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Inattentive Capital Investment with Nonconvex Costs

. *
Xiaowen Wang

This paper extends Sargent’s adaptation of Lucas and Prescott’s model of
investment under uncertainty within a competitive industrial equilibrium. In
this framework, firms incur capital costs proportional to adjustment size and
make investment decisions amid rational inattention. Equilibrium analysis re-
veals that aggregate investment then exhibits partial adjustment, with individ-
ual firms adjusting investments infrequently based on an optimal probability
and with fixed costs. Additionally, in a general equilibrium setting, marginal q
increases with the degree of rational inattention, while the relationship between
Tobin’s g and the optimal investment rate under state uncertainty remains am-
biguous.
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1. INTRODUCTION

The study of investment is crucial as firm’s investment decisions de-
termine future output, which is a major measurement of both firm and
country performance. Current investment theory primarily focuses on two
categories of variables: those measuring past investment decisions, such
as lagged capital stock, and those measuring current market opportuni-
ties, including factor prices, interest rate, and profits. Prices, influenced
by demand, are also affected by uncertain factors such as weather, politics,
interest rates, etc. Lucas and Prescott (1971) pioneer the integration of
uncertain future conditions into adjustment-cost models of firms, explor-
ing optimal responses to current conditions and future uncertain states.
They introduce a model assuming stochastic shifts in industry demand
and solve for the firm’s objective function under rational expectations. In
equilibrium, capital evolvement, output and prices are jointly determined
as functions of current observable explanatory variables.
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Meanwhile, the literature on adjustment cost has sparked extensive de-
bate regarding its empirical implications. Caballero (1999) states that the
quadratic adjustment cost assumption deals with the frequent adjustment,
aiming to smooth aggregate investment dynamics and make infrequent ad-
justment unimportant. However, empirical studies reveal that investment
often exhibits lumpiness, especially at the plant level. Studies by Doms and
Dunne (1993) and Bloom, Bond, and Breenen (2007) indicate that capital
accumulation patterns are characterized by discrete episodes of intense in-
vestment interspersed with periods of lower activity. Pyndick (1988) exam-
ines irreversible investment in micro models, illustrating how firms adjust
their investments in response to changes in capital stock, aligning marginal
costs with optimal levels of capacity. So far, most literature has assumed
nonconvex adjustment cost in micro models and convex adjustment cost in
macro models, which are inconsistent.

A relevant body of literature on investment under uncertainty includes
the work of Sargent (1987). The author adopts the basic assumptions
of the rational expectations environment and further studies investment
under uncertainty with robustness. In his model, firms maximizes their
discounted future profits given the discount rate, factor prices and initial
capital stock. The optimal investment decision rule is obtained in terms of
aggregate capital dynamics. When the demand shock follows an AR(1) pro-
cess, the resulting investment decision rule produces a capital accumulation
function that responds to current price shock rather than to anticipations
of all future price shocks. Consequently, aggregate output becomes a func-
tion of observable explanatory variables, reducing reliance on unobservable
factors that would otherwise need to be replaced by proxies. Furthermore,
this type of uncertainty often leads over responsiveness or precautionary
behaviors, aptly described as “making hay while the sun shines”.

This paper adopts Sargent’s linear quadratic framework, where firms
solve their profit maximization problem, and capital adjustment cost(CAC)
is assumed nonconvex. At the individual level, the existence of fixed cost in-
duces firms to adjust their actions infrequently. Specifically, in the presence
of AR(1) demand shocks, firms optimize adjustment probabilities to mini-
mize welfare losses from deviating from the optimal path. Nonconvex costs
capture increasing returns and nonlinear microeconomic adjustments, so it
breaks the smooth and continuous adjustment of investment under convex
adjustment cost, and reconciles lumpy, infrequent plant-level investment
with smooth aggregate investment. In our model, since agents are subject
to state uncertainty or rational inattention(RI), the idiosyncratic endoge-
nous shocks cancel out and aggregate investment is smoothed like implied
by a convex adjustment cost model. As a result, at the aggregate level,
state uncertainty smooths aggregate investment responses to the demand
shocks, producing a sluggish, distributed lag pattern of investment. Above
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all, state uncertainty results in a slow-moving, hump shaped investment
process that is consistent with empirical evidence. A close paper by Wang
and Wen (2012) assumes that individual firms entails an idiosyncratic shock
to the rate of investment return, and the occasionally binding financial
constraint related to this investment-specific shocks helps produce sluggish
aggregate investment. Another relevant paper is Flori (2012), which uses a
two-sector model with nonconvex capital adjustment cost in the investment
sector to smooth the shift in investment supply following shocks, hindering
the increase of production.

Finally, a general equilibrium model which analyzes the effect of ratio-
nal inattention on asset price is also introduced in the last section. When
firms are inattentive, consumers choose lower level of consumption due to
decreased excess return from the claim of the risky stock issued by firms.
Also, as firms become more inattentive, asset price is more attributed to
the installed capital stock level and less to the future profitability, making
the installed capital more valuable than the prospect to increase capital
and output. Rational inattention thus sufficiently implies a higher Tobin’s
q, or higher market to book value. This result is consistent with Hayashi
(1982), that investment theory with installation cost and the ¢ theory are
equivalent, and greater concavity of installation function leads to higher
Tobin’s marginal ¢q. In contrast to the evidence that Tobin’s ¢ lacks em-
pirical accountability, my result show that the investment rate does not
necessarily have a positive correlation with marginal gq.

The remainder of the paper will be organized as follows. Section 2
presents the empirical evidence on aggregate investment dynamics. Section
3 develops a benchmark model with capital adjustment costs. Section 4 ex-
plores the RI model in an induced signaling extraction problem, discussing
investment dynamics and firm behavior. Section 5 introduces a general
equilibrium framework of a consumer’s consumption and investment deci-
sions, where the claim that delivers the aggregate dividends is priced and
optimal consumption is derived. The concluding section summarizes the
main findings and discusses avenues for future research.

2. EMPIRICAL EVIDENCE

This section introduces the empirical evidence. Aggregate investment is
smooth, while firm-level investment is lumpy and infrequent. Table 1 lists
the percentage of observations with zero investment in firms and plants in
different sizes. This table, taken from Bloom, Bond, and Reenen (2007),
presents data from a sample of U.K. manufacturing companies and estab-
lishments that contain one or two plants at the same location. It shows
that firms of different sizes, across different types of capital(e.g., buildings,
equipment, vehicles), exhibit zero investment rates. When these different
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types of capital are aggregated within a single plant or firm, the percent-
age of zero investment rates decreases significantly. The table also indicates
that aggregating plants within a firm or establishment on a specific capi-
tal gives the same result. From the table, we can infer that firm-level or
plant-level investment in multiple types of capital goods can be inactive
periodically.

TABLE 1.
Episodes of Zero Investment in Different Types of Data

% of observations with zero investment
Buildings Equipment Vehicles Total

Firms 5.9 0.1 n.a 0.1

Establishments 46.8 3.2 21.2 1.8

Single Plants 53.0 4.3 23.6 2.4

Small Single Plants 57.6 5.6 24.4 3.2
TABLE 2.

Correlation Between investment Rate and Tobin’ g

1960 — 1996 1960 — 2019
corr(%,q) —0.74 —0.28

In Table 2, I report the correlation between the investment rate and
Tobin’s g for the periods of 1960 — 1996 and 1960 — 2019. The data is
from U.S. Bureau of Economic Analysis (BEA), with the investment data
from NIPA tables and Tobin’s g constructed from flow of funds Z1 release
data. The investment rate is constructed as the private nonresidential fixed
investment divided by the nonresidential fixed assets(Equipment, software
and structures) at their historical cost. Tobin’s ¢ is from Harper and Retus
(2022) and is calculated as the market value of outstanding equity divided
by the net stock of produced assets.! Figure 1 compares to a similar graph
in Hassett and Hubbard (1996). The solid line plots the investment rate,
while the dashed line shows the Tobin’s ¢ as defined above. The data reveals
that the investment rate and Tobin’s ¢ are not positively correlated during
the period of 1960-1996, with a correlation coefficient of —0.74. The pattern
is same as in Hassett and Hubbard (1996), who as well plot the correlation
between business fixed investment and Tobin’s gq. For the period 1960-
2019, the investment rate appears less negatively correlated with Tobin’s ¢
after 1997, yielding a correlation coefficient of —0.28. Overall, there is no
positive correlation between the business fixed investment rate and Tobin’s

IProduced assets refer to the net stock of capital plus inventories valued at cur-
rent(replacement) cost.
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q, which contradicts the theoretical predictions of Hayashi (1982), Tobin
(1969), Lucas and Prescott (1971), and others.

FIG. 1. Business Fixed investment Rate and Tobin’s g in the Period of 1960-2019
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3. A FULL-INFORMATION RATIONAL EXPECTATIONS
PRODUCTION MODEL

First, I consider a competitive partial equilibrium with adjustment cost
and discuss the implied investment dynamics. There are n firms in the
industry, each of which produces a single homogenous good. n is a large
number so that the industry is competitive. Demand for the single good is
governed by an inverse demand function:

bt = Ao - Alqt + vt (1)

The demand shock v; conveys other factors such as the aggregate condi-
tions or consumer’s taste, and it follows an AR(1) process:

Vi1 = po¥s + Co€rqa, (2)

where €;01 ~ N(0,1) is iid. A presentative firm entails a one-period
quadratic cost function with capital adjustment cost:

d
(gt qe1) = §(Qt+1 —q +¢)?, (3)
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where I assume the price of capital goods, {JH_l}j‘?';O to be a constant c¢ for
tractability. With quadratic adjustment cost, the law of motion is given
by ki1 = (1 — §)kt + I;. Net profit each period includes an additional
quadratic installation cost, so capital adjustment is more costly at high
levels and this specification allows for a variant Tobin’s ¢. Since I assume
that production function takes the simple linear form q; = fok:, fo = 1,
the firm’s one-period profits are 7 = piq: — (g, ¢e+1). The representative
firm is a price taker and operates over an infinite periods of time. The
firm maximizes its discounted net profits with respect to sequences {g¢+1},
with the uncertainty originating from the path of v;, which is unknown
until realized at each period. The firm believes that the law of motion for
aggregate output follows a linear function:

Trr1 = gy, v1)- (4)

This linear specification facilitates the aggregation of future output and
transforms the individual firm’s maximization problem into one that max-
imizes the social surplus.

The timing is as follows. At the beginning of period ¢, the demand
shock vy is realized, firms collect last period’s investment and undepreci-
ated capital, and production takes place. At the end of the period, firms
form expectations about next period’s demand and determine the invest-
ment for the next period, so the current capital stock and demand jointly
determine next period’s production. I assume firms are risk neutral and
maximize their discounted future expected profit stream. The problem can
be formulated as follows:?

oo d
E t — - — 2 5
[nax, OtE:OB e = 5 (@1 —ae + )}, (5)

subject to g given.

The specifications make the problem naturally Linear-Quadratic-Gussian
and easily tractable. The equilibrium solution of the two-player zero-sum
game should take the form:

Qi1 = 9q(qt, v, @), (6)

where the last two arguments determine the price level. Since the firm
perceives the motion of capital to be linear as specified in (4), and for the
belief to be ex post correct, applying homogeneity, the actual law of motion

2] assume constant cost of capital in firm’s maximizing problem, as investment and
cost of capital are weakly correlated or uncorrelated both in my empricial study and in
the literature. See Shapiro and Lovell (1986) for a discussion.



INATTENTIVE CAPITAL INVESTMENT 395

can be obtained as:

Trv1 = (s v, Qy)- (7)

Thus, a competitive equilibrium is a fixed point of the mapping from
14(q,v) to ¢4(q,v,q). Extending the argument of Lucas and Prescott (1972)
and Sargent (1987), the solution can be computed directly by solving the
central planner’s maximization problem:

max B> 5 (S(@v0) — @y — 7, +0)°), 0
t=0

{at+1}

where the firm maximizes the consumer surplus net cost function, S(g,, v¢),
which is defined as:

4 A
S@ov) = [ (Ao~ A+ v)de = Ao~ S +q0 (9)
0

Thus, the competitive problem can be implicitly rationalized as a max-
imization problem of social welfare instead of being solved as a complex
fixed-point problem, and we can conveniently find the equilibrium sequence
of {pi+;},{kit;}. A solution to this problem would be:

Trr1 = lg(@y, v1)- (10)

I use the optimal linear regulator methods to solve this problem. Namely,
the problem can be written as:

maXEoiﬁt{[u; S”{V@Vg“zﬂ}’ (11)

{Qf,+1} =0

subject to
St4+1 = ASt + But + 06t+1, (12)

where s; = (q; v¢ 1), u; = (G44,), and the other matrices elements are
functions of model parameters. The solution for the optimal linear regula-
tor problem has the form:

uy = —Fsy. (13)

The above equation gives g, as a function of current period’s produc-
tion g, and the demand shock v;.

Next I solve the model using optimal linear regulator. The following
proposition holds:
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PROPOSITION 1. Under rational expectations, the solution to the central
planning problem takes the following form:

T \T A1 fopuir AL[(1 = B)e — Ao fol
kip1 = Mke + A= puBr)  d=puBr)

where (F2 + §F + §) = (F = M)(F = X2), M < 1 < § < Xy, and ¢ =
A 2
—((1+8) + 535).

Proof. See Appendix A.1. |

The above equation is the typical solution of partial adjustment, under
which capital stock(or output) is a weighted average of last period’s capital
stock level and realization of the price shock. In Appendix A.1, I derived the
rational expectations solution with no information frictions, showing that
capital stock is a weighted average of past stock and target stock level, the
latter capturing the expectations of all future demand shocks that affecting
the marginal profitability of capital. Furthermore, let I, = ki1 — ky,
where the subscript ¢ on the left-hand side of the equation denotes the time
the investment cost is incurred. Assuming no depreciation, the aggregate
investment can be written as:

A1py(py — 1)

To=MNT + 22
t =M1y 1+d(1—pvﬂ)\1)

Vi1 + U, (14)

where u; = ’\1””%\1)@. Aggregate investment adjusts partially to last

d(l—p,

period’s invest(mé)nt7 and responds positively to increases in the demand
shocks. Moreover, with convex adjustment cost, investment is a weighted
average of last period’s investment stock and past profitability news, thus
is sluggish.

Capital adjustment cost assumption is key to the introduction of auto-
correlations of investment. Previously, convex adjustment costs have been
used to address the slow and smooth adjustment in aggregate capital for-
mation, yet there are also criticisms: (i) CACs are not consistent with
firm-level data, as individual firm’s investments are often lumpy and infre-
quent; (ii) To generate a realistic equity premium, the coefficient on CAC
function is often too large; (iii) Empirical analysis based on micro data
does not find CACs play a role in explaining firm-level dynamics. In con-
trast, McDonald and Siegel (1986) and subsequent research have assumed
an option approach in micro models. They find that irreversibility and the
value of waiting widen the region of inaction for two subsequent periods of
investment, so firms are more cautious in investment and plant-level data
are lumpy. Bloom, Bond and Breenen (2007) demonstrate that the effects
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of uncertainty and irreversibility on short-run investment dynamics can be
detected in their firm-level investment analysis, finding evidence of more
cautious behavior for firms facing greater uncertainty.

In the next section, I would introduce a rational inattention model with-
out the CAC assumption, and analyze individual firm’s investment dynam-
ics as well as aggregate dynamics.

4. THE RI MODEL
4.1. Incorporating State Uncertainty

Following Sims (2003) and Luo et. al. (2008, 2010), in this section I
incorporate state uncertainty into the LQG model without adjustment cost.
Agents have finite capacity to update states given the current information
set, and I analyze how rational inattention due to imperfect observations
impacts the joint dynamics of the demand shocks and aggregate investment.

The assumptions of rationally inattentive agents are specified as follows.
Usually, we do not know what the world’s true state is. With finite capacity
k € (0,00), the true state s;y1 is observed with error with the time ¢ 4 1
information set I;41. Ipy1 is generated by the entire history of perceived
states {s7}. From time ¢ to ¢ + 1, the uncertainty reduced from updating
information is constrained by the finite capacity «. I define uncertainty as
entropy, which measures the dispersion of the distribution of an unknown
state. The information processing constraint can be described as:

H(st41]1e) — H(st41/le41) < K, (15)

where H(s;y1|I;) denotes the entropy of the state prior to observing the
new signal at ¢t + 1, and H(syy1|l;+1) is the entropy after observing the
new signal. x denotes the upper bound of the amount of entropy that can
be reduced at each period, which is invariant with time in our setting.?

Furthermore, I assume that in the steady state, the true state is Gaussian
after observing the noisy signal: si|I; ~ N(FE[s¢|I3], %), where X is the
steady state conditional variance of the state: ¥; = Ey[(s; — 8)(s¢ — 5¢) 7).
Denote ¥y = var(s¢4+1). When the conditional distribution of the state is
Gaussian, in our case, the above inequality implies that:

ln|\Ilt\ —ln|2t+1| S 2K. (16)
We need another constraint to ensure that information flow is increasing

U, = %, (17)

3 An elastic attention case can be refered in Li, Luo and Nie (2017).
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where Uy — ¥, is positive semi-definite. This is called the ‘no-forgetting’
constraint since the variance of the states cannot be improved by forgetting
about the information previously received.

I can show that under the above assumptions, a rational inattention
problem is observationally equivalent to a signal extraction problem. Here
I solve the problem assuming a noisy signal form. The noisy signal takes
the additive form s}, = s441 + &1, where &1 is the endogenous noise
caused by finite capacity. I assume that &,y is éid idiosyncratic from the
inattentive agent’s information processing constraint and is independent of
the fundamental shock, &1 ~ N (0, Ary1).

In this case, imperfect observations of the true state lead to welfare
losses, and agents use noisy signal to estimate the true state.* Specifically,
I assume here that agents use a Kalman filter to update the perceived state
Si+1 = E[st41]|l41] in the steady state so that

a1 = (1— 0)(A%; + Buy) + 0s741, (18)

where 6 is the Kalman gain to be derived. This weighted average approach
can be interpreted as follows. The conditional variance-covariance ¥; is
the mean squared deviation of the signal vector from its mean, so it can be
considered as a measure of the information quality. The Bayesian updating
procedure adopted by firms gives the precision of the estimation of the true
state. Over time, with updating, the variance-covariance matrix converges
to a positive steady state ¥ independent of the initial condition ¥;. Then
the learning process becomes stabilized. At this moment, the Kalman
gain is a fixed weight, and beliefs only respond to observations and are
characterized by changes in the conditional mean.’

Suppose now firms cannot observe perfectly the demand shock v; when
they make investment decisions. By aggregating, idiosyncratic endogenous
shocks will later be canceled out, yet we will see that an agent who only
knows the distribution of the noise will choose an optimal probability to
invest with the existence of fixed cost. This is key to explaining the infre-
quent and volatile firm-level investment and smooth aggregate investment.
v conveys information like macroeconomic conditions and consumer taste.
Since these factors and total quantity produced together determine the
current price, it should be taken into account when firms make current
production decision at the beginning of the period. From Section 3 aggre-
gate output can be seen as an MA(1) process of v, so the history of v; and
the initial g, gives all the information about g, and hence investment I;.

4Note that in a rational inattention problem, the steady variance-covariance matrix
is endogenously determined by allocating different capacity to elements, while in a SE
problem, it’s exogenously specified first. But the two are observationally equivalent in
a univariant case.

5See Detemple (1986) for an univariable example.
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So even if firms cannot observe g, perfectly, allocating all the attention to
vy gives the firm maximum benefit.

Let perceived price shocks under RI be 0,41 = (1—-0)(pv;)+0v;, , where
viy1 = Vg1 + &41. For the conditional variance of vy, o?, condition (16)
reduces to the following condition:

Ino? —In(p?c? , + C?) < 2. (19)

Then we can get the full evolvement equation of the perceived state for
the RI model of aggregate investment:

Vtp1 = Polt + Nit1, (20)
where 9.1 = —0p(Uy — vi) + 0(Creryr + Eg1), Ve — Uy = % -
%, L is the lag operator, and 6 is the Kalman gain.

Furthermore, using the standard techniques to solve the Kalman filter
problem, we get # = YA~!, where ¥ and A are the steady-sate values of
the conditional variance of the state and noise, respectively. Combining
with agent’s information processing constraint, we get the Kalman gain
0 =1-—1/exp(2k).

Now perceived price shock v; is a weighted average of contemporaneous
shocks and all past history of shocks, with the weight becoming smaller
and smaller as we date back to earliest times. Apparently, price is also a
synthesis of current output and all past demand shocks. This is consistent
with the result in Mackowiak and Wiederholt (2009) where they solve the
optimal price level in a log-linearized problem as a function of aggregate
conditions and idiosyncratic shocks. Since their problem is a static one,
the attention allocation between the two arguments influences total profit.
In fact, the framework in this paper can also be seen as a log-linearized
version of a standard profit-maximizing problem like in their case, where
variables are all Gaussian with zero mean.

Let’s return to the firm’s maximization problem (5), but this time assume
a linear capital cost function instead, that is, o(qt, ge+1) = d(gr+1 — Gt +¢).
Since we are focused solely on the aggregate consumer surplus, the idiosyn-
cratic noise for each individual cancels out, leaving us with essentially the
same maximization problem. However, the key difference is that the per-
ceived state variables are now unobservable and subject to limited learning
capacity. Firms solve a similar optimal linear regulator problem, and the
policy functions are the same:

Uy = —F/(/S\t, (21)



400 XIAOWEN WANG

where §; = [5,5 1 ] Now next period’s production can be written as:

a(l —0)Cye

“T—ae, T th (22)

Giy1 = QU

where a and b are some constants, a > 0, or alternatively,

Gir1 = (1 = 0)puq, + ablvy. (23)
The above equation reduces to the form:

Iy
E_(l_a)pv_]-"_

abv;
K

(24)

When 6 = 1, Equation (23) reduces to the solution without capital ad-
justment cost assumption. Using the above results, I can write down the
aggregate investment process similar to the form of Equation (14):

Iiti = (1= 0)pul; + ab(veyr — vy). (25)

The first term in Equation (25) recovers the role for lagged term in the
current investment decision, the second term measures the response to in-
crease in demand. The above equation shows that investment evolvement
equation in a RI model with a proportional cost function resembles that
under capital adjustment cost assumption. When 6 < 1, the information
flow between periods is finite and determined by capacity parameter k,
so investment adjustment in each period is incomplete and learning with
finite capacity produces a delayed, hump-shaped response of aggregate in-
vestment to the demand shock as generally observed in business cycle lit-
erature.

4.2. Discussion on Infrequent Capital Adjustment

While aggregate investment is smooth and highly correlated, empirical
evidence has found that investment at the firm level is rarely zero but in-
stead characterized by discrete and lumpy adjustments, especially in plant-
level data. Most literature has assumed nonconvex cost for individual firms
and convex adjustment cost for aggregate investment. As discussed by Luo,
Nie and Young (2014), when the agent’s decision choice is infrequent, intro-
ducing fixed adjustment cost can endogenize the probability of re-adjusting.
Thus, inaction results even without introducing an investment option. Ca-
ballero (1996) sketches the lumpy investment behavior when the cost of
adjustment is proportional to the size of adjustment, and marginal cost
rises sharply in the neighborhood of no adjustment due to fixed cost. In
his model, fixed cost introduces additional increasing returns to investment,
causing investment to occur in discrete, lumpy fashion.
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In our previous example, each firm is assumed to incur investment every
period. In fact, since firms are observing demands with different endoge-
nous noise, when fixed costs are large(c are large enough), a fraction of firms
may choose to delay investment in the current period until more favorable
demand shocks arrive. The rationale is that each agent doesn’t know the
endogenous noise that is realized on her but only the distribution of noise,
and will therefore choose a probability to adjust at each period. At the ag-
gregate level, the idiosyncratic endogenous noise cancels out, eliminating
nonlinearities. Hence, rational inattention at the micro level with fixed cost
can generate lumpiness at the firm level while maintaining smooth quanti-
ties at the aggregate level. In contrast, Wang and Wen (2012) demonstrate
that collateral borrowing constraint can simultaneously generate lumpiness
in plant-level investment and convex adjustment cost at the aggregate level,
regardless of the presence of irreversibility. In our model, when endogenous
noise is realized each period, if the large fixed cost of investment outweighs
the benefit, investment would not take place and a fraction of the total
number of firms will remain inactive.

For simplicity, let’s assume that on average a fraction of 7 of all firms is
inactive at each period. In other words, the probability of a firm adjusting
at each period is given by a constant 7. 7 is determined endogenously from
an agent’s optimizing choice, which will be demonstrated later. Following
Bar-Tlan and Blinder (1992), I show that in a FI-RE model, a consumer
with full information about the state chooses to adjust when the welfare
improvements from adjusting exceed the fixed cost incurred. Here we com-
pare the welfare loss of infrequent adjustment against the FI-RE model.
In this context, welfare loss arises from two resources: the first being the
incomplete adjustment due to rational inattention, and second, the infre-
quent adjustment because of the existence of fixed cost.

First, let’s derive the welfare loss due to deviations from the optimizing
path of perfect observations of true states. Let the optimal production
scheme of an individual firm under imperfect state observation be kyy1 =
Hv;. In this case, each agent’s expected capital stock plan, given noisy
observations, is the same at period t. The discounted stream of the social
planner’s profit can be written as:

oo ~
II; = max EtZﬁjfth(Et, Ut)
j=t

o A = = =~ =
Eey B H{(Ao - éfokt + vkt — d(kep1 — ke +ne)}
j=t

oo
v R 1 R R
Ery B~ 'n(AoHytr—1 — 5(Hkvt—1)2 — dH0y + dHyvi—1 — de),  (26)
i=t
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where we have used the fact that A; ~ 10(=3) = % Since Uy = Elve| 14,
E;(v; —v;) = 0, other deviations from optimal path except the second and
third terms vanish in period ¢ expectation, so only the quadratic terms
remain. Hence, each firm’s welfare loss due to incomplete adjustment can
be written as:

1 > . H?o?
o' = 3 min By Y 8" (k; — kH;)? = : b 5 (27)

J=t

where j > t and o2 is the steady state conditional variance of the state
which can be derived from the Kalman filter. Since the fixed cost at each
period is dc, their discounted present value is 1dfﬁ, conditional on that
investment already being adjusted at period t.

We can then consider the model of infrequent adjustment of investment.
Assume that a typical firm minimizes the quadratic loss function, which
depends on the difference between the prevailing capital stock k; at period
t and the instantaneously-adjusted optimal plan k. It would choose the
optimal capital stock to minimize:

oo

%EtZBt_j(kj — k7). (28)

Jj=t

The subsequent argument goes the same as in Luo and Young (2014).
Assuming the demand shock follows an AR(1) process so that ve1 = v +
Cyéeir1, I can calculate the welfare loss due to infrequent adjustment after
adjusting at period t:

o 1 Hf Bl —) 73
T 21-4(1-B(1—n) 1-83

Taking first order condition with respect to m gives the optimal endoge-
nous probability:

v C?2+o?| + c. (29)

H.C? -1
&G Pl (30)
BV2¢ B

So, at any period, each firm adjusts with the optimal probability 7 to
minimize the welfare loss due to infrequent adjustment, and the welfare loss

is increasing in the steady-state conditional variance of the state variable.

*

5. ASSET PRICING IMPLICATIONS

In this section I introduce a general equilibrium setting of PIH and ana-
lyze how information frictions in the production sector impact asset prices
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issued by the firm, as well as investor’s consumption and asset allocation
choices.

5.1. RI Model with Precautionary Savings and Risky Asset

Following Wang (2003), I introduce a Bewley-type heterogenous-agents
equilibrium model, in which a representative consumer receives an exoge-
nous process of labor income:

Yy = ©o + Pryp—1 + xwy, (31)

where o > 0, the initial level yo of income is given, and {w;,ws...} are
independent innovations with a distribution having zero mean and unit
variance. |®1] is assume to be smaller than 1 to preserve stationarity.

Suppose that a representative firm issues a single stock contingent on
the aggregate product they receive from each period’s production, net of
retained earnings to finance investment in that period:

Dy =G, — Ii(q;, vr). (32)

Following Peng (2004) and Wang (2003), I analyze a discrete version
of an investor’s consumption and portfolio choice when stock price and
dividends distributed are functions of the fundamentals, which, in this case,
are defined by s; = (k¢, v, 1). T assume there are two financial assets in
the economy: a risky asset which is the stock defined above, and a risk-free
storage technique with return rate . Assume that the consumer adopts a
CRRA preference with a risk averse parameter v. Consumers don’t own
the firm; instead they are speculative traders of the shares of the firms.
The investor’s problem can thus be specified as:

V(We, se,y) = max Fy {iﬁk [GXM_W} } ; (33)

k=0 -
subject to the dynamic budget constraint:
Wiv1 = A +r)W +ys — ¢t + a(Piy1 — Py + D1 — 15), (34)

and
Wi >0 (35)

is the beginning-of-period financial wealth. Following Campbell and Kyle
(1993), Wang (1993) and Peng (2003), the investment opportunity is de-
scribed as an undiscounted cumulative cash flow from a zero-wealth portfo-
lio long one share of stock, and the position is fully financed by borrowing
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at the riskless rate of interest r. I assume the risk free rate r is determined
in the consumption loan market, and investors take the rate as given when
investing in the risky claim. Note that the expected gains consumers get
from investing in the risky stock will influence on consumption at current
period.

In the equilibrium, the demand for the risky asset equals the total amount
of asset supplied in the financial market: o = 1. Solving the problem gives
the following proposition

PROPOSITION 2. Denote the evolvement of aggregate capital with ratio-
nal inattention in Section (4.1) as kyy1 = (1—0)pyks+abv+b(1—(1—0)p,),
and suppose the Laplace transform ((.) of the income innovation wy is fi-
nite over the range from 0 through —vyora, the consumer’s value function
V(Wy) can be written as:

V() = % exp(—r(W + aoys + bo)). (36)

The optimal consumption the investor decides to consume at each period
18:

ce = 1(Wi + agy: + bo), (37)
where m(k) = log((k), ((k) = [ e*dv(2),

1

ag = ma (38)
bo = ap — — log(1 + 1) (39)
0 = o 0 0g )
2.2 2
II(r) = m(—yroa) — %Cﬁ [M(z)} , (40)
U(r)=1 _r (41)
T Ny
captures the saving demand of relative patience, and
1
I'(r) = poc [II(r) — ¥ (r)] (42)

is the demand for precautionary savings due to the interaction of income
uncertainty and risk aversion. The equilibrium stock price is jointly deter-
mined as:

Pt:M3t+m7 (43)
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where P, is the asset price under RI production, s, = Wt, Vg, 1],
M o= [ (1—6)p,—2 ab(1—r) b(17(179)p,,)(17r)} —
(1=0)py—(1+7)7 [A+r)—(1=0)py][A+7)—pys]” r(1+r)—(1=0)p, |’

—~C2M@1)2, oM™ /96 < 0, OMP) /99 > 0.

Proof. See Appendix A.3. |

The solution has several features. First, because the investor has con-
stant relative risk aversion preference, the demand for risky asset is inde-
pendent of current level of wealth, and so is the equilibrium asset price.
Second, since levels of dividends and prices have constant variances and
are normally distributed, they allow for a linear stationary presentation of
solutions. Also, the CRRA preference implies that the equilibrium stock
prices and expected dividends are discounted by the riskless rate of interest,
subtracting a term from the price as the risk premium.

5.2. Impact of RI on Asset Price

On the other hand, the degree of rational inattention influences asset
prices. From Equation (43), I decompose the market value of the firm into
two subcomponents: the value of assets in place and the value of growth
options. Given dM™ /90 < 0 and OM?) /99 > 0, the market value of
the firm in a RI model consists of a larger proportion attributed to assets
in place and a smaller proportion to the value of growth options. This is
because RI makes it more challenging to effectively capitalize on promising
growth options. Consequently, installed capital now has a larger market
value than under RE model, implying a higher average ¢, or a higher M)
by definition. Assuming a linear representation, the average q is equivalent
to the marginal ¢q. Since ¢ and 6 share a one-to-one mapping, I can express
0 as follows:

1+r 1—r

po  polg—1)

From this equation, it is evident that marginal g decreases as € decreases,
indicating that more inattentiveness leads to a lower marginal q. Substi-
tuting the above equation into Equation (24) yields:

0=1 (44)

I 1+7r 1—r 147r 1—r Vg
— = — pv—14+a(l — -
K ( Puv PU(Q* 1)) ( Pu Pu(Q* 1))Kt

(45)

This equation derives the optimal rate of investment as a function of
marginal g, thereby recovering Tobin’s ¢ theory under the assumption of
rational inattention. The work by Abel (1979) and Hayashi (1982) con-
nects ¢ theory with existing partial theories, particularly adjustment cost
assumption. They show that convex adjustment costs model are equiva-
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lent to a ¢ model. However, as noted in much of the literature, such as
Hassett and Hubbard (1996b), the ¢ model has lacked its success in em-
pirical evidence. The two authors use U.S. aggregate data and show that
unconditional correlation between average ¢ and investment is low.

Here, I consider two scenarios regarding the model-implied correlation of
the investment rate and Tobin’s q.

Scenario 1: Independent Attention. First, we assume cov (v, 0) =
0, i.e. the degree of RI is independent of the state variable v;. In this case,
when the amount of attention allocated to the signal extraction problem,
K = —% log (1 — ), does not vary with v;, Tobin’s ¢ is also uncorrelated
with v;. Given that E [%\vt,l} < 0 and cov (ﬁ,q) < 0, by employing
the law of total covariance, the second term in the investment rate equa-
tion (45) increases with ¢g. This implies a positive correlation between the
investment rate and Tobin’s q.

Scenario 2: Positive Covariance Between Demand Shock and
Attention. Second, suppose cov (v, 0) > 0. It suggests that a higher
demand shock encourages more attention allocated to the filtering problem.
This could occur when attention is elastic and the marginal benefit of more
attention outweighs the cost of acquiring more information. As a result, the
correlation between the second term on the right-hand side of Equation (45)
with Tobin’s ¢ becomes undetermined, leading to an ambiguous correlation
between the investment rate and Tobin’s q.

To summarize, my results differ from those implied by the typical g the-
ory. Equation (45) indicates that, while an increased ¢ raises the investment
rate by making the value of installed capital more valuable, it at the same
time reduces the stochastic component of investment that responds to fluc-
tuations of the aggregate demand. The latter is because higher ¢ values
suggest that it’s now harder to efficiently transform increased demands into
installed capital due to investment stagnation. It may thus result in an am-
biguous role of Tobin’s ¢ as a sufficient statistic of investment. Note that
when ¢ is held constant, an increase in demand still leads to an increase in
investment, making proxies like sales growth indicative of the investment
rate.

I have shown that with linear technology and a competitive industry fac-
ing a linear, stochastic demand curve, Tobin’s ¢ theory is recovered. How-
ever, when considering rationally inattentive firms in a general equilibrium
framework with asset markets and an exogenous income process, the role
of Tobin’s ¢ as a sufficient statistic for investment becomes ambiguous.



INATTENTIVE CAPITAL INVESTMENT 407

6. CONCLUSION

This paper explores the optimal investment rule for firms facing stochas-
tic demand shocks within a competitive industry equilibrium under ratio-
nal inattention, without assuming capital adjustment cost. When demand
shocks follow an AR(1) process, the presence of nonconvex capital adjust-
ment costs for individual firms leads to infrequent investment adjustments
with an optimal probability, aligning with empirical evidence for plant-level
investment. On the other hand, information frictions smooth aggregate in-
vestment, resulting in a distributed lag pattern. The serial correlation of
aggregate investment arises from the effects of rational inattention. In
essence, rational inattention reintroduces the dynamics of partial adjust-
ment models, such as those involving convex adjustment costs. Impor-
tantly, a linear capital cost function under rational inattention reconciles
plant-level investment behavior with aggregate dynamics.

Additionally, I introduce a general equilibrium framework where con-
sumers make consumption and asset allocation decisions based on an ex-
ogenous income process. Assuming a zero net supply for the riskless asset,
investment in risky assets determines their prices and, consequently, the
market value of firms. The endogenously determined asset prices indicate
that installed capital gains more market value when information processing
constraint is tighter, or 6 is smaller. The relationship between marginal ¢
and 6 recovers the optimal investment as a function of Tobin’s ¢, although
the correlation between ¢ and the investment rate remains ambiguous.

APPENDIX A

A.1. DERIVING FIRM’S MAXIMIZATION PROBLEM IN A
RATIONAL EXPECTATIONS MODEL

In the benchmark model, there are n identical competitive firms in the
industry, each using a single input to produce a homogenous good. The
industry demand curve for output is given by:

pt = Ao — A1Qy +vg, Ao, AL >0, (A.1)

where p; is the price of output, g, is industry output, and v, is a shock to
the demand. The individual firm’s output is fok; and k; is firm’s capital
stock. Then industry output is g, = n fok:.

In the fictitious central planner’s problem, the representative firm is com-
petitive in the output and factor markets and thus is a price taker with
respect to the output prices{ptﬂ};?';o. The sequences are taken as exoge-
nous stochastic processes. The firm’s time ¢ information set consists of
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DDty oo Tty Tt 1y s Kty K1y oy Vg Vg1, e} A representative firm lives
for infinite time periods and chooses the sequence of {k;}32, to maximize

d — _
§(kt+j - kt+j1)2} ,

(A.2)

EtZﬁj {S(qt+j7”t+j) — Jerj (ks — Kerjo1) —
j=0

subject to g,_; given.

We can obtain an equilibrium pair of sequences {p;,;}32, and (ks 120
that constitutes a rational expectations equilibrium:

(i) Given the representative firm’s plan for setting {ki+;}520, {Pt+;}520
clears the output market.

(ii) When the representative firm faces the prices {p;4;}32, it chooses
the sequence {Etﬂ» }}?io to maximize expected present value.

If we take the factor prices to be constant, that is, J;+; =¢, 7 =0,1,....
then the problem can be solved as

)

AL f3

_ _ M 1.
Kivjr1 = Akig; — iZ(Yz)lEt+j{(l = B)e— fovitjt1+i — Aofo}s (A3)
i=0
and
Petj = Ao — At fokerj + verg, (A.4)
where
5 @ 1 1
(F +BF+B) =(F-X\)(F=Xy) and \; <1< 3 <Ay, p=—(1+5+ 7
(A.5)
Given the demand shock process
Vi1 = poty + Crérp, (A.6)
the capital accumulation process in time ¢ can be written as
— - A U 1-Bec— A
kt-‘,—l _ Alkt + AL fOP t _ ( ﬁ) OfO}. (A?)

d ].—pUB)\l 1_5>\1

To estimate the parameters, we first set fo = 1. The time discount j is
set to be 0.98. We use quarterly GNP deflators and aggregate GDP from
NIPA tables to estimate the demand function (A.4) and obtain Ay, Aj.
Both the GNP deflators and GDP are linearly detrended by regressing the
series on a constant, a linear trend and the trend squared. The residuals
are the demand shock series {v;}. To estimate the capital accumulation
function (A.7), we take first differences of both left-hand and right-hand
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side of the equation, and use linearly detrended real equipment investment
from FRED to estimate:

A1py(py — 1)

I, =M1, 1+
TR A puBA)

Vg—1 + Uy,

where u; = %et. Estimates of the free parameters © = {d, p,, C,}
are then obtained using the OLS regression of the investment on lagged

investment and the demand shocks, subject to A.5. Results are reported in
Table 3.

TABLE 3.
Model Parameters
Parameters
A; =0.0014 d=0.39 pv = 0.95
Aog=0 8 =10.98 C, =0.73

fo=1

A.2. DERIVING FIRM’S MAXIMIZATION PROBLEM IN A
LINEAR REGULATOR PROBLEM

The representative firm’s maximizing problem is:

d
max EoZﬁ {s@w-fan-a+or}.  as

{qt+1}

Since
_ d, _ _ 9
S(qy,vt) — 5(‘1t+1 —q;+o)
_ A, d,_ _
= Aoq, — 7‘]3 + qive — §(Qt+1 —q; +c)?

d Ay d._. _ _ _
= _§q$+1 (7 + 5)‘]? +dGy11Q, — cdgyiq + (cd + Ao)qy + v,  (A9)

I can formulate the problem as a linear regulator problem:

R (E1 [ 3|

{4t+1

subject to

St4+1 = ASt + But + 06t+1, (All)
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where
3; = (q; vt 1), U; = (%H), (A.12)
Ai+d Ag+cd
J - 112+ 3 g 000
R:[_§]7Q: Ag-('d 0 0 aWZ Ocd 7A: 0,01;0 )
=0 0 - 001

1 0
B=|(0|,C=|C,

o
o

This problem can be conveniently solved numerically.

A.3. DERIVING THE CONSUMER’S PROBLEM

Conjecture the risky claim’s price takes the form P; = Ms;, and let the
dividend process D; = (1 — (1 — 0)p, )kt — abvy — b. The excess return
obtained from investing in the risky asset can be written as:

Pt+1 —|—Dt - (1—|—’I")Pt = M8t+1 - (1+’I")M8t+NSt = AOSt—FBOéH_l. (A13)
Then consumer’s budget constraint can be written as:

W1 = (1 +7)We+y — ¢ + (A% + Be41). (A.14)

The Bellman equation associated with the optimization problem (33) is:
V(Wt, St, yt) — max U(Ct) + BEtV(Wt+17 St4+1, yt+1)' (A15)

First, conjecture the value function for problem (33) takes the following
form:

1 - = -
VW, s,y) = i exp(—ry(W + As + By + b)). (A.16)

In Equation (A.15), the first-order conditions with respect to ¢; and W;
can jointly imply:

u'(c)

— . Al
1+TV1(W,s,y) (A.17)

From (A.17) and (A.16), the optimal consumption rule can be written as:
ci =r(Wi + Ast + By: + ag), (A.18)
where

- 1
ag =b+ P log(1+ 7). (A.19)
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Using (A.16) and (A.18), the Bellman equation (A.15) can be written as

r _ _ _
V(W 86,y:) = ——V (Wi, 54, yt>_%Et exp[—ry(Wis1+Asip1+Bys41+0)].

1+7
(A.20)
Plugging in the income process and the evolvement of the state space
from (A.14) and matching coefficients on state variables, I first obtain that

1

A=0B= —+——.
’ 1-’-7"—@1

(A.21)

The above results show that the value function is invariant to the current
period’s dividend. Substituting this into the value function, taking the
derivative with respect to «, and using the fact that consumer demands a
unit of risky asset at equilibrium gives

A%, = ry(B°)H?. (A.22)

With Equations (A.13) and (A.22), we can derive the equilibrium asset
price. Since the consumer will demand a unit of asset regardless of the
current state, the expected excess return must be constant for demand to
meet supply. In equilibrium, the asset price are determined so that excess
return A%s; + B, is endogenously determined and only depends on the
pricing matrix, M and the noise term matrix, B. Matching the constants
gives the optimal consumption rule as in proposition 2.
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