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Towards a More Complete Theory of Structural Transformation

Chi Pui Ho*

This paper constructs a unified model on how population growth, technolog-
ical progress and capital deepening induce structural transformation. We solve
analytically the closed-form solution for the model to unearth the mechanisms
and crucial assumptions underlying how these factors interact and foster struc-
tural transformation. When agricultural productivity growth is fast enough to
outweigh the relative price effects contributed by non-agricultural productiv-
ity growth, population growth and capital deepening, production factors will
move out of agriculture. We clarify the condition to sustain growth in asymp-
totic growth path. We found empirical validity of the model with sectoral data
from the United States in 1970-2020.
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“Population increases, and the demand for corn raises its price relatively
to other things — more capital is profitably employed on agriculture, and
continues to flow towards it”. (David Ricardo 1821, 361)

1. INTRODUCTION

Structural transformation is an important topic in growth theory.1 In
the recent two decades, economists have been proposing different causes
of structural transformation, including technological progress (Ngai, and
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1Structural transformation refers to factor reallocation across different sectors in the
economy. More broadly, Chenery (1988, 197) defined structural transformation as
“changes in economic structure that typically accompany growth during a given period
or within a particular set of countries”. He considered industrialization, agricultural
transformation, migration and urbanization as examples of structural transformation.
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Pissarides 2007), capital deepening (Acemoglu, and Guerrieri 2008), and
population growth (Leukhina, and Turnovsky 2016). How these factors
interact is critical for any structural transformation model that includes
these three causes, and the absence of a theoretical base for this in the
current literature means that it is an incomplete theory. In this paper,
we will include all these factors in a structural transformation model, and
solve analytically how they interact and foster structural transformation
and growth in the long run. This can help us to track the mechanisms
and crucial assumptions by how structural transformation and sustained
growth occur.

We will develop a two-sector (“agricultural” and “non-agricultural”),
three-factor (labor, capital and land) model to study structural trans-
formation. In the model, the representative household views agricultural
and non-agricultural goods as consumption complements, while agricul-
tural production possesses stronger diminishing returns to labor. Take
population growth as an example. Holding sectoral factor shares constant,
population growth will increase non-agricultural output relative to agri-
cultural output, raising the relative price of agricultural goods (relative
price effect). At the same time, the increase in labor input in the two
sectors will reduce the relative marginal product in the agricultural sector
(relative marginal product effect). Given that the two sectoral goods are
consumption complements, the relative price effect will outride the relative
marginal product effect. Since factor return equals sectoral price times
marginal product, this will relatively boost agricultural factor returns and
draw production factors towards the agricultural sector. We call this the
population growth effect on structural transformation.2 Similarly, we will
have the agricultural technology growth effect, the non-agricultural technol-
ogy growth effect, and the capital deepening effect on structural transfor-
mation, which all operates through the relative price effect that overweighs
the relative marginal product effect.

From our model’s analytical solution, to move production factors away
from agriculture, we need a fast enough agricultural technology growth rate
so that the agricultural technology growth effect overrides the combination
of the other three effects. On the other hand, to sustain growth in the long
run, technological progress in the non-agricultural sector needs to outpace
the population growth drag. We will develop important hypotheses from
our model and test the empirical validity of our theory using the United
States sectoral data in 1970-2020.

2David Ricardo (1821) mentioned that population growth attracts capital towards
the agricultural sector through the relative price effect. See his quote ahead of the
Introduction.
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2. RELEVANT LITERATURE

Our work is related to the literature of structural transformation, which
can be traced back to the work by Harris, and Todaro (1970). They hy-
pothesized that when the rural wage is lower than the expected urban wage,
labor will migrate from the rural to the urban sector. In their model labor
movement is a disequilibrium phenomenon in the sense that unemploy-
ment exists. The literature has evolved to consider how structural trans-
formation occurs within frameworks where full employment and allocation
efficiency are achieved. Income effect and relative price effect have be-
come standard channels to explain structural transformation within these
frameworks. Income effect is a demand-side approach, which assumes a
non-homothetic household utility function, usually with a lower income
elasticity on agricultural goods than on non-agricultural goods. Hence in-
come growth throughout development process will shift demand away from
the agricultural goods, fostering a relative agricultural decline in the econ-
omy. For example, Matsuyama (1992), Laitner (2000), Kongsamut, Re-
belo, and Xie (2001), Gollin, Parente, and Rogerson (2002, 2007), Foellmi,
and Zweimüller (2008), Gollin, and Rogerson (2014) shared this property.
Relative price effect is a supply-side approach, which emphasizes that dif-
ferential productivity growth across sectors will bring along relative price
changes among consumption goods. And the resulting direction of sectoral
shift will depend on the degree of substitutability among different con-
sumption goods. For example, Doepke (2004), Ngai, and Pissarides (2007,
2008), Acemoglu, and Guerrieri (2008), Bar, and Leukhina (2010), Lagerlöf
(2010), Hansen, and Prescott (2002) shared this feature. Acemoglu, and
Guerrieri (2008) proposed capital deepening as an additional cause that
generates structural transformation through the relative price effect.

In the recent years, the literature has evolved to look into alternative
causes for structural transformation. For example, models with educa-
tion/training costs (Caselli, and Coleman 2001), tax changes (Rogerson
2008), barriers to labor reallocation and adoption of modern agricultural
inputs (Restuccia, Yang, and Zhu 2008), transportation improvement (Her-
rendorf, Schmitz, and Teixeira 2012), scale economies (Buera, and Kaboski
2012b), human capital (Tamura 2002, Buera, and Kaboski 2012a), inter-
national trade (Uy, Yi, and Zhang 2013), population growth (Leukhina,
and Turnovsky 2016), child mortality (Adams 2022) and migration costs
(Baudin, and Stelter 2022) have been proposed. See Herrendorf, Rogerson,
and Valentinyi (2014) for a survey.

Due to the complexity of modeling, the structure transformation lit-
erature usually either employed micro-founded models to calibrate cross-
sectional or time-evolving sectoral share patterns, or evaluated the rel-
ative importance of the above causes in accounting for historical struc-
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tural changes. Some examples are Echevarría (1997), Hansen, and Prescott
(2002), Dennis, and İşcan (2009), Duarte, and Restuccia (2010), Alvarez -
Cuadrado, and Poschke (2011), Guilló, Papageorgiou, and Perez-Sebastian
(2011), Leukhina, and Turnovsky (2016) and Pan (2019)’s works. Yet the
drawback of such methodology is that there were no closed-form solutions to
provide a solid analytical base on the mechanisms and crucial assumptions
of how important factors like population growth, capital deepening and
technological progress interact and foster structural transformation. Also
it might be difficult to develop hypotheses based on the parameters and
assumptions from the models to test their empirical validity. This paper
aims to fill these research gaps. In particular, by obtaining the closed-form
solution of the model, we can highlight the mechanisms by which differ-
ent factors interact to foster sectoral shift. We can also develop hypotheses
based on the closed-form solution of the model, and investigate the model’s
empirical validity by testing the hypotheses against the United States data
in 1970-2020.

3. THE UNIFIED MODEL

3.1. Model setup

We construct a unified model to examine how population growth, techno-
logical progress and capital accumulation induce structural transformation.
There are two sectors (“agricultural” and “non-agricultural”) and three
production factors (labor, capital and land) in the economy. Technological
progress occurs in both sectors. Markets are complete and competitive.
Factors are freely mobile across sectors.

Consider the economy which starts with L0 identical households, and the
population growth rate is n. Population at time t is:

Lt = L0e
nt. (1)

Each household is endowed with one unit of labor, which is supplied in-
elastically. The representative household holds utility function in the form
of: ∫ ∞

0

e−(ρ−n)t c̃
1−θ
t − 1

1− θ
dt, (2)

where ρ is the discount rate, θ is the inverse of elasticity of intertemporal
substitution, c̃t is per capita consumption composite at time t.

The representative household makes his or her consumption decisions
subject to budget constraints at t ∈ [0,∞):

K̇t

Lt
= wt(1) + rt

Kt

Lt
+Ωt

T

Lt
− c̃t, (3)
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where K̇t

Lt
is the instantaneous change in per capita capital stock at time

t, Kt

Lt
and T

Lt
are capital and land each household owns at time t, wt, rt(=

Rt−δ) and Ωt are real wage rate, interest rate and land rental rate at time t.
At each time point t, the instantaneous change in per capita capital stock
equals the sum of individual real wage, capital interest and land rental
incomes, minus real individual spending on consumption composite.

Agricultural and non-agricultural goods, YAt and YMt, are produced
competitively according to Cobb-Douglas technologies, using labor, cap-
ital and land as inputs:

YAt = AtL
αA

At K
βA

At T
γA

At , (4)

αA, βA, γA ∈ (0, 1), αA + βA + γA = 1, gA ≡ Ȧt

At
,

YMt = MtL
αM

MtK
βM

Mt T
γM

Mt , (5)

αM , βM , γM ∈ (0, 1), αM + βM + γM = 1, gM ≡ Ṁt

Mt
,

where LAt and LMt, KAt and KMt, TAt and TMt are labor, capital and
land employed by the two sectors at time t; αA and αM , βA and βM , γA
and γM are labor intensities, capital intensities and land intensities in the
two sectors; At and Mt are agricultural and non-agricultural productivities
at time t, gA and gM are technology growth rates in the two sectors. Note
that αA and αM measure the degree of diminishing returns to labor in
the two sectors: the greater the values of these parameters are, the weaker
diminishing returns to labor are. Population growth and technological
progresses are the exogenous driving forces across time in the unified model.

Factor market clearing implies that the sum of factor demands from the
two sectors equals aggregate factor supplies at each time t:

LAt + LMt = Lt, (6)
KAt +KMt = Kt, (7)
TAt + TMt = T, (8)

where Kt is the aggregate capital stock at time t, T is the aggregate land
supply in the economy, which is fixed over time.

We solve the allocation by considering the problem faced by the so-
cial planner. We define Yt as the unique final output at time t, which is
produced competitively using agricultural and non-agricultural goods as
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intermediate inputs:3

Yt =
(
ωAY

ε−1
ε

At + ωMY
ε−1
ε

Mt

) ε
ε−1

, (9)

where ωA and ωM are the relative weight of the two intermediate inputs
respectively, and ε is elasticity of substitution between the two sectoral
goods.

We normalize the price of final output as the numéraire in the economy
for all time t, that is:

1 ≡ (ωε
AP

1−ε
At + ωε

MP 1−ε
Mt )

1
1−ε , (10)

where the associated prices of agricultural and non-agricultural goods at
time t, PAt and PMt, are respectively:4

PAt = ωA

(
Yt

YAt

) 1
ε

, (11)

PMt = ωM

(
Yt

YMt

) 1
ε

. (12)

Also, (3) can be aggregated to give an economy-wide resource constraint:5

K̇t + δKt + Ltc̃t = Yt, δ ∈ [0, 1], (13)

where δ is the capital depreciation rate. Note that (13) differs from the
literature of assuming all investments being only produced by the manu-
facturing sector, and the output of the other sectors can only be used as
consumption. The justification is that such assumption has become increas-
ingly at odd with the data over time, because many innovations nowadays

3Final output is an aggregator of agricultural and non-agricultural output that repre-
sents the representative household’s consumption composite preference. Combining (9)
and (13) yields per capita consumption composite at time t:

c̃t =

(
ωAỹ

ε−1
ε

At + ωM ỹ
ε−1
ε

Mt

) ε
ε−1

−
K̇t

Lt
−

δKt

Lt
, ωA, ωM ∈ (0, 1), ωA+ωM = 1, ε ∈ [0,∞),

where ỹAt ≡ YAt
Lt

and ỹMt ≡ YMt
Lt

are per capita purchase of agricultural and non-
agricultural goods at time t respectively, ωA and ωM are the relative strengths of demand
for the two sectoral goods respectively, and ε is the elasticity of substitution between
the two sectoral goods. Note that the representative household only values a portion of
the CES aggregator of purchased sectoral goods, after investment and depreciation have
been deducted from it, as the consumption composite. This is also the utility function
implicitly embedded in Acemoglu, and Guerrieri (2008)’s model.

4See Appendix 3 for the proof.
5See Appendix 3 for the proof.
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take place outside the manufacturing sector (Herrendorf, Rogerson, and
Valentinyi 2014).

The social planner’s problem is hence:

max
{c̃t,Kt,LAt,LMt,KAt,KMt,TAt,TMt}∞

t=0

∫ ∞

0

e−(ρ−n)t c̃
1−θ
t − 1

1− θ
dt (14)

subject to (1),(4)-(13), given K0, L0, T, A0,M0 > 0.
The maximization problem (14) can be divided into two layers: the in-

tertemporal and intratemporal allocation. In the intertemporal level, the
social planner chooses paths of per capita consumption composite and ag-
gregate capital stock over the entire time horizon t ∈ [0,∞). In the in-
tratemporal level, the social planner divides the aggregate capital stock,
total population and land between agricultural and non-agricultural pro-
duction to maximize final output at each time point t. We solve the problem
starting from the lower level first, that is, the intratemporal level, and then
move on to the higher intertemporal level.

3.2. Intratemporal level: Factor allocation across sectors

In the intratemporal level, at each time point t, the social planner de-
cides factor allocation between agricultural and non-agricultural sectors to
maximize the value of final output, which will allow him/her to choose
among the largest possible choice set (13) in solving the intertemporal
consumption-saving problem in the next subsection:

max
LAt,LMt,KAt,KMt,TAt,TMt

Yt subject to (4)-(12), given Kt, Lt, T. (15)

This results in wages wt, capital rentals Rt and land rentals Ωt being equal-
ized across the agricultural and non-agricultural sectors:

wt = ωAαA

(
Yt

YAt

) 1
ε YAt

LAt
= ωMαM

(
Yt

YMt

) 1
ε YMt

LMt
, (16)

Rt = ωAβA

(
Yt

YAt

) 1
ε YAt

KAt
= ωMβM

(
Yt

YMt

) 1
ε YMt

KMt
, (17)

Ωt = ωAγA

(
Yt

YAt

) 1
ε YAt

TAt
= ωMγM

(
Yt

YMt

) 1
ε YMt

TMt
. (18)
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Defining the non-agricultural labor, capital and land shares as lMt ≡ LMt

Lt
,

kMt ≡ KMt

Kt
and τMt ≡ TMt

T respectively, (16)-(18) can be rewritten as:

lMt =

[
1 +

ωAαA

ωMαM

(
YMt

YAt

) 1−ε
ε

]−1

, (19)

kMt =

[
1 +

αM

αA

βA

βM

(
1− lMt

lMt

)]−1

, (20)

τMt =

[
1 +

αM

αA

γA
γM

(
1− lMt

lMt

)]−1

. (21)

Note that the agricultural labor, capital and land shares are lAt = (1−lMt),
kAt = (1 − kMt) and τAt = (1 − τMt) respectively. Equations (19)-(21)
characterize the intratemporal equilibrium conditions.

Manipulating (19)-(21) and we obtain the following four propositions,
which show how the sectoral shares lMt, kMt and τMt respond to population
growth, technological progresses and capital deepening. We will focus on
the ε < 1 case.6

Proposition 1 (Population growth effect). In equilibrium,

d ln lMt

d lnLt

= (22)

−
(1 − ε)(αM − αA)(1 − lMt)

ε + (1 − ε)[αM (1 − lMt) + αAlMt + βM (1 − kMt) + βAkMt + γM (1 − τMt) + γAτMt]

< 0 if ε < 1and αM > αA
> 0 if ε < 1and αM < αA

d ln kMt

d lnLt
=

1− kMt

1− lMt
· d ln lMt

d lnLt
, (23)

d ln τMt

d lnLt
=

1− τMt

1− lMt
· d ln lMt

d lnLt
. (24)

Proof. See Appendix 1.

Equations (22)-(24) illustrates the population growth effect on structural
transformation. From (22), when ε < 1, population growth pushes labor
towards the sector characterized by stronger diminishing returns to labor.
The mechanism works through relative price effect on sectoral goods that
dominates the relative marginal product effect. Combine (11), (12), take

6Using the United States data from 1870-2000, Buera, and Kaboski (2009) calibrated
the elasticity of substitution across sectoral goods, ε, to be 0.5.
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log and differentiate to get the relative price effect:

∂ ln
(

PMt

PAt

)
∂ lnLt

∣∣∣∣∣∣
constant lMt,kMt,τMt

=
1

ε
(αA − αM )

< 0 if αM > αA

> 0 if αM < αA
. (25)

Holding factor shares allocated to the two sectors constant, population
growth will lead to a relative price drop in the sector characterized by
weaker diminishing returns to labor. On the other hand, combining (4),
(5), taking log and differentiating gives the relative marginal product effect:

∂ ln
(

MPLMt

MPLAt

)
∂ lnLt

∣∣∣∣∣∣
constant lMt,kMt,τMt

= (αM − αA)
> 0 if αM > αA

< 0 if αM < αA
, (26)

where MPLAt and MPLMt are marginal products of labor in the two sec-
tors. Marginal product of labor will rise relatively in the weaker diminishing
returns sector.

From (25)-(26), if ε < 1, when population increases, the aforementioned
relative price drop in the weaker diminishing returns sector will be pro-
portionately more than the rise in relative marginal product of labor in
the same sector. Since wage equals sectoral price times marginal product
of labor, wage will fall relatively in the weaker diminishing returns sec-
tor. This will induce labor to move out of the weaker diminishing returns
sector, until the wage parity condition (16) is restored.7 Intuitively, we
can also understand the population growth effect as follows: when the two
sectoral goods are consumption complements, households do not want to
consume too few of either one of them. When population grows, if sectoral
labor shares stay constant, sectoral output grows slower in the sector with
stronger diminishing returns to labor. Hence labor will shift to this sector
to maximize the value of per capita consumption composite.

The crux importance of ε < 1 is making sure that the relative price
effect (equation (25)) dominates over the relative marginal product effect
(equation (26)). This assumption has been explicitly stated in Ngai, and
Pissarides (2007, 2008), Acemoglu, and Guerrieri (2008), Buera, and Ka-
boski (2009)’s papers, allowing sectors with slower productivity growth and
lower capital intensity to draw in production inputs throughout economic
development. On the other hand, if ε is sufficiently large, the relative
marginal product effect would outweigh the relative price effect, reversing
the directions of sectoral shifts in propositions 1-4. Hansen, and Prescott
(2002), Doepke (2004) and Lagerlöf (2010) implicitly assumed perfect con-
sumption substitutability between two sectoral goods (ε → ∞). Given the

7Note (16) can be rewritten as PAtMPLAt = PMtMPLMt.
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parameter assumptions in their papers, sectors with faster technological
progress will attract production factors throughout development process.

Since labor, capital and land are complementary inputs during produc-
tion of sectoral goods, capital and land use also shift in the same direction
as labor.

Proposition 2 (Agricultural technology growth effect). In equilibrium,
d ln lMt

d lnAt

= (27)

(1 − ε)(1 − lMt)

ε + (1 − ε)[αM (1 − lMt) + αAlMt + βM (1 − kMt) + βAkMt + γM (1 − τMt) + γAτMt]
> 0 if ε < 1,

d ln kMt

d lnAt
=

1− kMt

1− lMt
· d ln lMt

d lnAt
, (28)

d ln τMt

d lnAt
=

1− τMt

1− lMt
· d ln lMt

d lnAt
. (29)

Proof. See Appendix 1.
Proposition 3 (Non-agricultural technology growth effect). In equi-

librium,
d ln lMt

d lnMt

= (30)

−
(1 − ε)(1 − lMt)

ε + (1 − ε)[αM (1 − lMt) + αAlMt + βM (1 − kMt) + βAkMt + γM (1 − τMt) + γAτMt]
< 0 if ε < 1,

d ln kMt

d lnMt
=

1− kMt

1− lMt
· d ln lMt

d lnMt
, (31)

d ln τMt

d lnMt
=

1− τMt

1− lMt
· d ln lMt

d lnMt
. (32)

Proof. See Appendix 1.

The mechanism for propositions 2 and 3 goes as follows. Ceteris paribus,
if ε < 1, technological progress in one sector induces a more than propor-
tionate relative price drop (compared to the relative marginal product of
labor rise) in the same sector. Hence labor shifts out this sector to pre-
serve the wage parity condition (16). Capital and land use shift in the
same direction due to their complementarity during sectoral production.
These two propositions correspond to “Baumol’s cost disease” being high-
lighted in Ngai, and Pissarides (2007)’s paper: production inputs move in
the direction of the relatively technological stagnating sector.
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Proposition 4 (Capital deepening effect). In equilibrium,
d ln lMt

d lnKt

= (33)

−
(1 − ε)(βM − βA)(1 − lMt)

ε + (1 − ε)[αM (1 − lMt) + αAlMt + βM (1 − kMt) + βAkMt + γM (1 − τMt) + γAτMt]

< 0 if ε < 1 and βM > βA
> 0 if ε < 1 and βM < βA

,

d ln kMt

d lnKt
=

1− kMt

1− lMt
· d ln lMt

d lnKt
, (34)

d ln τMt

d lnKt
=

1− τMt

1− lMt
· d ln lMt

d lnKt
. (35)

Proof. See Appendix 1.

The mechanism for proposition 4 is similar to those in propositions 1-3.
Ceteris paribus, if ε < 1, capital deepening induces a more than propor-
tionate relative price drop (compared to the relative marginal product of
capital rise) in the sector with higher capital intensity. Hence capital shifts
out this sector to retain the capital rental parity condition (17). Labor and
land use also move in the same direction. This is the channel highlighted
by Acemoglu, and Guerrieri (2008): capital deepening leads to factor real-
location towards the sector with lower capital intensity.

To summarize, given ε < 1, the above four mechanisms all work through
the relative price effect that dominates over the relative marginal product
effect. Population growth effect pushes production factors towards the
sector with stronger diminishing returns to labor.8 Technology growth
effects push factors towards the sector experiencing slower technological
progress. Capital deepening effect pushes factors towards the sector with
lower capital intensity.9

3.3. Intertemporal level: Consumption-saving across time

In the intertemporal level, at each time point t, the social planner solves
the consumption-saving problem to maximize the objective function:

max
{c̃t,Kt}∞

t=0

∫ ∞

0

e−(ρ−n)t

(
c̃1−θ
t − 1

1− θ

)
dt, subject to (36)

8Note that population growth effect depends on the difference between degrees of
diminishing returns to labor in the two sectors ((αM − αA) in (22)), but not the differ-
ence between land intensities between the two sectors (γM − γA). So a statement like
“population growth effect pushes production factors towards the sector with higher land
intensity” is not precise, and sometimes incorrect.

9We might also consider how an exogenous increase in land supply could contribute
to a “land expansion effect” on structural transformation. See Appendix 2 for details.
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K̇t = Φ(Kt, t)− δKt − entL0c̃t, (37)
where Φ(Kt, t) is the maximized value of current output at time t (equation
(15)), which is a function of the capital stock at time t:

Φ(Kt, t) ≡ max
LAt,LMt,KAt,KMt,TAt,TMt

Yt, given Kt > 0.

Note that Φ(Kt, t) contains trending variables such as Lt and Mt (or At),
and sectoral shares lMt, kMt and τMt which evolve over time.10

Maximizing (36) subject to (37) is a standard optimal control problem.
It yields the consumption Euler equation:

˙̃ct
c̃t

=
1

θ
[ΦK − δ − ρ], (38)

where ΦK is the marginal product of capital of the maximized production
function, which equals the capital rental Rt in the economy. Equations (38)
and (37) characterize how per capita consumption composite and aggregate
capital stock evolve over time.

To characterize the equilibrium dynamics of the system, we need to im-
pose certain assumptions, appropriately normalize per capita consumption
composite and aggregate capital stock, and include sectoral share evolution
equations.11 For the first purpose, we assume that:

(A1) ε < 1,
(A2) βM > βA,
(A3) gA >

(
1−βA

1−βM

)
gM +

[
αM − αA + αM (βM−βA)

1−βM

]
n.

Assumption (A1) states that agricultural and non-agricultural goods
are consumption complements. Assumption (A2) states that the non-
agricultural sector is the capital-intensive sector in the economy. We denote(

1−βA

1−βM

)
gM as the augmented non-agricultural technology growth rate,

and
[
αM − αA + αM (βM−βA)

1−βM

]
n as the augmented population growth rate.

Assumption (A3) states that the agricultural technology growth rate is
greater than the sum of augmented non-agricultural technology growth
rate and augmented population growth rate (we will explain this assump-
tion in more detail in proposition 6). These three assumptions assure that
the non-agricultural sector is the asymptotically dominant sector.12

10See equation (A.6) in Appendix 1 for the reduced-from expression of Φ(Kt, t).
11Mathematically, we want to remove the trending terms in (37)-(38) and include

a sufficient number of equations to capture the evolution of per capita consumption
composite, aggregate capital stock and sectoral shares in an autonomous system of
differential equations.

12We adopt Acemoglu, and Guerrieri (2008, 479)’s notation that “[t]he asymptotically
dominant sector is the sector that determines the long-run growth rate of the economy.”
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For the second purpose, we normalize per capita consumption composite
and aggregate capital stock by population and productivity of the asymp-
totically dominant sector:

ct ≡ c̃tL
1−αM−βM

1−βM
t

M
1

1−βM
t

, (39)

χt ≡ K
1−βM
αM

t

LtM
1

αM
t

. (40)

With these two normalized variables, given the initial conditions χ0 and
kM0, we can characterize the equilibrium dynamics of the economy by an
autonomous system of three differential equations in ct, χt and kMt, as
stated in proposition 5.

Proposition 5 (Equilibrium dynamics). Suppose (A1)-(A3) hold. The
equilibrium dynamics of the economy is characterized by the following three
differential equations:

ċt

ct

=
1

θ

(
ωMβMη

1
ε
t χ

−αM
t T

γM l
αM
Mt

k
βM−1
Mt

τ
γM
Mt

− δ − ρ

)
−

gM

1 − βM

+

(
1 − αM − βM

1 − βM

)
n, (41)

χ̇t

χt

=
1 − βM

αM

ηtχ
−αM
t T

γM l
αM
Mt

k
βM
Mt

τ
γM
Mt

− χ

αM
1−βM
t · ct − δ

 − n −
gM

αM

, (42)

k̇Mt

kMt

=

(1 − kMt)

{
(gM − gA) + (αM − αA)n + (βM − βA)

[
αM

1−βM
· χ̇t

χt
+

αM
1−βM

n +
gM

1−βM

]}
(

ε
ε−1

)
− [(βM − βA)(1 − kMt) + (αM − αA)(1 − lMt) + (γM − γA)(1 − τMt) + αA + βA + γA]

,

(43)

where

ηt ≡ ω
ε

ε−1

M

[
1 +

(
βM

βA

)(
1− kMt

kMt

)] ε
ε−1

, (44)

given χ0, kM0 > 0, and the transversality condition is satisfied:

lim
t→∞

exp

({
−ρ+

[
αM + (1− αM − βM )θ

1− βM

]
n+

(
1− θ

1− βM

)
gM

}
t

)
c−θ
t χ

αM
1−βM
t = 0.

(45)

Proof. See Appendix 1.

The dynamic system (41)-(43) in proposition 5 is a three-dimensional
generalization of the per capita consumption-effective capital-labor ratio
dynamic system in Ramsey (1928)-Cass (1965)-Koopmans (1965) model,
where we add in features of sectoral production and land as a fixed pro-
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duction factor.13 Note that lMt and τMt in (41)-(43) are functions of kMt

at each time t (see intratemporal equilibrium conditions (20)-(21)). They
evolve according to:

l̇Mt

lMt
=

(
1− lMt

1− kMt

)
k̇Mt

kMt
, (46)

τ̇Mt

τMt
=

(
1− τMt

1− kMt

)
k̇Mt

kMt
. (47)

We give the interpretations of the above equations: (41) and (42) are
the consumption Euler equation and capital accumulation equation trans-
formed to sort out the trending population and productivity terms; (43),
(46) and (47) come from taking log and differentiating the intratemporal
equilibrium conditions (19)-(21), and they show how the sectoral shares
evolve over time.14 We impose the following parameter restriction to guar-
antee the transversality condition (45):

(A4) ρ−
[
αM+(1−αM−βM )θ

1−βM

]
n >

(
1−θ

1−βM

)
gM .

3.4. Constant growth path (CGP)

We focus on one particular equilibrium path characterized by proposition
5: the constant growth path (CGP), which is defined as a path featured
with constant normalized per capita consumption composite growth rate.
Proposition 6 shows the closed-form solution of sectoral share evolution
equations in CGP.

Proposition 6 (Structural transformation in CGP). Suppose (A1)-(A4)
hold. In a constant growth path, sectoral shares evolve according to:

k̇Mt

kMt
= G(kMt)

{
gA −

(
1− βA

1− βM

)
gM −

[
αM − αA +

αM (βM − βA)

1− βM

]
n

}
,

(48)
where G(kMt) > 0 is a function of kMt and is unrelated to gA, gM and n;
and (46)-(47), given kM0 > 0.

As t → ∞, kMt → k∗M = 1, lMt → l∗M = 1 and τMt → τ∗M = 1.

13Setting γM = 0, kMt = lMt = τMt = 1 reduces (39)-(45) to Ramsey (1928)-Cass
(1965)-Koopmans (1965) model’s two-dimensional dynamic equation system. Zou et
al. (2010) incorporated health and tax in the Ramsey model to examine the effects of
consumption tax and income tax.

14For relative sectoral output evolution, rewrite (19) as (l−1
Mt − 1) =

ωAαA
ωMαM

(
YMt
YAt

) 1−ε
ε . Take log and differentiate with respect to time to get l̇Mt

lMt
=

(1 − lMt)
(
ε−1
ε

) ( ẎMt
YMt

− ẎAt
YAt

)
. Given ε < 1, ẎMt

YMt
− ẎAt

YAt
and l̇Mt

lMt
follow different

signs.
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Proof. See Appendix 1.

Proposition 6 highlights the result of interplay among population growth
effect, technology growth effects and capital deepening effect in fostering
structural transformation in CGP. Equation (48) explains why assump-
tion (A3) guarantees that the non-agricultural sector is the asymptotically
dominant sector: assumption (A3) guarantees a strong enough agricul-
tural technology growth effect which overrides non-agricultural technology
growth effect, population growth effect and capital deepening effect to en-
sure factor reallocations towards the non-agricultural sector. The technol-
ogy growth effects from the two sectors are represented by the gA and gM
terms. The population growth effect is represented by the [αM−αA]n term.
Capital accumulation is endogenous in the model and the capital deepen-
ing effect is captured by the “wedge” coefficients 1−βA

1−βM
and αM (βM−βA)

1−βM
,

which respectively augment the non-agricultural technology growth effect
and population growth effect terms relative to the agricultural technology
growth effect term. We reinforce our result in the following corollary.

Corollary 1 (Escape from land). Suppose there are two sectors pro-
ducing consumption complements in the economy: one is land-intensive
and the other is capital-intensive. Production factors shift from the land-
intensive sector to the capital-intensive sector if the technology growth rate
in the land-intensive sector is greater than the sum of augmented technology
growth rate in the capital-intensive sector and augmented population growth
rate.15

Corollary 1 highlights structural transformation in an economy that fea-
tures population growth, technological progress and capital accumulation.
Given agriculture is the land-intensive sector, the key to move production
factors out of agriculture is fast enough agricultural productivity growth
that outweighs the combination of non-agricultural technology growth ef-
fect, population growth effect and capital deepening effect.

Next, we investigate a “razor’s edge” condition, which illustrates why
the literature usually neglects the effect of population growth on structural
transformation. From (48), unless the following “razor’s edge” condition

15Due to model symmetry, suppose instead the agricultural sector is capital-intensive
(βM < βA) and the non-agricultural sector is land-intensive (γM > γA). Given that the
two sectors produce consumption complements, the condition to ensure “escape from
land” is gM >

(
1−βM
1−βA

)
gA +

[
αA − αM +

αA(βA−βM )
1−βA

]
n.
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holds:

αM − αA +
αM (βM − βA)

1− βM
= 0, (49)

otherwise a change in population growth rate will affect the direction and
pace of structural transformation in CGP. The “razor’s edge” condition
(49) can be reduced to either γA = γM = 0 or αA

αM
= γA

γM
. The former

means land intensities equal zero in the two sectors. The latter means the
ratio of labor intensity equals the ratio of land intensity in the two sectors.

Acemoglu, and Guerrieri (2008)’s model is a special case of ours, where
the “razor’s edge” condition (49) applies. In their paper, they did not in-
clude land as an input in sectoral production. This is equivalent to setting
γA = γM = 0, αA = 1 − βA and αM = 1 − βM in our model. Equation
(48) is reduced to k̇Mt

kMt
= G(kMt)

{
gA −

(
αA

αM

)
gM

}
. It happens that the

population growth effect is cancelled out by some part of the capital deep-
ening effect, and population growth rate does not show up in the sectoral
share evolution equation. Also, as a special case of our (A3), they assume
gA −

(
αA

αM

)
gM > 0 to make sure that the non-agricultural sector is the

asymptotically dominant sector.16

Our model can also be collapsed to the two-sector version of Ngai, and
Pissarides (2007)’s one, which again fulfils the “razor’s edge” condition. In
their paper, land is not an input to sectoral production. They also assumed
same capital intensity for all sectoral production functions. This makes
γA = γM = 0, αA = 1− βA, αM = 1− βM , αA = αM and βA = βM in our
model. Equation (48) is reduced to k̇Mt

kMt
= G(kMt){gA − gM}. There was

neither population growth effect nor capital deepening effect in the reduced
model. By assuming gA − gM > 0, we get their result that the sector with
the slowest technology growth will continuously draw in employment in the
aggregate balanced growth path.17

From (48), we can also study the effects of changes in technology growth
rates and population growth rate on the pace of agricultural-to-non-agricultural
transformation, given that (A1)-(A4) hold. Straightforward differentiation

16See Proposition 3 (sectoral share evolution equation) and Assumption 2(i) in Ace-
moglu, and Guerrieri (2008)’s paper.

17See Proposition 2 in Ngai, and Pissarides (2007)’s paper. Note that Ngai, and
Pissarides (2007) have examined the inclusion of a fixed production factor in at least
one production sector in their appendix.
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yields:

d
(

k̇Mt

kMt

)
dgA

= G(kMt) > 0, (50)

d
(

k̇Mt

kMt

)
dgM

= −G(kMt)

(
1− βA

1− βM

)
< 0, (51)

d
(

k̇Mt

kMt

)
dn

= −G(kMt)

[
αM − αA +

αM (βM − βA)

1− βM

]
≷ 0. (52)

Speeding up agricultural technological progress accelerates sectoral shift,
while boosting non-agricultural technology growth rate decelerates it. In-
creasing population growth rate has a theoretically ambiguous effect on the
pace of sectoral shift, and we resolve the sign by relying on the estimates
of sectoral production function parameters. We consider the modern agri-
cultural and Solow production technologies calibrated by Yang, and Zhu
(2013) and Hansen, and Prescott (2002):18

YAt =AtL
0.36
At K0.4

At T
0.24
At , that is, αA = 0.36, βA = 0.4, γA = 0.24. (53)

YMt =MtL
0.58
Mt K

0.41
Mt T 0.01

Mt , that is, αM = 0.58, βM = 0.41, γM = 0.01.
(54)

Plug the coefficients from (53) and (54) into (52) to get
∂
(

k̇Mt
kMt

)
∂n = −0.23 ·

G(kMt) < 0. An increase in population growth rate will slow down struc-
tural transformation.19

3.5. Asymptotic growth path

Lastly, we study the properties of the economy in its asymptotic growth
path. The economy converges to a unique, saddle-path stable CGP with
non-balanced sectoral growth, which is summarized in proposition 7.

Proposition 7 (Asymptotic growth path). Suppose (A1)-(A4) hold,
denote a∗ ≡ limt→∞ at, g∗a ≡ limt→∞

(
ȧt

at

)
, yt ≡ Yt

Lt
as per capita final

18Hansen, and Prescott (2002) stated the non-agricultural production function in the
form of YMt = MtL0.6

MtK
0.4
Mt. We slightly modify the production function to YMt =

MtL0.58
Mt K0.41

Mt T 0.01
Mt to include land as a factor of production and ensure Assumption

(A2) holds.
19In other words, our model implies that an increase in population growth rate

would slow down economic development in terms of counteracting agricultural tech-
nology growth effect, retaining production factors in agriculture. This is in analogy
to unified growth theories’ mechanism in which an increase in population growth rate
would neutralize the effect of technological progress, hence retain per capita income in
a Malthusian Trap (Galor, and Weil 2000, Galor, and Moav 2002).
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output or per capita income in the economy, then there exists a unique,
saddle-path stable asymptotic growth path such that:

k∗M = l∗M = τ∗M = 1, η∗ = ω
ε

ε−1

M .

χ∗ =

[
θgM−(1−αM−βM )θn

1−βM
+ δ + ρ

βMω
ε

ε−1T
γM

M

] 1
αM

,

c∗ =

[
η∗(χ∗)−αMT γM − δ − αM

1− βM

(
n+

gM
αM

)]
(χ∗)

αM
1−βM .

For the aggregate variables,

g∗Y =
αM

1− βM
n+

gM
1− βM

,

g∗y =
gM

1− βM
−
(
1− αM − βM

1− βM

)
n,

g∗c̃ =
gM

1− βM
−
(
1− αM − βM

1− βM

)
n,

g∗L =n,

g∗K =
αM

1− βM
n+

gM
1− βM

,

g∗T =0.

For the agricultural sector,

g∗YA
=gA + αAn+ βA

(
αM

1− βM
n+

gM
1− βM

)
,

g∗LA
=

(
1− 1

ε

)
(g∗YA

− g∗YM
) + n,

g∗KA
=

(
1− 1

ε

)
(g∗YA

− g∗YM
) +

αM

1− βM
n+

gM
1− βM

,

g∗TA
=

(
1− 1

ε

)
(g∗YA

− g∗YM
).
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For the non-agricultural sector,

g∗YM
=

αM

1− βM
n+

gM
1− βM

< g∗YA
,

g∗LM
=n > g∗LA

,

g∗KM
=

αM

1− βM
n+

gM
1− βM

> g∗KA
,

g∗TM
=0 > g∗TA

.

Proof. See Appendix 1.

There is non-balanced growth in the sense that the non-agricultural sec-
tor will tend to draw away all production resources (capital, labor and
land) in the economy and become the asymptotically dominant sector. On
the other hand, the agricultural output will grow at a faster rate than the
non-agricultural output.

Given αM +βM ̸= 1, population growth puts a drag −
(

1−αM−βM

1−βM

)
n on

per capita income growth rate in the asymptotic growth path. The higher
the population growth rate is, the faster per capita income diminishes. This
differs from the literature’s prediction of a non-negative effect of population
growth rate on per capita income growth rate in the steady states.20 The
drag on per capita income growth rate originates from the presence of land
as a fixed factor of sectoral production. Due to diminishing returns to labor,
the limitation land puts on per capita income growth becomes more and
more severe as population grows over time. The faster population grows,
the quicker per capita income deteriorates due to this problem, and the
larger is the resulting drag. Without fast enough technological progress in
the asymptotically dominant sector, per capita income keeps on shrinking
over time, and the economy ultimately ends up with stagnation.21 To
ensure a sustainable per capita income growth, technological progress in

20In Solow (1956), Cass (1965) and Koopmans (1965)’s exogenous growth models,
diminishing marginal product of capital assures saving in the economy just to replenish
capital depreciation and population growth in the steady state. A change in population
growth rate has just a level effect but no growth effect on per capita income evolution
in the long run. In the 1990s, Jones (1995), Kortum (1997) and Segerstrom (1998) pro-
posed semi-endogenous growth models, which incorporate R&D and assume diminishing
returns to R&D. In steady states, these models predict that per capita income (or real
wage) growth rate increases linearly with population growth rate. To summarize, the
above literature predicts a non-negative effect of population growth rate on per capita
income growth rate in steady states. In contrast, our model predicts that population
growth rate will have a negative effect on per capita income growth rate even in the
asymptotic growth path.

21According to Ricardo (1821), in the absence of technological progress, with dimin-
ishing returns to land use, population growth will eventually drain up the entire agri-
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the asymptotically dominant sector needs to outpace the population growth
drag.22

4. MODEL CALIBRATION

We apply the unified model to explore whether the equilibrium dynamics
implied by our model are broadly consistent with the patterns of the United
States data between 1970-2020. We assemble the data of agricultural cap-
ital share as U.S. Bureau of Economic Analysis (2023)’s proportion of net
stock of private fixed asset allocated to agriculture, forestry, fishing and
hunting sectors; agricultural labor share as U.S. Bureau of Economic Anal-
ysis (2023)’s proportion of full-time and part-time employees allocated to
the same sectors; agricultural land share as The World Bank (2023)’s pro-
portion of land area devoted to agriculture; agricultural output share as
U.S. Bureau of Economic Analysis (2023)’s proportion of real gross value
added contributed from the farm sector; relative agricultural price as U.S.
Bureau of Economic Analysis (2023)’s farm sector price index divided by
nonfarm sector price index; per capita income growth as The Federal Re-
serve Bank of St. Louis (2023)’s annualized real gross domestic product per
capita growth rate. The patterns of the data are shown as dots in Figure
1.

In our model, KAt/Kt corresponds to agricultural capital share, LAt/LT

corresponds to agricultural labor share, TAt/T corresponds to agricultural
land share, YAt/Yt corresponds to agricultural output share, PAt/PMt cor-
responds to relative agricultural price, (yt+1 − yt)/yt corresponds to per
capita income growth.

We first examine whether the United States was characterized by CGP,
so that we can apply the model equations (46)-(48). Figure 2 depicts the
annual growth rate of normalized real personal consumption expenditures
per capita series (by (39); solid line) and its ten-year average series (dashed
line) in the United States during 1948-2021. Since the 1970s, the ten-
year average series has fluctuated within a narrow range of about 0-2%.
Therefore we assume that the United States has been growing along a CGP
since the 1970s, and choose 1970 as the starting year for the calibration
exercise.

cultural surplus, cutting off the incentive for agricultural capitalists to accumulate fixed
capital. The economy ends up with agricultural stagnation. Malthus (1826) pointed out
that, as population multiplies geometrically and food arithmetically, population growth
will eventually lead to falling wage (and rising food price), pressing the people to the
subsistence level.

22Mathematically, we require gM > (1−αM −βM )n to ensure a sustainable per capita
income growth in the asymptotic growth path.
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FIG. 1. Behavior of agricultural labor, capital, land and output shares, relative
agricultural price and per capita income growth, 1970-2020

39 

 

FIGURES 
 

Figure 1 

Behavior of agricultural labor, capital, land and output shares, relative 
agricultural price and per capita income growth, 1970-2020 

 

Note: Solid (blue) line: benchmark calibration.  Dashed (red) lines: the counterfactual 
economy, 𝑛 = 0 otherwise benchmark parameters from Table 1. Dots: data, see text. 

 

  

Note: Solid (blue) line: benchmark calibration. Dashed (red) lines: the counterfactual
economy, n = 0 otherwise benchmark parameters from Table 1. Dots: data, see text.

The model economy is characterized by 12 parameters: αA, βA, γA, αM ,
βM , γM , ε, ωA, T, gA, gM , n, and initial values of A0,M0, kA0, lA0, τA0. Ta-
ble 1 shows the benchmark parameters and initial values. We follow Yang,
and Zhu (2013) and Hansen, and Prescott (2002) to let the sectoral pro-
duction functions to take the forms of (53)-(54). We fix ε = 0.5 (Buera,
and Kaboski 2009) and ωA = 0.01 to match agricultural output share in
2020. Aggregate land supply T is normalized to 1. The initial agricultural
and non-agricultural productivities are calibrated using the agricultural
and non-agricultural production functions (4)-(5). We set initial agricul-
tural capital share as U.S. Bureau of Economic Analysis (2023)’s 1970
estimate of proportion of net stock of private fixed assets held by agricul-
tural, forestry, fishing and hunting sectors, initial agricultural labor share
as U.S. Bureau of Economic Analysis (2023)’s 1970 estimate of proportion
of full-time and part-time employees in the same sectors, initial agricultural
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FIG. 2. Annual percentage change in normalized real per capita consumption ex-
penditure and ten-year average series, United States, 1948-2021
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Figure 2 

Annual percentage change in normalized real per capita consumption expenditure 
and ten-year average series, United States, 1948-2021  

 

  
 

Note: Solid (blue) line: Annual percentage change in normalized real per capita consumption 
expenditure, the United States, 1948-2021.  Dashed (red) line: ten-year average series.  Source: 
The Federal Reserve Bank of St. Louis (2023), real personal consumption expenditures per 
capita, chained 2012 dollars, quarterly, seasonally adjusted annual rate.   

  

 

Note: Solid (blue) line: Annual percentage change in normalized real per capita con-
sumption expenditure, the United States, 1948-2021. Dashed (red) line: ten-year average
series. Source: The Federal Reserve Bank of St. Louis (2023), real personal consump-
tion expenditures per capita, chained 2012 dollars, quarterly, seasonally adjusted annual
rate.

land share as The World Bank (2023)’s 1970 estimate of proportion of land
area devoted to agriculture. We set agricultural technology growth rate as
the annualized growth rate of farm total factor productivity in each decade
over 1970-2019, provided by U.S. Department of Agriculture (2023), and
the non-agricultural technology growth rate as the annualized multifactor
productivity growth rate for private nonfarm business sector in each decade
over 1970-2020, provided by The Federal Reserve Bank of St. Louis (2023).
We set the population growth rate as the annualized growth rate of full-
time and part-time employees in each decade over 1970-2020, provided by
U.S. Bureau of Economic Analysis (2023).

Each model period represents a year. We employ the Euler method to
discretize (46)-(48) into difference equations in kMt, lMt and τMt. Together
with lAt = (1−lMt), kAt = (1−kMt) and τAt = (1−τMt), we have a system
of difference equations in six sectoral shares kAt, kMt, lAt, lMt, τAt and τMt.
Through (40), (A.13)-(A.14) we can obtain the evolution of Kt over time,
and with (4)-(5) we can obtain the evolution of sectoral outputs. With
(11)-(12) we can obtain the evolution of relative agricultural price.

Figure 1 (solid lines) depicts the benchmark calibration results. Overall
our model is capable of generating the main features of structural trans-
formation in the United States during 1970-2020, namely the general fall
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TABLE 1.
Benchmark parameter values for the calibrated model

Interpretation Value Comments
Parameters
αA Labor intensity in agricultural

sector
0.36 Yang, and Zhu (2013)

βA Capital intensity in agricultural
sector

0.4 Yang, and Zhu (2013)

γA Land intensity in agricultural
sector

0.24 Yang, and Zhu (2013)

αM Labor intensity in non-
agricultural sector

0.58 Hansen, and Prescott (2002)

βM Capital intensity in non-
agricultural sector

0.41 Hansen, and Prescott (2002)

γM Land intensity in non-
agricultural sector

0.01 Hansen, and Prescott (2002)

ε Elasticity of substitution 0.5 Buera, and Kaboski (2009)
ωA Relative weight of agriculture as

intermediate input in final out-
put

0.01

T Aggregate land supply 1
gA Agricultural technology growth

rate
0.0232 for 1970-1980
0.0158 for 1980-1990
0.0191 for 1990-2000
0.0087 for 2000-2010
0.0045 for 2010-2019

U.S. Department of Agriculture
(2023), annualized farm TFP
growth rate

gM Non-agricultural technology
growth rate

0.0089 for 1970-1980
0.0062 for 1980-1990
0.0093 for 1990-2000

The Federal Reserve Bank of St.
Louis (2023), annualized private
nonfarm business

n Population growth rate

0.0111 for 2000-2010
0.0019 for 2010-2020
0.0212 for 1970-1980
0.0175 for 1980-1990
0.0161 for 1990-2000

−0.00185 for 2000-2010
0.00845 for 2010-2020

sectors multifactor productivity
growth rate
U.S. Bureau of Economic Analy-
sis (2023), annualized full-time and
part-time employees growth rate

Initial values
kA0 Initial agricultural capital share 0.031919 U.S. Bureau of Economic Analysis

(2023), proportion of net stock of
private fixed assets held by agricul-
tural, forestry, fishing and hunting
sectors in 1970

lA0 Initial agricultural labor share 0.019373 U.S. Bureau of Economic Analysis
(2023), proportion of full-time and
part-time employees in agricultural,
forestry, fishing and hunting sectors
in 1970

tA0 Initial agricultural land share 0.4743 The World Bank (2023), % of land
area in agriculture in 1970
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in agricultural capital, labor and land shares, the mild rise in agricultural
output share and the general fall in relative agricultural price. We deem
this as a considerable success of our model. The general fall in agricultural
labor share is consistent with Duarte, and Restuccia (2010)’s calibrated
path of declining hours devoted to agriculture throughout the development
process. Also, our calibration quantitatively matches the fall in agricultural
land share in the United States during 1970-2020. To our knowledge, such
a calibration exercise to match the evolution of agricultural land share has
not been performed in the structural transformation literature.

To gain more insights from our calibration exercise, we can compare the
calibration results against four hypotheses implied by our model.

Hypothesis 1: If the condition gA >
(

1−βA

1−βM

)
gM+

[
αM − αA + αM (βM−βA)

1−βM

]
n

holds, then production factors will shift from the agricultural sector to the
non-agricultural sector.

TABLE 2.
Model prediction of sectoral share evolution against data pattern

Period gA −
(

1−βA
1−βM

)
gM Model prediction Data

−
[
αM − αA +

αM (βM−βA)
1−βM

]
n

1970-1980 0.0141 kAt, lAt, τAt fall kAt falls
lAt falls
τAt falls

1980-1990 0.0095 kAt, lAt, τAt fall kAt falls
lAt falls
τAt falls

1990-2000 0.0096 kAt, lAt, τAt fall kAt falls
lAt falls
τAt falls

2000-2010 −0.0026 kAt, lAt, τAt rise kAt falls
lAt rises
τAt falls

2010-2020 0.0026 kAt, lAt, τAt fall kAt falls
lAt falls
τAt falls

Hypothesis 1 is the consequence of Corollary 1: as long as agricultural
productivity growth outweighs the combination of non-agricultural tech-
nology growth effect, population growth effect and capital deepening ef-
fect, production factors will move out of the agricultural sector, implying
a fall in agricultural capital, labor and land shares. Table 2 shows that,
except for the decade of 2000-2010, the condition gA >

(
1−βA

1−βM

)
gM +
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[
αM − αA + αM (βM−βA)

1−βM

]
n held for all other decades from 1970-2020. There-

fore our model would predict a fall in agricultural capital, labor and land
shares in all decades except 2000-2010, which is consistent with the pat-
tern shown in real data. This result is also in accordance with Leukhina &
Turnovsky (2016, 213)’s England 1650-1920 study that “total factor pro-
ductivity growth in the manufacturing sector is expected to work against
the observed process of labor reallocation [away from agriculture]. How-
ever … technological progress in agriculture are likely to contribute to this
process.”

Hypothesis 2: If relative agricultural price is falling, then production
factors will shift from the agricultural sector to the non-agricultural sector.

Hypothesis 2 is the consequence of Proportions 1-4: From (25)-(26), we
require the relative agricultural price to drop (that is proportionately more
than the rise in marginal product in agriculture) and induce production
factors to shift out from agriculture. Table 3 shows that, for all decades
from 1970-2020 (except the 2000-2010 decade), when we input the esti-
mates of agricultural and non-agricultural productivity growth and pop-
ulation growth, the model would predict the fall in relative agricultural
price. Through the aforementioned relative price effect (that dominated
the relative marginal product effect) this would induce production factors
to shift away from the agriculture. This is consistent with the pattern
shown in real data for each decade during 1970-2020. This result stands in
contrast to Leukhina & Turnovsky (2016, 205)’s England 1650-1920 study
that “”[t]o support the shift in consumption away from farming … the
relative [agricultural] price … must rise.”

TABLE 3.
Model prediction of relative agricultural price evolution against data pattern

Period Model prediction Data
1970-1980 PAt/PMt falls PAt/PMt falls
1980-1990 PAt/PMt falls PAt/PMt falls
1990-2000 PAt/PMt falls PAt/PMt falls
2000-2010 PAt/PMt rises PAt/PMt rises
2010-2020 PAt/PMt falls PAt/PMt falls

Hypothesis 3: If the condition gA >
(

1−βA

1−βM

)
gM+

[
αM − αA + αM (βM−βA)

1−βM

]
n

holds, the agricultural output will grow at a faster rate than the non-
agricultural output.

Hypothesis 3 is the consequence of Proportion 7: As the condition gA >(
1−βA

1−βM

)
gM +

[
αM − αA + αM (βM−βA)

1−βM

]
n holds, over time the agricultural

output will grow at a faster rate than non-agricultural output. The hypoth-
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esis is consistent with the general (slow) rise in agricultural output share
throughout 1970-2020, as depicted in panel (d) of Figure 1. Such non-
balanced growth, where the non-agricultural sector tends to draw away all
production resources while agricultural output grows at a relatively faster
rate, is similar to Acemoglu, and Guerrieri (2008)’s calibration exercise
that shows the less capital-intensive sector tends to draw away production
factors while the more capital-intensive sector grows at a relatively faster
rate when capital deepening is occurring in the economy.

Hypothesis 4: Population growth slows down the pace of structural
transformation.

Hypothesis 4 is the consequence of (52): given parameter estimates in
our model, an increase in population growth rate will slow down structural
transformation. We follow Leukhina & Turnovsky (2016) to perform a
counterfactual experiment to investigate such an effect. The dashed lines in
Figure 1 depict the calibration paths by adopting all benchmark parameters
and initial values in Table 1, except adjusting population growth rate to
n = 0 for all time periods. Consistent with the hypothesis, removing
population growth speeds up sectoral shift out of the agriculture. Yet this
would generate a decline that is too fast in the agricultural land share
when compared to the real data (Figure 1 panel (c)). This result stands in
contrast to Leukhina & Turnovsky (2016, 216)’s England 1650-1920 study
that “population growth was unambiguously a major factor behind labor
movement away from the farming sector, especially during the period of
1750-1850”. Again, such result is perhaps not surprising for as shown in
(52), the effect of population growth on the growth rate of agricultural
capital share can be either positive or negative depending on the parameters
of the model.

However, the main drawback of our model is that it generates overly
sluggish structural transformation for the efflux of capital and labor out
of agriculture. The calibrated agricultural capital and labor shares have
stayed well above their empirical counterparts since 1990 and 2010 respec-
tively (depicted in panels (a) and (b) in Figure 1). That means, it is not
sufficient to focus only on the relative price effects brought about by popula-
tion growth, technological progress and capital deepening to quantitatively
reconcile capital and labor movements out of the agricultural sector in the
United States in the later calibration periods. We might need to take the
income effect and other supply-side channels or institutions (section 2) into
account to quantitatively explain the evolution of these sectoral shares.

To summarize: when we input the estimates of agricultural and non-
agricultural productivity growth rates and population growth rate into our
unified model, it generates plausible empirical trends, especially reconcil-
ing the fall in agricultural land share, the rise in agricultural output share
and the fall in relative agricultural price. We deem our model to be a
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considerable success. Yet, there is still room for improvement by incorpo-
rating other causes of structural transformation to quantitively reconcile
the movement of agricultural capital and labor shares. Lastly, the conclu-
sion we arrived at regarding the effect of population growth on the pace of
sectoral shift remains an interesting topic for future research on structural
transformation across other regions and/or time dimensions.

5. CONCLUSION

This paper develops a more complete theory of structural transformation,
by solving analytically the closed-form solutions for a structural transfor-
mation model with population growth (Leukhina, and Turnovsky 2016),
technological progress (Ngai, and Pissarides 2007) and capital deepening
(Acemoglu, and Guerrieri 2008). Our work unearths the underlying logics
and crucial assumptions on how the relative price effects originating from
these factors interact and explain sectoral shifts (propositions 1-6). We
also clarify the conditions under which production factors will escape from
the land-intensive sector throughout the development process (corollary
1), as well as to sustain long-run growth along an asymptotic growth path
(proposition 7).

We then calibrated the model using sectoral data from the United States
during 1970-2020. In the calibration exercise, we found empirical validity
for the hypotheses implied by the above propositions and corollaries, and
reached a conclusion regarding the effect of population growth on the pace
of structural transformation that is different from what is available in the
current literature.

A unified explanation for structural transformation is a challenging and
fascinating topic. Future work on combining the relative price effects with
the other mechanisms fostering sectoral shifts to reconcile non-balanced
economic growth will be a fruitful area of research. Hopefully our analysis
has shed light on building a more complete theory of structural transfor-
mation.

APPENDIX: PROOFS FOR THE PROPOSITIONS
Proposition 1
Proof. Use (4) and (5) to obtain

YMt

YAt
= lαM

Mt l
−αA

At kβM

Mtk
−βA

At τγM

Mt τ
−γA

At
Mt
At L

αM−αA
t KβM−βA

t T γM−γA .
Plug it to (19) and we get

l−1
Mt−1 =

ωAαA

ωMαM

(
l
αM
Mt l

−αA
At k

βM
Mt k

−βA
At τ

γM
Mt τ

−γA
At

Mt

At
L
αM−αA
t K

βM−βA
t T γM−γA

) 1−ε
ε

.

(A.1)
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Take log and differentiate (A.1) with respect to lnLt, we get
−1

1− lMt
·
d ln lMt

d lnLt
=

(
1− ε

ε

)[
αM

d ln lMt

d lnLt
+ αA

lMt

1− lMt
·
d ln lMt

d lnLt
+ βM

d ln kMt

d lnLt

+βA
kMt

1− kMt
·
d ln kMt

d lnLt
+ γM

d ln τMt

d lnLt
+ γA

τMt

1− τMt
·
d ln τMt

d lnLt
+ (αM − αA)

]
.

(A.2)
Also, take log and differentiate (20) and (21) with respect to lnLt, we get

(23) and (24) respectively.
Plug (23) and (24) into (A.2), we get (22).

Proposition 2
Proof. Take log and differentiate (A.1) with respect to lnAt, we get

−1

1− lMt
·
d ln lMt

d lnAt
=

(
1− ε

ε

)[
αM

d ln lMt

d lnAt
+ αA

lMt

1− lMt
·
d ln lMt

d lnAt
+ βM

d ln kMt

d lnAt

+βA
kMt

1− kMt
·
d ln kMt

d lnAt
+ γM

d ln τMt

d lnAt
+ γA

τMt

1− τMt
·
d ln τMt

d lnAt
− 1

]
. (A.3)

Also, take log and differentiate (20) and (21) with respect to lnAt, we get
(28) and (29) respectively.

Plug (28) and (29) into (A.3), we get (27).

Proposition 3
Proof. Take log and differentiate (A.1) with respect to lnMt, we get

−1

1− lMt
·
d ln lMt

d lnMt
=

(
1− ε

ε

)[
αM

d ln lMt

d lnMt
+ αA

lMt

1− lMt
·
d ln lMt

d lnMt
+ βM

d ln kMt

d lnMt

+βA
kMt

1− kMt
·
d ln kMt

d lnMt
+ γM

d ln τMt

d lnMt
+ γA

τMt

1− τMt
·
d ln τMt

d lnMt
+ 1

]
. (A.4)

Also, take log and differentiate (20) and (21) with respect to lnMt, we get
(31) and (32) respectively.

Plug (31) and (32) into (A.4), we get (30).

Proposition 4
Proof. Take log and differentiate (A.1) with respect to lnKt, we get

−1

1− lMt
·
d ln lMt

d lnKt
=

(
1− ε

ε

)[
αM

d ln lMt

d lnKt
+ αA

lMt

1− lMt
·
d ln lMt

d lnKt
+ βM

d ln kMt

d lnLt

+ βA
kMt

1− kMt
·
d ln kMt

d lnKt
+ γM

d ln τMt

d lnKt
+ γA

τMt

1− τMt
·
d ln τMt

d lnKt
+ (βM − βA)

]
. (A.5)

Also, take log and differentiate (20) and (21) with respect to lnKt, we get
(34) and (35) respectively.

Plug (34) and (35) into (A.5), we get (33).

Proposition 5
Proof. Since the non-agricultural sector is the asymptotically dominant

sector, use the modified form of (20) kMt =

[
1 + ωAβA

ωMβM

(
YMt

YAt

) 1−ε
ε

]−1

, with
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(9), we can verify that ηt ≡ ω
ε

ε−1

M

[
1 +

(
βM

βA

)(
1−kMt

kMt

)] ε
ε−1

= Yt

YMt
. This

implies Yt = ηtYMt.
Plug (5) into Yt = ηtYMt to get

Yt = ηtMtL
αM
t KβM

t T γM lαM

Mt k
βM

Mt τ
γM

Mt . (A.6)

By ΦK = Rt and (17), ΦK = ωMβM

(
Yt

YMt

) 1
ε YMt

KMt
. Using (5) and Yt

YMt
= ηt,

we get

ΦK = ωMβMη
1
ε
t MtL

αM

MtK
βM−1
Mt T γM

Mt . (A.7)
Now take log and differentiate (39) and (40) with respect to time, we obtain

ċt
ct

=
˙̃ct
c̃t

− 1

1− βM
gM +

(
1− αM − βM

1− βM

)
n, (A.8)

χ̇t

χt
=
1− βM

αM

K̇t

Kt
− n− gM

αM
. (A.9)

Plug (A.7) and (38) into (A.8) to obtain (41). Plug (A.6) and (37) into
(A.9) to get (42).

Manipulate (17) to get kMt =

[
1 + ωAβA

ωMβM

(
YMt

YAt

) 1−ε
ε

]−1

. Take log and
differentiate the expression with respect to time to get

k̇Mt

kMt
= (1− kMt)

(
ε− 1

ε

)(
ẎMt

YMt
− ẎAt

YAt

)
. (A.10)

Take log and differentiate (4), (5) with respect to time and plug into (A.10),

we get k̇Mt

kMt(1−kMt)

(
ε

ε−1

)
=
(

Ṁt

Mt
− Ȧt

At

)
+βM

(
d(kMtKt)

dt

kMtKt

)
−βA

(
d(kAtKt)

dt

kAtKt

)
+

αM

(
d(lMtLt)

dt

lMtLt

)
− αA

(
d(lAtLt)

dt

lAtLt

)
+ γM

(
d(τMtT )

dt

τMtT

)
− γA

(
d(τAtT )

dt

τAtT

)
.

Apply product rule and manipulate the above equation to obtain

k̇Mt

kMt(1− kMt)

(
ε

ε− 1

)
= (gM − gA) + (βM − βA)

(
k̇Mt

kMt
+

K̇t

Kt

)

+βA

(
k̇Mt

kMt(1− kMt)

)
+ (αM − αA)

(
l̇Mt

lMt
+

L̇t

Lt

)
(A.11)

+αA

(
l̇Mt

lMt(1− lMt)

)
+ (γM − γA)

(
τ̇Mt

τMt

)
+ γA

(
τ̇Mt

τMt(1− τMt)

)
.
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Take log and differentiate (20), (21) with respect to time to get (46) and
(47) respectively. Plug (46), (47) and (A.9) into (A.11), we obtain (43).

To ensure the transversality condition is satisfied, we require

lim
t→∞

µtKt = 0, (A.12)

where µt is the costate variable in the Hamiltonian
H(c̃t,Kt, µt) ≡ e−(ρ−n)t

(
c̃1−θ
t −1
1−θ

)
+ µt[Φ(Kt, t)− δKt − entL0c̃t].

Maximum principle requires Hc̃t = 0, which implies e−(ρ−n)tc̃−θ
t −µte

ntL0 =

0. Using (39), µt =
e−ρt

L0
c−θ
t M

−θ
1−βM
t L

(
1−αM−βM

1−βM

)
θ

t . Plugging it into (A.12),

and noting from (40) that Kt = L
αM

1−βM
t M

1
1−βM
t χ

αM
1−βM
t , with some algebra

we get (45).

Proposition 7 will state that ct → c∗ and χt → χ∗ asymptotically, and
the transversality is equivalent to (A4).

Proposition 6
Proof. From (A.8) CGP requires ċt

ct
to be a constant. By (41) it implies

η
1
ε
t χ

−αM
t lαM

Mt k
βM−1
Mt τγM

Mt is constant or

1

ε

η̇t
ηt

− αM
χ̇t

χt
+ αM

l̇Mt

lMt
+ (βM − 1)

k̇Mt

kMt
+ γM

τ̇Mt

τMt
= 0. (A.13)

On the other hand, take log and differentiate (44) with respect to time to
get

η̇t
ηt

=

(
ε

ε−1

)(
βM

βA

)(
−1
kMt

· k̇Mt

kMt

)
1 + βM

βA

(
1−kMt

kMt

) =
−
(

ε
ε−1

)
βM

k̇Mt

kMt

βAkMt + βM (1− kMt)
. (A.14)

Plug (A.13), (A.14), (46) and (47) into (43) to get (48), where G(kMt) ≡(
1−βM

βM−βA

)
(1−kMt)

−
(

1
ε−1

)
βM (1−kMt)

βAkMt+βM (1−kMt)
+αM (1−lMt)+γM (1−τMt)−

(
1−βM

βM−βA

)(
ε

ε−1

)
+

(
1−βM

βM−βA

)
[(αM−αA)(1−lMt)+(γM−γA)(1−τMt)+αA+βA+γA]

.

Observe that G(1) = 0, and G(kMt) > 0 ∀kMt ∈ [0, 1), given (A1), (A2)
hold. Hence when (A3) is also satisfied, by (48) k̇Mt > 0 and kMt → 1

as t → ∞. By (20) and (21), lMt → 1 and τMt → 1 as t → ∞ too.

Proposition 7
Proof. We first solve for the steady state allocation in CGP. From

proposition 6, given (A1)-(A4), kMt → k∗M = 1, lMt → l∗M = 1 and
τMt → τ∗M = 1 as t → ∞. By (44) ηt → ω

ε
ε−1

M .
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From (A.13), χt → χ∗ also exists. We can solve for χ∗ by (41), c∗ by
(42), g∗c̃ by (A.8), g∗K by (A.9). Note that by construction, there are no
other steady state allocations with constant ċt

ct
.

Since non-agricultural sector is the asymptotically dominant sector, by
(6)-(8) and k∗M = l∗M = τ∗M = 1, we have g∗KM

= g∗K , g∗LM
= g∗L = n and

g∗TM
= g∗T = 0.

By (5), g∗YM
≡ ẎM

YM
= Ṁ

M+αM
L̇
L+βM

K̇
K = gM+αMn+βM

(
αM

1−βM
n+ gM

1−βM

)
.

For the agricultural sector, by (4), g∗YA
≡ ẎA

YA
= Ȧ

A + αA
L̇
L + βA

K̇
K =

gA + αAn+ βA

(
αM

1−βM
n+ gM

1−βM

)
.

Note g∗YA
− g∗YM

=
[
gA −

(
1−βA

1−βM

)
gM

]
+
[
αA −

(
1−βA

1−βM

)
αM

]
n > 0 by

(A3).
From the second equality in (16) we have 1

ε
Ẏ
Y +

(
1− 1

ε

)
ẎA

YA
− L̇A

LA
= 1

ε
Ẏ
Y +(

1− 1
ε

)
ẎM

YM
− L̇M

LM
, which implies g∗LA

≡ L̇A

LA
=
(
1− 1

ε

)
(g∗YA

−g∗YM
)+g∗LM

<
g∗LM

, given (A1).
Similarly, from the second equality in (17) we have

(
1− 1

ε

)
ẎA

YA
− K̇A

KA
=(

1− 1
ε

)
ẎM

YM
− K̇M

KM
, which implies g∗KA

≡ K̇A

KA
=
(
1− 1

ε

)
(g∗YA

− g∗YM
) +

g∗KM
< g∗KM

, given (A1). And from the second equality in (18) we have(
1− 1

ε

)
ẎA

YA
− ṪA

TA
=
(
1− 1

ε

)
ẎM

YM
− ṪM

TM
, which implies g∗TA

≡ ṪA

TA
=
(
1− 1

ε

)
(g∗YA

−
g∗YM

) + g∗TM
< g∗TM

, given (A1).
From (9), we have

g∗Y ≡ Ẏ

Y
=

ωAY
ε−1
ε

A

ωAY
ε−1
ε

A + ωMY
ε−1
ε

M

ẎA

YA
+

ωMY
ε−1
ε

M

ωAY
ε−1
ε

A + ωMY
ε−1
ε

M

ẎM

YM

=


min

{
ẎA

YA
, ẎM

YM

}
if ε < 1

max
{

ẎA

YA
, ẎM

YM

}
if ε > 1

Hence g∗y = ẏ
y = Ẏ

Y − L̇
L = Ẏ

Y − n = g∗Y − n = gM
1−βM

−
(

1−αM−βM

1−βM

)
n.

(A4) plus ct → c∗ and χt → χ∗ ensures the transversality condition
(45) is satisfied. Together with household’s period utility function c̃1−θ

t −1
1−θ

being strictly concave in c̃t, (41)-(43) is the unique dynamic equilibrium
characterizing the social planner’s solution to (14). (Acemoglu 2009, Thm.
7.8).

To prove that the dynamic equilibrium converges to the unique CGP
steady state, we study the saddle-path property of the linearized dynamic
system around the asymptotic state (CGP steady state). We rewrite the
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system (41)-(43) as

Ẋt = f(Xt), where Xt ≡

 ct
χt

kMt

 . (A.15)

Define zt ≡ Xt −X∗. We linearize (A.15) around the asymptotic state
X∗ to get

żt = J(X∗)zt, where J(X∗) =

 0 acχ ackM

− 1−βM

αM
(χ∗)

1− αM
1−βM aχχ aχkM

0 0 akMkM


(A.16)

is value of the Jacobian matrix of the system (A.15) at the asymptotic state
X∗.
• From (41), acχ = −αM

θ

[
ωMβM (η∗)

1
ε (χ∗)−αM−1T γM

]
c∗ < 0.

• From (43), akMkM
=

gA−
(

1−βA
1−βM

)
gM−

[
αM−αA+

αM (βM−βA)

1−βM

]
n

ε
ε−1−(αA+βA+γA) < 0, given

(A1)-(A3).

This implies that |J(X∗)| = 1−βM

αM
(χ∗)

1− αM
1−βM acχakMkM

> 0 and all
eigenvalues of J(X∗) have non-zero real parts.1 Hence the asymptotic
state X∗ is hyperbolic. By the Grobman-Hartman Theorem, the dynamics
of the nonlinear system (A.15) in the neighborhood of X∗ is qualitatively
the same as the dynamics of the linearized system (A.16). (Acemoglu 2009,
Thm. B.7).

Next we set up the characteristics equation for the Jacobian matrix eval-
uated at the asymptotic state:

|J(X∗)− νI| = 0 =⇒

∣∣∣∣∣∣
−ν acχ ackM

− 1−βM

αM
(χ∗)

1− αM
1−βM aχχ − ν aχkM

0 0 akMkM
− ν

∣∣∣∣∣∣ = 0.

=⇒(akMkM
− ν)

[
ν2 − aχχν +

1− βM

αM
(χ∗)

1− αM
1−βM · acχ

]
= 0.

Since akMkM
, acχ < 0, the above characteristic equation has two nega-

tive roots and one positive root, which implies that the asymptotic state
is saddle-path stable. That means, there exists a unique two-dimensional
manifold of solutions to the dynamic system (41)-(43) converging to the
CGP steady state.

1We directly assume c∗, χ∗ > 0. Note that assuming χ∗ > 0 also assures sustainable
per capita income growth.
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APPENDIX: LAND EXPANSION EFFECT
Proposition 8 states how a one-time increase in land supply in an econ-

omy affects sectoral shares in the unified model.

Proposition 8 (Land expansion effect). In equilibrium,
d ln lMt

d lnT
= (A.17)

−
(1− ε)(γM − γA)(1− lMt)

ε+ (1− ε)[αM (1− lMt) + αAlMt + βM (1− kMt) + βAkMt + γM (1− τMt) + γAτMt]

< 0 if ε < 1 and γM > γA
> 0 if ε < 1 and γM < γA

,

d ln kMt

d lnT
=
1− kMt

1− lMt
· d ln lMt

d lnT
, (A.18)

d ln τMt

d lnT
=
1− τMt

1− lMt
· d ln lMt

d lnT
. (A.19)

Proof. Take log and differentiate (A.1) with respect to lnT , we get

−1

1− lMt
· d ln lMt

d lnT
=

(
1− ε

ε

)[
αM

d ln lMt

d lnT
+ αA

lMt

1− lMt
· d ln lMt

d lnT

+βM
d ln kMt

d lnT
+ βA

kMt

1− kMt
· d ln kMt

d lnT

+ γM
d ln τMt

d lnT
+ γA

τMt

1− τMt
· d ln τMt

d lnT
+ (γM − γA)

]
(A.20)

Also, take log and differentiate (20) and (21) with respect to lnT , we get
(A.18) and (A.19) respectively.

Plug (A.18) and (A.19) into (A.20), we get (A.17).

Similar to population growth effect, technology growth effects and capital
deepening effect (propositions 1-4), land expansion effect operates through
the relative price effect. Ceteris paribus, if ε <1, land expansion generates
a more than proportionate relative price drop (compared to the relative
marginal product of land rise) in the sector with higher land intensity.
Land use shifts out of this sector until the land rental parity condition (18)
is restored. Due to input complementarity, capital and labor also move in
the same direction.
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APPENDIX: OTHER PROOFS

A.1. DERIVING THE PRICE INDICES (10)-(12)

Consider the choice problem of the final output producer. For what-
ever final output level Yt the producer decides on, it is always optimal to
purchase the combination of agricultural and non-agricultural goods that
minimize the cost of achieving the level Yt, that is:

min
YAt,YMt

PAtYAt + PMtYMt subject to
(
ωAY

ε−1
ε

At + ωMY
ε−1
ε

Mt

) ε
ε−1

≥ Yt.

(A.21)
We set up the Lagrangian for the problem (A.21):

Πt = PAtYAt + PMtYMt + Ft

[
Yt −

(
ωAY

ε−1
ε

At + ωMY
ε−1
ε

Mt

) ε
ε−1

]
, (A.22)

where the Lagrangian multiplier Ft shows the shadow price of Yt, that is,
the price of final output at time t.

First order conditions with respect to YAt and YMt yields:

YAt =

(
PAt

Ft

)−ε

ωε
AYt, (A.23)

YMt =

(
PMt

Ft

)−ε

ωε
MYt. (A.24)

Plug (A.23) and (A.24) into the definition of Yt (equation (9)), solving for
Ft,

Ft = (ωε
AP

1−ε
At + ωε

MP 1−ε
Mt )

1
1−ε . (A.25)

By normalizing Ft ≡ 1 in (A.25), (A.23), (A.24), we obtain (10)-(12).
We note that the consumption composite price Pt always equals final

output price Ft. To see this, consider the choice problem of the represen-
tative household. For whatever consumption composite c̃t the household
chooses, it is always optimal to purchase the combination of agricultural
and non-agricultural goods that minimizes the cost of achieving the level
c̃t, that is:

min
ỹAt,ỹMt

PAtỹAt + PMtỹMt (A.26)

subject to (ωAỹ
ε−1
ε

At + ωM ỹ
ε−1
ε

Mt )
ε

ε−1 − K̇t

Lt
− δKt

Lt
≥ c̃t, given Lt,Kt > 0, K̇t.
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We set up the Lagrangian for the problem (A.26):

Π′
t = PAtỹAt+PMtỹMt+Pt

[
c̃t −

(
ωAỹ

ε−1
ε

At + ωM ỹ
ε−1
ε

Mt

) ε
ε−1

+
K̇t

Lt
+

δKt

Lt

]
,

(A.27)
where Pt is the shadow price of c̃t, which is in the same form as in (A.21).
By similar procedures as in (A.22)-(A.25), we get Pt = (ωε

AP
1−ε
At +ωε

MP 1−ε
Mt )

1
1−ε =

Ft = 1 for all t.

A.2. DERIVING THE ECONOMY-WIDE RESOURCE
CONSTRAINT (13)

First, consider the choice problem faced by the agricultural producer:

max
LAt,KAt,TAt

PAtYAt − wtLAt −RtKAt − ΩtTAt subject to (4). (A.28)

First order conditions imply:

wtLAt =αAPAtYAt, (A.29)
RtKAt =βAPAtYAt, (A.30)
ΩtTAt =γAPAtYAt. (A.31)

Similarly, consider the choice problem faced by the non-agricultural pro-
ducer:

max
LMt,KMt,TMt

PMtYMt − wtLMt −RtKMt − ΩtTMt subject to (5). (A.32)

First order conditions imply:

wtLMt =αMPMtYMt, (A.33)
RtKMt =βMPMtYMt, (A.34)
ΩtTMt =γMPMtYMt. (A.35)

Now we multiple both sides of (3) by Lt and apply rt = Rt − δ, (6)-(8)
to get:

K̇t = wt(LAt+LMt)+Rt(KAt+KMt)−δKt+Ωt(TAt+TMt)−Ltc̃t. (A.36)

Apply (A.29)-(A.31) and (A.33)-(A.35) to (A.36). Using αA+βA+γA = 1
and αM + βM + γM = 1 to get:

K̇t = PAtYAt + PMtYMt − δKt − Ltc̃t. (A.37)
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Note that

PAtYAt + PMtYMt =
(
ωAY

ε−1
ε

At + ωMY
ε−1
ε

Mt

)
Y

1
ε
t = Y

ε−1
ε

t Y
1
ε
t = Yt, (A.38)

where the first equality comes from (11)-(12), and the second equality fol-
lows from the definition of Yt (equation (9)). Plug (A.38) into (A.37) and
we obtain (13).
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