of investment is lower
in these firms. The lower cost of agency frictions allows less constrained
firms to use high investment-cash-flow sensitivity to provide stronger incen-
tives. In contrast, young and small firms face tighter financing constraints
and higher probabilities of inefficient liquidation. They optimally chose
not to use high-powered incentives because they raise the probability of
inefficient liquidation.

We calibrate our model to evaluate its ability to quantitatively account
for the stylized patterns in investment-cash-flow sensitivity in the data. We
show that our model matches well the empirical negative relationship be-
tween firm size and investment rate, and the negative relationship between
size and Tobin’s Q. In our model simulations, cash flow is a robust predictor
of investment even after controlling for Tobin’s Q. More importantly, we
demonstrate that the investment-cash-flow sensitivity is robustly increas-
ing firm size, as in the data, despite that large firms typically have more
relaxed financing constraint in the sense that the Lagrangian multiplier of
their incentive compatibility constraint and the marginal product of their
capital are both lower than those in small firms.

Related literature
The puzzling fact of the existence of investment-cash-flow sensitivity and

the inconsistent and often negative relationship between investment-cash
flow sensitivity and other measures of financing constraints are well docu-
mented in the empirical literature. Beginning from Fazzari, Hubbard, and
Petersen (1988), a large literature documents a robust investment-cash-
flow sensitivity in the data and many use it as a quantitative measure
of the severity of financing constraints, for example, Hoshi, Kashyap, and
Scharfstein (1991) and Almeida and Campello (2007), as well as the papers
referenced in Hubbard (1998).1

At the same time, Kaplan and Zingales (1997) and Cleary (1999) find a
negative relationship between the magnitude of investment-cash-flow sen-
sitivity and the severity of firms’ financing constraints. Subsequently, Vogt
(1994) and Kadapakkam, Kumar, and Riddick (1998) document robust ev-
idence that investment-cash-flow sensitivity increases with firm size. The
more recent literature proposes a variety of empirical measures of financ-
ing constraints, for example, Lamont, Polk, and Saaá-Requejo (2001),
Whited and Wu (2006), Hadlock and Poerce (2010), Hoberg and Mak-
simovic (2015), and Farre-Mensa and Ljungqvist (2015), many providing
contradicting results with the investment-cash-flow sensitivity. Our pur-

1Several authors, for example, Blundell, Bond, Devereus, and Schiantarelli (1992),
Gilchrist and Himmelberg (1995), and Erickson and Whited (2000), emphasize the im-
portance of measurement error in investment-cash-flow regressions.
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pose is to present a theory of endogenous financing constraints to provide
a coherent interpretation of the above (seemingly) contradictory empirical
findings.

Our theoretical model builds on the large literature on dynamic moral
hazard with investment, especially continuous-time models, for example,
DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin, and Rochet (2007),
and Biais, Mariotti, and Villeneuve (2010), He (2009), DeMarzo, Fishman,
He, and Wang (2012), and Zhu (2013). Our model is an extension of the
above papers that allows for neoclassical production and adjustment cost.
All of the above models feature a single state variable, which implies that
Q theory must hold locally, as we show later in the paper. In contrast,
the marginal product of capital and the promised utility in our model are
two independent state variables, and this feature allows us to replicate
quantitatively the empirical failure of Q-theory.

Our paper is evidently related to the literature that studies the investment-
cash-flow sensitivity and its dependence on firm characteristics. Gomes
(2001) emphasizes the importance of the general equilibrium effect and ag-
gregate shocks; Alti (2003) focuses on the role of learning; Moyen (2004)
proposes a heterogenous firm model with financing constraints; Lorenzoni
and Walentin (2007) study the impact of limited commitment; and Abel
and Eberly (2011) develop a model of stochastic depreciation rates. None
of the above models focus on moral hazard as a micro-foundation for fi-
nancial constraints and quantitatively account for the positive relationship
between investment-cash-flow sensitivity and firm size and age as we do in
this paper.

The rest of the paper is organized as follows: In Section 2, we layout
the basic model; in Section 3, we describe the optimal contract; Section 4
is about the investment-cash-flow sensitivity under the optimal contract;
in Section 5.1 we show the calibration of the model and its quantitative
performance in matching the data; and in Section 6 we conclude the paper.

2. THE MODEL

Time is infinite and continuous. A unit measure of risk-neutral en-
trepreneurs arrives at the economy per unit of time. Entrepreneurs are
endowed with a technology that produces consumption goods from capital.
However, they do not have enough initial wealth and borrow from outside
investors to finance capital. Given an initial input, K0, and a sequence
of investment, {It}, capital can be accumulated according to the following
neoclassical capital accumulation technology:

dKt = (It − δKt) dt.
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We assume that investing It requires a flow cost of It + ϕ
(

It
Kt

)
Kt, which

has to be financed from outside investors. Here, we assume that ϕ is the
standard quadratic adjustment cost function:

ϕ (i) =
1

2
ϕ0 (i− (δ + µZ))

2
,

where δ + µZ is the steady-state investment rate and µZ will be defined
later.

Like in DeMarzo and Sannikov (2006) and DeMarzo, Fishman, He, and
Wang (2012), we specify the production technology by a cumulative output
process, {Yt}∞t=0. Given a sequence of input, {Kt}, the flow of output at
time t, dYt is given by

dYt = Kα
t Z

1−α
t dt+KtσdBt, (1)

where Zt is the productivity of the firm observable to both the entrepreneur
and outside investors, and α ∈ (0, 1) is a return to scale parameter. To
allow for long-run growth, we assume that Zt follows a geometric Brownian
motion with growth rate µZ and volatility σZ :

dZt = µZdt+ σZdBZ,t, for all t > 0. (2)

In equation (1), although Kα
t Z

1−α
t is perfectly observable to outside in-

vestors, Brownian motion, dBt, is not. As a result, output is observed only
with noise, and σZ determines the level of noise in output. Even though
output is, on average, positive, Z1−α

t Kα
t > 0, the entrepreneur can incur

temporary losses due to the presence of productivity shock, dBt. Large
losses must be covered by deep-pocketed outside investors whenever the
entrepreneur’s own fund is insufficient. Here, we assume that the level of
noise in output is proportional to the size of the firm. This assumption is
made for two reasons. First, our model allows for long-run growth of firms.
Proportional noise prevents firms from growing out of the agency frictions
in the long-run. Second, as in Edmans, Gabaix, and Landier (2008) and
Edmans and Gabaix (2016), our assumption guarantees that the agent’s
hidden action is multiplicative in firm size.

In our setup, moral hazard arises because output is not fully observable,
and the entrepreneur can claim large losses, privately consume all output,
and declare bankruptcy. Efficiency requires entrepreneurs to deploy capi-
tal and produce output, while moral hazard implies that lending contracts
must provide appropriate incentives for entrepreneurs not to misreport
output and hide cash flow for private consumption. Intuitively, the opti-
mal lending contract must reward high output by providing more financing
and payment, and punish low output by reducing subsequent lending and
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terminating the project. We assume that upon termination, the outside
investor can fully recover the firm’s capital stock, KT , but all cash flows
are lost.

Formally, a contract must specify
{(

Kt

(
Ŷ t, Zt

)
, Ct

(
Ŷ t, Zt

))τ∧T

t=0
, T

}
,

where Kt is the capital input; Ct is the cumulative payment to the en-
trepreneur; and T is the liquidation time of the project. We assume that
entrepreneurs exit the economy at rate κ per unit of time and let τ de-
note the stopping time of exit. We use Ŷ t to denote the history of the
entrepreneur’s report of output up to time t and Zt to denote the history
of observable productivity shocks up to time t.

Given a contract, the entrepreneur’s utility from reporting
{
Ŷt

}
is given

by:

E0

[∫ τ∧T

0

e−βt
[
dCt

(
Ŷ t, Zt

)
+ dYt − dŶt

]]
.

That is, by (mis)reporting Yt as Ŷt, the entrepreneur receives consumption
dCt

(
Ŷ t, Zt

)
and consumes the difference, dYt − dŶt. Incentive compati-

bility requires that misreporting never can be optimal, that is,

E0

[∫ τ∧T

0

e−βtdCt

(
Y t, Zt

)]
≥ E0

[∫ τ∧T

0

e−βt
[
dCt

(
Ŷ t, Zt

)
+ dYt − dŶt

]]
,

(3)
for all

{
Ŷt

}
. If the entrepreneur truthfully reports, the present value of

the firm’s cash flow to the outside investor is

E0

[∫ τ∧T

0

e−rt

[
dYt − dCt

(
Y t, Zt

)
−
(
It + ϕ

(
It
Kt

)
Kt

)
dt

]
−K0

]
.

(4)
The optimal contracting problem maximizes outside investor’s payoff, (4),
subject to incentive compatibility, (3), and a participation constraint:

E0

[∫ τ

0

e−βtdCt

(
Y t, Zt

)]
≥ U0.

3. OPTIMAL CONTRACTING

As is standard in the dynamic contracting literature, we use promised
utility as a state variable. Given a contract

{
(Kt, Ct)

τ∧T
t=0 , T

}
, the en-
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trepreneur’s time-t continuation utility can be calculated as:

Ut = Et

[∫ τ∧T

t

e−β(s−t)dCs

]
for t ∈ [0, τ ∧ T ] .

The present value of firm’s cash flow is a function of current productivity,
Zt, current capital stock, Kt, and the promised utility to the entrepreneur:

V (Zt,Kt, Ut) = Et

[∫ τ∧T

t

e−rs

[
dYs − dCs −

(
Is + ϕ

(
Is
Ks

)
Kt

)
ds

]]
.

Given the homogeneity of the problem, it is straightforward to show that
the value function satisfies

V (Z,K,U) = Zv

(
K

Z
,
U

Z

)
,

for some function v (k, u), where we define k = K
Z and u = U

Z . We also
normalize the compensation policy and define c = C

Z . The definition of
promised utility implies that if the entrepreneur does not divert cash flow,
then normalized continuation utility must follow

dut = ut (β + κ− µZ) dt− dct + gtσdBt + kthtσZdBZ,t, (5)

where {gt} and {ht} are two predictable processes such that {gtZt} and
{kthtZt} are square integrable.

Here, gt and ht are the sensitivities of the entrepreneur’s normalized con-
tinuation utility with respect to the unobservable shocks in firm’s cash flow,
dBt, and the observable productivity shocks, dBZt, respectively. Standard
results imply that the incentive compatibility constraint (3) can be written
as a restriction on gt, which we formally state as follows.

Lemma 1. A contract ({Ct} , {Kt} , T ) is incentive compatible, if and
only if

gt ≥ kt for all t ∈ [0, τ ∧ T ] . (6)

Proof. See Appendix A.1.

Condition (6) requires the level of the sensitivity gt to be proportional
to the capital stock of the firm. This is because the level of noise in firm’s
output, and therefore the amount of cash flow that the entrepreneur can
divert for personal consumption, is proportional to Kt. Under the optimal
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contract, this incentive constraint must be binding because the firm is
effectively risk averse due to the presence of agency frictions (the value
function v is concave).

By using Lemma 1, we can show that the value function must satisfy the
following HJB equation in the interior of its domain:

(r + κ− µZ) v(k, u) = max
i,h


kα − ik − kϕ(i) + (β + κ− µZ)uvu(k, u)

+ (i− δ − µZ) kvk(k, u)
+ 1

2

(
σ2 +

(
h− u

k

)
σ2
Z

)
k2vuu(k, u)

+ 1
2k

2σ2
Zvkk(k, u)− k2

(
h− u

k

)
σ2
Zvku(k, u).

 ,

(7)
where i = I

K is the investment-to-capital ratio.
In addition, ∀k, v(k, u) must satisfy the following conditions on the

boundaries:

v (k, 0) = k, (8)
v (k, u) ≥ max

x≥0
{v (k, u− x)− x} . (9)

Equation (8) sets the value function at the liquidation boundary: upon
liquidation, the entrepreneur receives zero payoff, while the outside investor
can recover the capital stock, but loses all potential future cash flows.
Equation (9) also has an intuitive interpretation. Promised utility, u, can be
delivered in two ways, immediate cash reward or promised payment in the
future. Paying x amount of cash immediately costs the outside investor x
and reduces the obligation of promised utility by the same amount. Because
cash payment is always an option, we must have v (k, u) ≥ v (k, u− x) −
x for all x > 0. This observation motivates the definition of the payoff
boundary:

û (k) = inf {u : ∀x > 0, v (k, u) = v (k, u− x)− x} .

Clearly, in the region in which u > û (k), vu (k, u) = −1. Here, because the
entrepreneur is less patient, immediate payoff is always optimal, and under
the optimal contract, u instantaneously moves to û (k). For u < û (k),
concavity implies that ∂

∂uv (k, u) > −1, and the dynamics of u follows
equation (5).

To illustrate the dynamics of the state variables under the optimal con-
tract, in Figure 1, we plot the domain of the state variables (left) and the
expected direction of their movement under the optimal contract (right).2
The solid line in both figures is the payoff boundary û (k). The dashed

2The plots in Figure 1 are based on the calibrated parameter values introduced in
Section 5.



MORAL HAZARD AND INVESTMENT-CASH-FLOW SENSITIVITY 151

line represents the trajectory of (k, u) such that the marginal Q equals one:
vk (k0, u0) = 1. Without adjustment cost, the state variables stay on this
line with probability one. With adjustment cost, the system tends to move
toward the dashed line, but may be pushed away due to the unexpected
Brownian motion shocks in productivity. Finally, note that the optimal
contract starts at (k0, u0), which is the initial condition that solves the
optimization problem (4) and is marked as a star in the figure.

FIG. 1. The domain of the state variables.
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Figure 1 plots the domain of the state variables, (k, u) (left panel) and their expected
changes under the optimal contract (right panel). In both panels, the solid line is the
payoff boundary û (k). Under the optimal contract, the state variables, (k, u), stay
between the liquidation boundary, u = 0 and the payoff boundary û(k). The dashed
line is the trajectory of (k, u) where marginal Q equal one.

As shown in the right panel of Figure 1, over time, both state variables u
and k tend to increase toward the payoff boundary, where vu (k, u) = −1,
and concavity diminishes. The increases in k imply that firms grow in size
over time, and size and age are positively correlated in the equilibrium
distribution. The positive trend in u implies that agency frictions diminish
over time: Larger and more mature firms are less financially constrained.

Having obtained the solution of the optimal contract, in the next two sec-
tions, we analyze its implications on financing constraints and investment-
cash-flow sensitivity, both qualitatively and quantitatively.

4. INVESTMENT-CASH-FLOW SENSITIVITY

4.1. Endogenous financing constraint

To better illustrate the implication of our model on financing constraints,
we consider a special case without adjustment cost: ϕ (i) = 0. Under this
assumption, the shadow value of capital in the firm is the same as its market
price. Therefore, the value function must be of the form v (k, u) = v̄ (u)+k.
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This allows us to reduce one state variable and represent the value function
and policy functions as functions of u. For every u, there is a most efficient
level of capital, k (u), where, in the absence of adjustment cost, capital
instantaneously moves to k (u). Using (7), it is not difficult to show that
v̄ (u) and k (u) must satisfy:

(r + κ− µZ) v̄ (u) = max
k

{
kα − (r + δ + κ) k + (β + κ− µZ)uv̄

′ (u) +
1

2
v̄′′ (u) k2σ2

}
,

(10)
with the boundary condition

v̄ (0) = 0; v̄′ (û) = −1; v̄′′ (û) = 0.

Note that without moral hazard, the optimal level of capital must equal-
ize the marginal product of capital to the user cost of capital: αkα−1 =
(r + δ + κ). Let k∗ denote the first-best level of capital, that is, k∗ =[
1
α (r + δ + κ)

] 1
α−1 . The following proposition formalizes the notion of fi-

nancing constraint induced by moral hazard:

Proposition 1 (Financing Constraint). In the model without adjust-
ment cost, the optimal level of capital input, k (u) is given by:

αk (u)
α−1

= (r + δ + κ)− k (u) v̄′′ (u)σ2. (11)

In particular, k (u) < k∗, where k∗ is the first-best level of capital.

Proof. Equation (11) is straightforward from (10), and, concavity of v̄
(Lemma 2 in Appendix A.3) implies k(u) < k∗.

Equation (11) has an intuitive interpretation. The term αkα−1 is the
marginal product of capital, and r + δ + κ is the marginal physical cost of
capital, or the user cost of capital. The additional term kv̄′′ (u)σ2 can be
interpreted as the marginal agency cost of capital. Due to the presence of
agency frictions, the firm is effectively risk averse: v′′ (u) < 0. Investing
an additional unit of capital is costly because it allows the entrepreneur to
divert more cash flow. As a result, the presence of moral hazard constraints
the level of financing below its first best level.

Figure 2 illustrates the shape of the value function v̄ (u) and its impli-
cations on financing constraints. Clearly, the value function v̄ (u) in the
top panel is strictly concave on (0, û). This reflects moral-hazard-induced
risk aversion: Firms dislike variations in entrepreneur’s continuation utility
because they increase the likelihood of inefficient liquidation. The middle
panel plots the absolute value of the second-order derivative of the value



MORAL HAZARD AND INVESTMENT-CASH-FLOW SENSITIVITY 153

FIG. 2. The value function and the optimal policy.
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The top panel of Figure 2 plots the normalized value function v̄(u). The middle panel
plots the absolute value of the second order derivative of the value function, and the
bottom panel plots the optimal choice of capital as a function of normalized utility,
k(u).

function, v̄′′ (u). Note that risk aversion is maximized at the liquidation
boundary, u = 0, and decreases gradually to zero as u approaches the
payoff boundary, û. Intuitively, the incentive provision requires tying the
entrepreneur’s continuation utility to performance. This is especially costly
when u is close to zero, because small shocks in output may trigger ineffi-
cient liquidation. As u moves away from its left boundary, the probability
of liquation diminishes and the firm becomes close to risk neutral. Because
kv̄′′ (u)σ2 is a measure of the marginal agency cost of investment, the op-
timal level of financing starts at zero and converges to the first-best level,
k∗, as risk aversion vanishes at û.

4.2. Investment-cash-flow sensitivity

The above version of our model without adjustment cost generates fi-
nancing constraints due to the agency cost of investment. However, To-
bin’s Q perfectly predicts investment, at least locally, because all policies
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are functions of a single state variable, u. In fact, any monotone function
of u should perfectly predict investment.

Our full model breaks the link between investment and Tobin’s Q because
it has two state variables, k and u. In addition, the dynamics of kt and ut

are driven by two independent shocks, the observable productivity shock,
dBZ,t, and the unobservable cash flow shock, dBt. The presence of multiple
shocks and multiple state variables implies that investment and Tobin’s Q
will not be (locally) perfectly correlated. That is, Q-theory fails to perfectly
predict investment even if the econometrician has infinite an amount of
data.

To understand the investment-cash-flow sensitivity regression in our model,
we first write investment and Tobin’s Q as functions of state variables. Us-
ing equation (7), the optimal investment policy in the full model, i (k, u),
must satisfy

i (k, u) = (δ + µZ) +
1

ϕ0
(vk(k, u)− 1) .

Also, we can define q (k, u) = v(k,u)
k as the average Q for the firm.

Next, for any diffusion process xt, we define dx̂t = dxt − Et [dxt]. Us-
ing Ito’s formula and the law of motion of kt and ut, we can write the
innovations in investment as

dı̂ (kt, ut) = [iu (kt, ut)h (kt, ut)− ik (kt, ut)] ktσZdBZ,t+iu (kt, ut) ktσdBt,
(12)

where h (k, u) is the sensitivity of continuation utility with respect to the
observable productivity shock dZt and satisfies the first-order condition:

h (k, u) =
u

k
+

vku(k, u)

vuu(k, u)
.

We can similarly write the innovations of dq̂ (kt, ut) as

dq̂ (kt, ut) = [qu (kt, ut)h (kt, ut)− qk (kt, ut)] ktσZdBZ,t+qu (kt, ut) ktσdBt

(13)
Note that the innovations in it and qt are driven by two sources of shocks,
dBZ,t and dBt, which are independent of each other. In addition, no single
state variable can summarize the two sources of shocks. As a result, changes
in qt typically do not contain enough information to predict changes in it.
Let dyt = dYt

Kt
be output normalized by capital stock and then dŷt = σdBt.

The following proposition derives the local regression coefficient of dı̂t on
changes in Tobin’s Q, dq̂t, and cash flow, dŷt:
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Proposition 2 (Investment-Cash-Flow Sensitivity). In the model with
adjustment cost, under the optimal contract,

dı̂t = βq (kt, ut) dq̂t + βy (kt, ut) dŷt,

where

βq (kt, ut) =
[iu (kt, ut)h (kt, ut)− ik (kt, ut)]

[qu (kt, ut)h (kt, ut)− qk (kt, ut)]
, (14)

and

βy (kt, ut) = kt [iu (kt, ut)− βq (kt, ut) qu (kt, ut)] . (15)

Proof. See Appendix A.2.

We make several observations. First, by comparing equations (12), (13),
and (14), it is clear that in a conditional regression of investment on Tobin’s
Q, the coefficient on q identifies the the relative sensitivity of investment
with respect to the observable productivity shock, dBZ,t. Just like in neo-
classical models with adjustment cost, productivity shocks move investment
and Tobin’s Q in the same direction, and the regression coefficient of in-
vestment on Tobin’s identifies the elasticity of investment and Tobin’s Q
with respect to these shocks.

Second, in the special case with no agency frictions, investment and
Tobin’s Q are independent of promised utilities, iu (kt, ut) = qu (kt, ut) = 0.
In this case, our model reduces to the frictionless neoclasssical model of
investment, and investment-cash-flow sensitivity is zero.

Third, a sufficient condition for a positive investment-cash-flow sensi-
tivity is that iu (kt, ut) > 0 and qu (kt, ut) < 0. Although it is difficult to
prove these results analytically, due to the complexity of the PDE (7), that
investment increases with promised utility and Tobin’s Q decreases with
promised utility (in most part of its domain) is intuitive and is a robust
feature of our model.

In our model, investment increases with promised utility, u, because
incentives are provided by granting the entrepreneur more capital after
positive performance. Intuitively, under moral hazard, financing is used as
a tool for incentive provision. After positive surprises in output, the op-
timal contract rewards the entrepreneur by providing additional financing
to allow him to invest at a level closer to the first-best level. This arrange-
ment is optimal because, as promised utility increases, the probability of
inefficient liquidation, and therefore the marginal agency cost of investment
diminishes, allowing the project to operate at a scale closer to the first-best
level. Similarly, the optimal contract tightens the financial constraint if
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the entrepreneur underperforms; therefore, investment reduces whenever
promised utility does so.

Second, that qu (k, u) < 0 is also intuitive. To support more promised
utility, the outside investor needs to allocate a higher fraction of firm’s cash
flow to the entrepreneur, and, as a result, the value of the firm to outside
investors decreases in promised utility. In fact, as u increases, qu (k, u)
converges to − 1

k for all k.

FIG. 3. Investment-cash-flow sensitivity.
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The top panel of Figure 3 plots the third order derivative of normalized value function.
The bottom panel plots investment-cash-flow sensitivity, that is, the first order derivative
of the policy function k(u).

In Figure 3, we plot the investment policy i (k, u) and Tobin’s Q, q (k, u),
as functions of normalized promised utility for three levels of capital in the
top and the bottom panels, respectively. In the top panel of the figure, the
dotted line represents the first-best level of investment-to-capital ratio, i∗ =
δ + µZ , and û (k) represents the boundary of normalized utility at which
the entrepreneur starts receive cash payment. We plot policy functions for
three levels of normalized capital, where k1 < k2 < k3, k1 < k∗ < k3,
and k2 is close to k∗. Because the marginal product of capital, αkα−1, is
decreasing in k, investment rate and Tobin’s Q both decrease in k. Note
that k1 is less than the efficient level of capital and k3 is higher than k∗, and,
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as a result, i (k1, u) stays above i∗ and i (k3, u) stays below as u increases
toward û (k1) and u (k3), respectively. Clearly, as shown in the Figure 3,
in most of their domain, i (k, u) is an increasing function of u and q (k, u)
is a decreasing function of u. Quantitatively, these patterns of our model
account for the small coefficient on q and large coefficient on cash flow in
investment-cash-flow sensitivity regressions.

4.3. The role of firm size and age

Our model not only generates a positive investment-cash-flow sensitivity
but also, and more importantly, the magnitude of investment-cash-flow
sensitivity is inversely related to firm size and age, as in the data. To
explain this implication of our model, in this section, we define investment-
cash-flow sensitivity as the slope coefficient of a unit-variate regression of
investment on cash flow and analyze its relationship with firm size and age
in the simple model without adjustment cost.

The advantage of the simple model is that the absence of adjustment cost
allows us to provide analytical results. As we will explain in Section 4.3, in
the model without adjustment cost, Tobin’s Q perfectly predicts investment
(locally) in conditional investment regressions. We quantitatively address
this issue in Section 5, where we show that relationship between investment-
cash-flow sensitivity and firm size established in this section remains true
even after controlling for Tobin’s Q in our full model with adjustment cost.

In the model without adjustment cost, the rate of investment can be
calculated from percentage changes in capital stock:

dKt

Kt
=

[
µZ +

k′ (ut) (β + κ− µZ)ut +
1
2k

′′ (ut)σ
2
uk (ut)

2

k (ut)

]
dt+k′ (ut)σdBt.

(16)
Therefore, the coefficient of an univariate regression of investment on cash
flow (dŷt = σdBt) is given by

Proposition 3. In the model without adjustment cost, under the optimal
contract, the instantaneous investment to cash flow sensitivity is

Cov
(

dKt

Kt
, dYt

Kt

)
V ar

(
dYt

dKt

) = k′ (ut) . (17)

The above result is intuitive. Financing in our model is used as a tool
for incentive provision. Positive cash flow shocks is rewarded by higher
continuation utility and a relaxed financing constraint. Because the in-
centive compatibility constraint implies a unit elasticity of continuation
utility with respect to cash flow shocks, investment-cash-flow sensitivity is
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proportional to the sensitivity of investment with respect to continuation
utility.

By using the result of Proposition 3. We can now illustrate the monotonic
relationship between investment-cash-flow sensitivity and firm size and age
in our model.

First, under the optimal contract, investment-cash-flow sensitivity is an
increasing function of u. To see this, differentiate both sides of equation
(11), we can obtain the following expression for the investment-cash-flow
sensitivity:

k′ (u) =
σ2k (u) v̄′′′ (u)

(1− α)αkα−2 (u)− σ2v̄′′ (u)
.

As we show in Figure 4, the third-order derivative, v′′′ (u), is positive and
therefore investment-cash-flow sensitivity is represented by k′ (u) > 0. In-
tuitively, as promised utility, u, increases, financing constraint relaxes and
the probability of inefficient liquidation diminishes. As a result, the con-
cavity of value function gradually reduces and eventually disappears at the
payoff boundary, û. Furthermore, we show in Figure 4, the magnitude of
investment-cash-flow volatility increases with u. As we move away from
the inefficient liquidation boundary, u = 0, the marginal agency cost of in-
vestment diminishes, and it allows the investor to use a higher investment-
cash-flow sensitivity to provide incentives. As a result, as the probability
of inefficient liquidation diminishes, it is optimal not only to relax the en-
trepreneur’s financing constraint but also to increase financing at a faster
rate.

Second, as we explained in Figure 1 and Section 3, in equilibrium promised
utility, u, and firm size and age are positively correlated because both u
and k are expected to increases with age under the optimal contract. As a
result, investment-cash-flow sensitivity is positively correlated with size and
age and negatively correlated with the severity of financing constraints. In
the next section, we calibrate our model to evaluate the above implications
of our model quantitatively.

5. QUANTITATIVE RESULTS

In this section, we formally evaluate the ability of our model to account
quantitatively for the pattern of investment-cash-flow sensitivity in the
data. Consistent with the previous literature, we use the data on manu-
facturing firms in the Compustat data set for the period of 1967 to 2015 to
evaluate our model. The rest of this section is organized as follows. We first
describe our calibration procedure, and then demonstrate that our model
is consistent with the stylized empirical patterns of firm investment and
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FIG. 4. Investment-cash-flow sensitivity.
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the policy function k(u).

Tobin’s Q. Finally, we present investment-cash-flow sensitivity regressions
in our model and compare them with the data.

TABLE 1.
Estimated Parameters

Parameters Descriptions Values
µZ Mean productivity growth rate 0.050
σZ Volatility of productivity growth rate 0.050
β Entrepreneur’s discount rate 0.090
σ Volatility of unobservable cash flow shock 0.320
ϕ0 Adjustment cost parameter 0.02
Notes: This table lists the group of calibrated parameters that we esti-
mated through simulated method of moments to minimize the Euclidean
distance between the eleven targeted moments listed in Table 2 from the
model and the data.

5.1. Model calibration

Our model parameters can be divided into two groups. The first group
can be chosen independently of the other parameters of the model to target
data moments. We choose the interest rate r = 4% to match the average
return of risky and risk-free asset in the U.S. post-war period. We set
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the depreciate rate of capital to δ = 10% per annum, consistent with the
real business-cycle literature.3 We set the return to scale parameter, α, to
0.8 to match the average cash-flow-to-capital ratio in the data and choose
κ = 5% to match the average death rate of all firms in our data set.

TABLE 2.
Targeted Moments

Targeted Moments Data Model
Median growth rate

all firms 0.088 0.084
mature firms 0.076 0.074

Median investment to capital ratio
all firms 0.205 0.194
mature firms 0.186 0.173

Median Tobin’s Q
all firms 2.700 2.590
mature firms 2.225 2.170

Volatility of growth rate 0.244 0.255
Volatility of investment to capital ratio 0.286 0.277
Volatility of cash flow to capital ratio 0.447 0.421
Notes: This table lists the nine moments that we target
through the simulated method of moments in order to pin
down the calibrated parameters in Table 1. The empirical
data moments are based on Compustat manufacturing firms
annual database from 1967 to 2015. Mature firms include the
firms with founding year age larger than the median age in the
sample. The data construction is detailed in Appendix A.5.

The remaining five parameters, listed Table 1, including the mean and
the standard deviation of productivity growth, µZ and σZ , the volatility of
cash flow shocks, σ, the entrepreneur discount rate, β, and the adjustment
cost parameter, ϕ, are estimated through simulated method of moments.
We target nine moments and list them in Table 2. Although all moments
are jointly determined by parameter values, the ones we include in estima-
tion are particularly informative about these parameters. In our model,
the growth rate of unconstrained firms is determined by the productivity
growth, µZ , while the same moment of constrained firms depends on µZ ,
as well as parameters that affect the magnitude of agency frictions, such as
the entrepreneur discount rate β and the volatility of the cash-flow shock,
σ. Therefore, we include the growth rate, investment-to-capital ratio for

3For example, see Kydland and Prescott (1982), Rouwenhorst (1995), and King and
Rebelo (1999).
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all firms as well as for mature firms in our estimation.4 Next, Tobin’s Q is
informative about both the adjustment cost parameter ϕ and the magni-
tude of agency frictions, and we include this moment for all firms, as well
as for mature firms in our estimation. Finally, volatility of cash flow is
informative about σ, and the volatility of growth rate and investment rate
are informative about both σ and σZ . Overall, our model matches these
moments fairly well.

5.2. Model fit

In this section, we show that our calibrated model is consistent with
several stylized features of the data on firm investment and Tobin’s Q,
although our model is not calibrated to target these moments. First, it is
well known that firm investment rate decreases with size and age; see, for
example, Evans (1987) and Hall (1987). As shown in Table 3, our model is
largely consistent with this feature of the data. Large and older firms tend
to invest at a lower rate, both in the model and the data.

TABLE 3.
Investment to capital ratio by size and age

Size Group Age Group
Group No. Data Model Data Model

1 0.214 0.201 0.209 0.197
2 0.198 0.220 0.206 0.192
3 0.188 0.184 0.194 0.183
4 0.185 0.181 0.187 0.173
5 0.179 0.141 0.183 0.169

Notes: This table presents the median value of in-
vestment to capital ratio ( I

K
) by size and founding

year age groups, both in the data and model sim-
ulation. We follow the standard sorting procedure
in the data by assigning firms into portfolios using
breakpoints based on the NYSE traded firms. In
the model, firms are sorted using breakpoints that
are equally-numbered in sorting variables. Portfo-
lios are re-balanced at the annual frequency. The
details on sample and variable constrictions are
described in Appendix A.5.

Second, Tobin’s Q is also monotonically decreasing with firm size and
age. We compare the model’s implication on Tobin’s Q with the data in
Table 4. The monotonic pattern of Tobin’s Q with respect to firm size and
age implied by our model is largely consistent with the data.

4Mature firms are defined as all firms older than the median firm age. In the data,
firm age is measured by founding year age, the construction of which is provided in
Appendix A.5.
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TABLE 4.
Tobin’s Q by size and age

Size Group Age Group
Group No. Data Model Data Model

1 3.03 3.77 2.89 3.72
2 3.00 3.40 2.78 3.04
3 2.24 2.48 2.36 2.30
4 2.00 1.57 2.24 1.91
5 1.97 1.25 2.20 1.83

Notes: This table presents the median Tobin’s Q
by size and founding year age groups, both in the
data and model simulation. We follow the stan-
dard sorting procedure by assigning firms into five
portfolios with equal number of firms, and rebal-
ance at the annual frequency. The details on
sample and variable constrictions are described
in Appendix A.5.

Finally, our model is also able to replicate a power law in firm size dis-
tribution. As documented by Axtell (2001) and Luttmer (2007), the dis-
tribution of firm size is well approximated by a Pareto distribution with a
tail slope close to 1.05. Our model produces a power law distribution of
firm size with a slope of 1.04, which is close to its empirical counterpart.

5.3. Investment-cash-flow sensitivity regressions

In this section, we conduct the standard investment-cash-flow sensitiv-
ity regressions from the model simulation and compare them with the
data. We show that our model can quantitatively replicate the patterns
of investment-cash-flow sensitivity regressions in the data and can account
for the robust positive empirical relationship between investment-cash-flow
sensitivity and firm size and age.

Following Fazzari, Hubbard, and Petersen (1988), we estimate investment-
cash-flow sensitivity as follows:

Iit
Kit

= αi + αt + βQQit−1 + βCF
CFit

Kit
+ εit. (18)

Here, βQ measures investment-Q sensitivity; βCF measures the investment-
cash-flow sensitivity; and αi and αt denote the firm and year fixed effects,
respectively. The standard errors are heteroskedasticity consistent and
clustered at the firm level. In our model, we aggregate continuous-time
quantities to the annual level so that model output is directly comparable
with that in the data. We report our regression results in Table 5. In the
empirical literature, various measures of investment have been used. For
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robustness, we replicate the investment-cash-flow sensitivity regressions by
using five different measures of investment that appear in the prior litera-
ture. Appendix A.5 provides the definitions and constructions.

TABLE 5.
Investment-cash flow sensitivity regressions

Model Data
I
K

I1
K

I2
K

I3
K

I4
K

I5
K

βQ 0.006 0.007*** 0.007*** 0.008*** 0.010*** 0.012***
(0.000) (0.000) (0.000) (0.000) (0.001)

βCF 0.661 0.026*** 0.027*** 0.039*** 0.043*** 0.054***
(0.002) (0.002) (0.003) (0.004) (0.006)

Obs. 63517 48019 63516 63516 63517
adj.R2 0.158 0.142 0.112 0.102 0.058

Notes: This table presents the coefficient estimates of the regression Iit
Kit

= αi+αt+

βQQit−1 + βCF
CFit
Kit

+ εit from the model simulation and the data. The empirical
sample is based on Compustat annual database from 1967 to 2015. Standard errors
reported in the parentheses are heteroskedasticity consistent and clustered as the
firm level. We denote p-values smaller than 1%, 5%, and 10% by ∗∗∗, ∗∗ and ∗,
respectively. For the robustness check, in the data, we use 5 definitions of investment
used in the literature, I1 to I5, respectively, which are described in Appendix A.5.

We make several observations from Table 5. First, in the data, even
after controlling for Tobin’s Q, cash flow carries significant explanatory
power for investment. The investment-cash-flow sensitivity coefficients are
significantly positive in all five specifications. The coefficient estimates
range from 0.026 to 0.054; and are all significant at the 99% confidence
level, consistent with the original study of Fazzari, Hubbard, and Petersen
(1988). Second, our model replicates the pattern of these regressions in
the data. Because our simulated model is immune to measurement errors
and because investment in the data potentially can be affected by other
unmodeled shocks, the estimates of the cash-flow sensitivity coefficient in
our model are significantly larger than their data counterparts. However,
the pattern of monotonicity is clear, both in the model and in the data.

More importantly, our model not only replicates the positive regres-
sion coefficient on cash flow but it also predicts that the magnitude of
investment-cash-flow sensitivity increases with firm size and age. We com-
pare this implication of our model with the data in Table 6, where we
divide the samples into five groups according to their size and age with
equal number of firms in each group. We compute the regression (18) re-



164 HENGJIE AI, KAI LI, AND RUI LI

TABLE 6.
Investment-cash flow sensitivity regressions by size and age groups

Group 1 2 3 4 5
βCF βCF βCF βCF βCF

Panel A: Size Groups
Model 0.368 0.548 0.622 0.673 0.660
Data 0.023*** 0.026*** 0.047*** 0.051*** 0.090***

(0.004) (0.005) (0.006) (0.008) (0.011)
Panel B: Age Groups
Model 0.473 0.574 0.607 0.618 0.619
Data 0.017*** 0.020*** 0.024*** 0.048*** 0.059***

(0.005) (0.005) (0.006) (0.007) (0.008)
Notes: This table presents the coefficient estimates of the investment-
cash flow sensitivity, βCF , by size groups (Panel A) and founding year
age groups (Panel B) from the model simulation and the data. The
empirical sample is based on Compustat annual database from 1967
to 2015. We follow the standard sorting procedure by assigning firms
into five portfolios with equal number of firms, and rebalance at the
annual frequency. We then run investment-cash flow sensitivity re-
gressions Iit

Kit
= αi +αt +βQQit−1 +βCF

CFit
Kit

+ εit within each size
group. Standard errors reported in the parentheses are heteroskedas-
ticity consistent and clustered as the firm level. We denote p-values
smaller than 1%, 5%, and 10% by ∗∗∗, ∗∗ and ∗, respectively.

sults for each group and report the coefficient βCF in the data and in the
model in the above table.

As we can see from the table, the magnitude of the sensitivity monotoni-
cally increases with firm size (Panel A) and firm age (Panel B), both in the
data and the model. Our empirical results are robust across all five defi-
nitions of investment and are consistent with the prior literature as shown
in Table 7; see, for example, Vogt (1994) and Kadapakkam, Kumar, and
Riddick (1998). Our model reproduces this pattern of investment-cash-flow
sensitivity. As we explained Section 4, investment-cash-flow sensitivity is
used as a tool for incentive provision in our model. Small and young firms
are more constrained and closer to the liquidation boundary. As a result,
they face strong agency frictions and are extremely risk averse. Optimal-
ity implies that these firms should not use higher powered incentives, and
therefore their investment-cash-flow sensitivity is low compared with ma-
ture and large firms.
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TABLE 7.
Investment-cash flow sensitivity regressions by size groups, robustness check

Size Group 1 2 3 4 5
βCF βCF βCF βCF βCF

Panel B: Size Groups
I2
K

0.025*** 0.024*** 0.055*** 0.055*** 0.116***
(0.004) (0.005) (0.007) (0.009) (0.017)

I3
K

0.036*** 0.035*** 0.070*** 0.087*** 0.158***
(0.005) (0.007) (0.009) (0.013) (0.019)

I4
K

0.036*** 0.041*** 0.083*** 0.101*** 0.189***
(0.006) (0.009) (0.013) (0.016) (0.025)

I5
K

0.040*** 0.042** 0.075*** 0.107** 0.194***
(0.011) (0.018) (0.024) (0.034) (0.043)

Panel A: Age Groups
I2
K

0.011** 0.023*** 0.026*** 0.053*** 0.071***
(0.006) (0.006) (0.006) (0.009) (0.011)

I3
K

0.024*** 0.028*** 0.031*** 0.074*** 0.119***
(0.006) (0.006) (0.007) (0.011) (0.018)

I4
K

0.013 0.028 0.042** 0.070** 0.247***
(0.018) (0.019) (0.019) (0.031) (0.040)

I5
K

0.040** 0.042** 0.075*** 0.107*** 0.194***
(0.011) (0.018) (0.024) (0.034) (0.043)

Notes: This table complements Table 6 and shows that in the data
the monotonically increasing pattern of the investment-cash flow
sensitivity, βCF , with respect to firm size (Panel A) and firm found-
ing year age (Panel B) are robust for another four alternative mea-
sures of investment, I2 to I5, respectively, which are described in
Appendix A.5. We follow the standard sorting procedure by assign-
ing firms into five portfolios with equal number of firms, and rebal-
ance at the annual frequency. We then run investment-cash flow
sensitivity regressions Iit

Kit
= αi + αt + βQQit−1 + βCF

CFit
Kit

+ εit
within each size group. Standard errors reported in the parentheses
are heteroskedasticity consistent and clustered as the firm level. We
denote p-values smaller than 1%, 5%, and 10% by ∗∗∗, ∗∗ and ∗,
respectively.

6. CONCLUSION

We present a dynamic model with neoclassical investment technology and
with moral hazard to rationalize the stylized facts on investment-cash-flow
sensitivity. In our model, optimal contracting under moral hazard problem
induces an endogenous financing constraint, and investment-cash-flow sen-
sitivity is used as an incentive provision device. Because cash flows carry
information about entrepreneurs’ (hidden) action that are not contained in
Tobin’s Q, firm investment optimally responds to cash flows even after con-
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trolling for Tobin’s Q. In addition, our model provides a quantitative expla-
nation of the positive relationship between investment-cash-flow sensitivity
and firm size and age. In our model, large and mature firms are less finan-
cially constrained. Because the marginal agency cost of investment is lower
in these firms, firms optimally use higher investment-cash-flow sensitivity
to provide stronger incentives. In contrast, small and young firms cannot
use higher powered incentives due to the higher moral-hazard-induced risk
aversion.

APPENDIX

A.1. PROOF OF LEMMA 1

The Martingale representation theorem implies

dUt = (β + κ)Utdt−dCt+GtσdBt+HtσZdBZ,t for all t ∈ [0, τ ∧ T ] (A.1)

with {Gt} and {Ht} being two predictable and square integrable processes.
We the following incentive compatibility condition, which is equivalent to
(6).

Gt ≥ Kt for all t ∈ [0, τ ∧ T ] . (A.2)
Under the contract, given any diversion policy of the entrepreneur, {Dt},
define

{
BD

t

}
such that

dBD
u,t =

dYt − dBo,t −
(
Z1−α
t Kα

t −Dt

)
dt

σKt
for all t ∈ [τ ∧ T ] .

Given the realizations of {Yt} and {Kt}, we have

σdBt = σdBD
t +

Dt

Kt
dt. (A.3)

For any t < τ ∧ T , we define

GD
t =

∫ t

0

e−(β+κ)s [Ds + dCs] ds+ e−(β+κ)tUt,

which is the time-t conditional expectation of the entrepreneur’s utility
if he diverts cash flows according to {Dt} and stops diverting at time t.
Equation (A.1) and (A.3) imply

e−(β+κ)tdGD
t = Dt

(
1− Gt

Kt

)
dt+GtσdB

D
t .
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Under the diversion policy {Dt}, the second term on the right hand side
is a martingale. Therefore

{
GD
t

}
is a super martingale if and only if (A.2)

is satisfied. Therefore, if and only if (A.2) is satisfied, it is optimal to not
divert from the beginning of the contract and we have the desired result.

A.2. PROOF OF PROPOSITION 2

Equations (12) and (13) imply

dı̂ (kt, ut) = [iu (kt, ut)h (kt, ut)− ik (kt, ut)] ktσZdBZ,t + iu (kt, ut) ktdŷt

and

dq̂ (kt, ut) = [qu (kt, ut)h (kt, ut)− qk (kt, ut)] ktσZdBZ,t + qu (kt, ut) ktdŷt.

By solving dı̂ as a linear function of dq̂ and dŷt, we have the desired result.

A.3. OPTIMAL CONTRACTING WITHOUT ADJUSTMENT
COST

In this section, we discuss the value function and the optimal contract
without adjustment cost in investment. The characterization of the optimal
contract is extended from that presented DeMarzo and Sannikov (2006) and
He (2009). The laws of motion of ut, (5), implies that v̄(u) satisfies the
following HJB differential equation.

0 = max
k,g≥k,h,dc

kα − (r + δ + κ) k − (r + κ− µZ) v̄ (u) + (β + κ− µZ)uv̄
′ (u)

+
1

2
v̄′′ (u)

(
g2σ2 + (hk − u)

2
σ2
Z

)
− (1 + v̄′(u)) dc (A.4)

Since the investor can always payoff part of the payments that promised
to the entrepreneur immediately, we have v̄(u) ≥ v̄(u − dc) − dc for all
dc > 0 and thus v̄′(u) ≥ −1. Moreover, the optimality on the right hand
side of (A.4) implies that dc > 0 only if v̄′(u) = −1. So, concavity of v,
which is shown in Lemma 2, implies that there exists a level û > 0 such
that v̄′ (û) = −1, v̄′(u) > −1 for u ∈ [0, û). Therefore dc = 0 if u ∈ [0, û]
and dc = u− û > 0 otherwise. As a result, we have (10).1

The smooth pasting condition implies v̄′′ (û) = 0 and, according to (10),
we have

v̄ (û) =
π∗

r + κ− µZ
− β + κ− µZ

r + κ− µZ
û. (A.5)

1Notice that, the incentive compatibility condition implies g = k and the optimality
condition implies that hk − u = 0 for all u.
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Here π∗ is the level of the normalized operating profit implied by the first-
best level of working capital k∗ discussed in Appendix A.4. On the other
boundary, we have v̄(0) = 0. Now we have the following characterization
of v and the optimal contract.

Proposition 4. The optimal lending contract delivering the entrepreneur
initial expected utility U0 = Z0u0 takes the following form: for t ≤ τ ∧ T ,
ut evolves according to (5) when ut ∈ [0, û), dct = 0, kt = k (ut), which
is the maximizer of the right hand side of (10), and h (ut) =

ut

k(ut)
; when

ut > û, dct = ut − û reflecting ut back to û. The firm is liquidated at time
T , the stopping time when ut hits zero. The normalized value function, v̄,
satisfies (10) over [0, û] with boundary conditions, v̄(0) = 0, v̄′ (û) = −1,
v′′ (û) = 0, and (A.5). For u ≥ û, v̄(u) = v̄ (û) − (u− û). v̄ is strictly
concave over [0, û].

The proof is divided into three lemmas. In the first one we show the
concavity of the normalized value function.

Lemma 2. The normalized value function v satisfying HJB (7) and the
boundary conditions v′ (û) = −1, (A.5), and v′′ (û) = 0 is concave over
[0, û].

Proof. According to the Envelope theorem, by taking derivative with
respect to u on both hand side of (10), we have

(β − r) v̄′(u) + (β + κ− µZ)uv̄
′′(u) +

1

2
v̄′′′k(u)2σ2 = 0. (A.6)

On the boundary û, v̄′ (û) = −1 and v̄′′ (û) = 0. Therefore, (A.6) implies

v̄′′′ (û) =
2 (β − r)

k (û)
2
σ2

> 0

and, for a sufficient small real number ϵ > 0, v̄′′ (û− ϵ) < 0. Now, suppose
that v̄ is not concave and ũ is the largest real number such that v̄′′ (u) = 0.
Then (10) implies that k (ũ) = k∗, the first-best level, and then

v̄ (ũ) =
π∗

β + κ− µZ
+

β + κ− µ

r + κ− µZ
ũv̄′ (ũ) . (A.7)

Notice that, for all u ∈ (ũ, û), v̄′′(u) < 0 and v̄′ (u) > −1. Therefore, (A.7)
is contradict to the boundary condition (A.5) and we have the desired re-
sult.
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The next two lemmas verify the optimality of the normalized value func-
tion v̄ and the contract.

Lemma 3. Under the contract described in Proposition 4, the normalized
firm value is characterized by v̄.

Proof. It is easy to check that the normalized continuation utility follows
(5) under the described contract. Now suppose that U0 = u0 ∈ [0, û). We
define

Ψt =

∫ t

0

e−(r+κ)s
[
Zα
s K

1−α
s − (r + δ + κ)Ks − dCs

]
+e−(r+κ)tZtv (ut) for t ∈ [0, τ ∧ T ] .

In fact, Ψt is the time-t conditional expectation of the total expected payoff
given that the contract is implemented from time zero to t and then the net
present value of the future payoff from time t on is summarized by Ztv̄ (ut).
Obviously, Ψ0 = Z0v̄ (u0) = v̄ (u0). According to Ito’s lemma.

e−(r+κ)tdΨt = Zt

k
α
t − (r + δ + κ) kt − (r + κ− µZ) v̄ (ut) + (β + κ− µZ)utv̄

′ (ut)

+ 1
2 v̄

′′ (ut)
(
g2t σ

2 + (htkt − ut)
2
σ2
Z

)
− (1 + v̄′(ut)) dct

+v̄′ (ut) ktσdBt + (v̄ (ut)− utv̄
′ (ut))σZdBZ,t

 .

(A.8)
Under the contract, dct ̸= 0 if and only if v′ (ut) = −1. Moreover, kt and
ht maximize the right hand side of (A.4). So (A.8) is simplified to

e−(r+κ)tdΨt = Zt [v̄
′ (ut) ktσdBt + (v̄ (ut)− utv̄

′ (ut))σZdBZ,t]

and {Ψt} is a martingale. Therefore, the expected payoff under the contract
is E0 [Ψ∞] = Ψ0 = v (u0) and we have the desired result.

Lemma 4. Any incentive compatible contract promising the entrepreneur
expected utility U0 = Z0u0 = u0 cannot generate an expected payoff larger
than Z0v̄ (u0) = v̄ (u0).

Proof. Obviously, the only way to deliver a zero expected utility to
the entrepreneur is by liquidating the firm. So, we assume that the firm
is liquidated when the normalized continuation utility of the entrepreneur
hits zero. Denote the stopping time by T0 which could be infinite.2 Let({

Ĉt

}
,
{
K̂t

}
, T̂

)
be an alternative incentive compatible contract promis-

ing the entrepreneur initial expected utility u0 and we use hatted letters de-
note corresponding terms under this contract. For any t ∈

[
0, τ ∧ T̂ ∧ T0

]
,

2Under the described contract, T = T0.
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define

Ψ̂t =

∫ t

0

e−(r+κ)s
[(

Zα
s K̂

1−α
s − (r + δ + κ) K̂s

)
ds− dĈs

]
+e−(r+κ)tZtv̄ (ût) .

In fact, Ψ̂t is the time-t conditional expectation of the investor’s total payoff
given that she implements the alternative contract from time zero to t and
then switches to the described contract with the continuation utility of the
entrepreneur being kept. Notice that Ψ̂0 = Z0v̄ (u0) = v̄ (u0). Then

e−(r+κ)tdΨ̂t = Zt


k̂αt − (r + δ + κ) k̂t − (r + κ− µZ) v̄ (ût) + (β + κ− µZ) ûtv̄

′ (ût)

+ 1
2 v̄

′′ (ût)

(
ĝ2t σ

2 +
(
ĥtk̂t − ût

)2

σ2

)
− (1 + v̄′(ût)) dĉt

+v̄′ (ût) ĝtσdBt + (v̄ (ût)− ûtv̄
′ (ût))σZdBZ,t

 .

Concavity of v̄, the fact that v′ > −1 and the HJB (A.4) imply that
{
Ψ̂t

}
is a super martingale. Therefore the expected payoff of the investor under
the alternative contract

E0

[
Ψ̂τ∧T̂∧T0

]
≤ E0

[
Ψ̂0

]
= Z0v̄ (u0) = v̄ (u0) .

A.4. THE FIRST-BEST CASE

In this section, we consider the first-best case in which there is no infor-
mation asymmetry or adjustment cost. Obviously, liquidation never takes
place and Kt = k∗Zt for t ≤ τ with

k∗ = argmax
k̃

k̃α − (r + δ + κ) k̃ =

(
α

r + δ + κ

) 1
1−α

,

and the rate of the operating profit is π∗Zt with

π∗ = (1− α)

(
α

r + δ + κ

) α
1−α

.

Therefore, the expected NPV of the total cash flows created by the firm
is Z0

π∗

r+κ−µZ
= π∗

r+κ−µZ
. Since the investor is more patient than the en-

trepreneur, it is optimal to pay off the promised utility as a lump-sum
payment at the beginning of the contract. Specifically, dC0 = U0 and
dCt = 0 for all t > 0 and then the investor’s expected payoff is

Z0
π∗

r + κ− µZ
− U0.



MORAL HAZARD AND INVESTMENT-CASH-FLOW SENSITIVITY 171

Let v̄FB(u) be the first-best normalized value function. Then

v̄FB(u) =
π∗

r + κ− µZ
− u for u ≥ 0.

Under the first-best contract, it is easy to see that all the firms grow at
the same growth rate µZ ; they have the same investment to capital ratio,
µZ + δ, and the investment to cash flow sensitivity is zero; they have the
same Tobin’s Q which is

v̄FB(0)

k∗
=

1− α

α

(
r + δ + κ

r + κ− µZ

)
.

A.5. DATA APPENDIX

Data sources:
We construct our sample by using the annual Compustat data from 1967

to 2015. We exclude foreign firms (those with a foreign incorporation
code). To be consistent with previous literature, our main tests include
only manufacturing firms (with the standard industry classification (SIC)
code between 2000 and 3999), but we also study a border set of sample
including the nonmanufacturing firms (except for financial firms (SIC code
6000-6999) and utility firms (SIC 4000-4999)) as a robustness check.

Variable definitions:
Investment is the capital expenditure, (capx, Compustat data item 128).

Capital stock is computed as one year lag of net property, plant, and equip-
ment (ppent, Item 8). Consistent with the model, we use capital stock
as a measure for firm size. Cash flow is the sum of income before extraor-
dinary items (ib, Item 18) and depreciation and amortization (dp, Item
14). The market value of assets is equal to the book value of asset (at,
Item 120), plus market value common stocks (prcc_f × csho, Item 30 ×
Item 25), and minus the book value of common stocks (ceq, Item 60) and
the deferred taxes (txdb, Item 74). And the Tobin’s Q is calculated as the
market value of assets minus the difference between the book value of asset
and the capital, divided by the capital. We calculate firm’s age based on
the founding years from Ritter and Loughran (2004) and Jovanovic and
Rousseau (2001).

We also test the robustness of our cash-flow sensitivity regressions with
respect to different definitions of investment. Besides the standard defini-
tion, we use the following: (1) Compustat Item 30 (capxv), which includes
increases in property, plant, and equipment from acquisitions that use pur-
chase accounting, minus the sale of property (sppe, Item 107); (2) change
in net property, plant, and equipment; (3) change in net property, plant
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and equipment adding back depreciation; (4) the sum of capital expendi-
tures and acquisitions (acq, Item 129). For these different variations of
investment definitions, the first one is used by Hennessy, Levy, and Whited
(2007); definitions (2) and (3) are from Kaplan and Zingales (1997); and
the last definition is used by Eisfeldt and Rampini (2006). The standard
definition of investment is denoted as I1, while the remaining four alterna-
tive definitions of investment correspond to I2 to I5, respectively in Table
6 and Table 7.

Sample screening:
As standard in the literature, we use the following criteria to screen

the sample. We require firms to have valid observations for all variables
in the investment-cash-flow regression equation. To mitigate outliers, we
first drop those observations with either capital, or book assets or sales
smaller than 1 million U.S. dollars, and then we delete the outliers with
investment, capital, Tobin’s Q and cash flow to capital ratio beyond the 1st
and 99th percentiles. In the investment-to-cash flow sensitivity regressions,
we further conduct the following screenings. To alleviate Computstat’s
backfill bias, exclude firms for which we cannot compute the lagged cash
flow to capital ration, CFit−1

Kit−1
. Following Almeida, Campello and Weisbach

[2004], we exclude firms with asset or sales growth exceeding 100% to avoid
potential business discontinuities caused by mergers and acquisitions. And
we winsorize all the variables needed in the regressions at the 1st and 99th
percentiles.

Empirical model:
Following Fazzari, Hubbard, and Petersen (1988), we estimate investment-

cash-flow sensitivity as follows:

Iit
Kit

= αi + αt + βQQit−1 + βCF
CFit

Kit
+ εit

in which βQ measures investment-Q sensitivity; βCF measures the investment-
cash-flow sensitivity. αi and αt denote the firm and year fixed effects. The
standard errors are heteroskedasticity-consistent and clustered at the firm
level.

We run the regressions both for the whole sample and by size and age
groups. The regression results are reported in Table 5 and Table 6, respec-
tively.
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