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This paper analyzes vector autoregressive models (VAR) with multiple struc-
tural changes. One distinct feature of this paper is the explicit consideration of
structural changes in the variance-covariance matrix, in addition to changes in
the autoregressive coeÆcients. The model is estimated by the quasi-maximum
likelihood method. It is shown that shifts in the covariance matrix help identify
the change points. We obtain consistency, rate of convergence, and limiting
distributions for the estimated change points and the estimated regression
coeÆcients and variance-covariance matrix. We also show that the number
of change points can be consistently estimated via the information criterion
approach. The paper provides tools for constructing con�dence intervals for
change points in multiple time series. The result is also useful for analyzing
volatility changes in economic time series. c 2000 Peking University Press
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1. INTRODUCTION

The concept of a structural change (change in policy regimes, change

in underlying structural relations in the economy, or change in particular

reduced-form relationships) has widespread use in economics. The shifts

of the Phillips curve over time serve as one illustration [Alogoskou�s and

Smith (1991)]. As a result, structural changes have always been an impor-

tant concern in econometric modeling. Earlier studies on this topic include

Chow (1960) and Quandt (1960). More recent studies include, among oth-

ers, Andrews (1993), Bai and Perron (1998), and Stock (1994).
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Correctly detecting and identifying a structural change can have pro-

found e�ect on policy evaluation and recommendation. In their examina-

tion of the feasibility of using a monetary aggregate to inuence the path

of GDP, Feldstein and Stock (1993) found, using the structural-change

techniques, that the relationship between M1 and GDP is highly unstable,

while the relationship between M2 and GDP is relatively stable, suggest-

ing the possibility of an active rule for modifying M2 growth to reduce

the volatility of nominal GDP growth. When studying temporal varia-

tion in the interest-rate response to money-announcement surprises, Roley

and Wheatley (1990), by estimating the shift points, were able to deter-

mine whether the response was immediate (as di�erent policy regimes were

adopted), or the response was gradual (reecting the establishment of Fed-

eral Reserve credibility).

The purpose of this paper is to study the problem of structural changes

in vector autoregressive models (VAR) with unknown change points. Struc-

tural changes are permitted in variance-covariance matrices as well as in

regression coeÆcients. Our analysis focuses on the statistical properties of

estimated parameters. In particular, we analyze the asymptotic behavior

of break-point estimators. Consistency, rate of convergence, and limiting

distributions of the estimated parameters and the estimated break points

are established.

Structural change in VAR is an important problem for at least two rea-

sons. The �rst is related to VAR's popularity as a modeling tool in macroe-

conomics. The second has to do with the �nding of Bai, Lumsdaine, and

Stock (1998). These authors show that the accuracy of the break-point

estimators cannot be improved upon by acquiring longer data, but can be

signi�cantly improved upon by adding series that have common breaks.

That is, analyzing multiple equations with common break points can yield

more precise estimates of the change points. As a result, the structural

change problem in VAR is of theoretical and practical importance. The

results derived in this paper are, of course, also applicable for univariate

time series. They are also applicable for cross-section regression models as

well as for seemingly unrelated regressions.

This paper is closely related to Bai, Lumsdaine, and Stock (1998). How-

ever, the latter paper considers a single change point instead of multiple

ones. Because a myriad of political and economic factors may alter the

data generating process, multiple changes may be a more accurate charac-

terization of economic time series. In addition, Bai, Lumsdaine, and Stock

(1998) only consider changes in regression coeÆcients. In this paper, we

allow for changes in variance-covariance matrices. The results of this paper

can be useful in modeling changes in volatilities of economic time series.
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2. MODEL AND ESTIMATION

This paper analyzes the following vector autoregressive (VAR) model

with m regimes:

Yt =

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

�1 +A1;1Yt�1 +A1;2Yt�2 + � � �+A1;pYt�p + (�
0
1)
1=2�t

(t = 1; :::; ; k01)

�2 +A2;1Yt�1 +A2;2Yt�2 + � � �+A2;pYt�p + (�
0
2)
1=2�t

(t = k01 + 1; :::; k02)

.

.

.

�m+1 +Am+1;1Yt�1 + Am+1;2Yt�2 + � � �+Am+1;pYt�p + (�
0
m+1)

1=2�t

(t = k0m + 1; :::; T )

(1)

where Yt and �t are r�1, Ai;j is r�r. The disturbances �t are unobservable
random variables with E�t = 0 and V ar(�t) = I, an identity matrix. The

coeÆcients Ai;j , variance-covariance matrices �
0
i , and the change points k

0
i

are all unknown.

We assume at least one coeÆcient either in the autoregressive part or in

the variance-covariance matrix has undergone a shift. That is, we assume

either (�i; Ai;1; :::; Ai;p) 6= (�i+1; Ai+1;1; :::; Ai+1;p), or �
0
i 6= �0

i+1, or both

(i = 1; :::;m + 1). Thus the variance-covariance matrix is allowed to be

di�erent across regimes.

Although the literature on change point is large, most studies focus on

a single shift in univariate series, see Picard (1985), where variance is not

allowed to change. Ng and Vogelsang (1997) study structural changes in

VAR models with shifts in the intercept only. In this paper, we consider

multiple change points in multiple series.

The analysis of multiple changes is much more demanding than that of

a single change. When studying a single change (two regimes), the regime

boundaries are partially known. For example, the lower boundary for the

�rst regime is known (the �rst observation) and the upper boundary for

the second regime is also known (the last observation). In the case of

multiple changes, however, a hypothesized regime may not overlap with

the underlying true regime. This constitutes the source of diÆculty and

complexity associated with multiple breaks. Nevertheless, based on the

earlier work of Bai and Perron (1998) and Bai, Lumsdaine and Stock (1998),

we can tackle the problem in an elegant way.
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Let V 0t = (1; Y 0t�1; :::; Y
0
t�p) and �

0
i = Vec(�i; Ai;1; :::; Ai;p). Then we can

rewrite (1) as

Yt = (V 0t 
 I)�0i + (�0
i )
1=2
�t; t = k

0
i�1 + 1; :::; k0i (2)

for i = 1; 2; :::;m with k00 = 0 and k0m+1 = T .

Let � = (�1; :::; �m+1) and � = (�1; :::;�m+1). The true regression

coeÆcients are denoted by �0 = (�01; :::; �
0
m+1) and �

0 = (�0
1; :::;�

0
m+1). We

shall consider quasi-Gaussian likelihood estimation based on observations

Y�p+1; Y�p+2; :::; Y0; Y1; :::; YT :
Quasi-likelihood and likelihood ratio.

De�ne the quasi-likelihood for the whole sample Y1; Y2; :::; YT conditional

on Y�p+1; :::; Y0 as

m+1Y
i=1

kiY
t=ki�1+1

f(YtjYt�1; :::; Yt�p; �i;�i)

where

f(YtjYt�1; :::; Yt�p; �i;�i) =

1

(2� det(�i))
1

2

exp
n
� 1

2
[Yt � (V 0t 
 I)�i]

0��1i [Yt � (V 0t 
 I)�i]
o

The parameters (�;�; k1; :::; km) are estimated by maximizing the quasi-

likelihood function. Bai and Perron (1998, 1999) show that the optimiza-

tion can be done with no more than O(T 2) maximum likelihood estimations

no matter how large the number of change points m is.

The theoretical analysis is performed using likelihood ratios de�ned be-

low. Let ("1; :::; "T ) = ((�0
1)
1=2
�1; :::; (�

0
m+1)

1=2
�T ) denote the disturbances

of model (1). De�ne the quasi-likelihood ratio for the entire sample as

�T (k1; :::; km; �;�) =

Qm+1

i=1

Qki
t=ki�1+1

f(YtjYt�1; :::; Yt�p; �i;�i)Qm+1

i=1

Qk0i
t=k0i�1+1

f(YtjYt�1; :::; Yt�p; �0i ;�0
i )

=

Qm+1

i=1

Qki
t=ki�1+1

f(YtjYt�1; :::; Yt�p; �i;�i)QT

t=1 f("t)
:

where f("t) is the density of N(0;�0
i ) for t 2 [k0i�1 + 1; k0i ] (i = 1; :::;m).

Note that no normality is assumed, although the density of multivariate

normal is used.
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Estimation. For a given set of integers (k1; :::; km), we let

�T (k1; :::; km) = sup
�;�

�T (k1; :::; km; �;�):

The change-point estimator is de�ned as the set of integers (k̂1; :::; k̂m)

which maximize the quasi-likelihood function. Namely,

(k̂1; :::; k̂m) = argmaxk1;:::;km�T (k1; :::; km): (3)

We also de�ne

�̂ = (�̂1; :::; �̂m+1); and �̂ = (�̂1; :::; �̂m+1) (4)

where (�̂i; �̂i) is the estimator of (�
0
i ;�

0
i ) using the subsample [k̂i+1; k̂i+1].

Thus, (�̂; �̂; k̂1; :::; k̂m) is the quasi-Maximum likelihood estimator of

(�0;�0; k01 ; :::; k
0
m).

For technical reasons, the supremum with respect to (k1; k2; :::; km) in

(3) is taken over a restricted set of partitions. For a small number � > 0,

de�ne, for m � 2,

K� = f(k1; :::; km) : k2 � k1 � T�; :::; km � km�1 � T�; 1 < ki < Tg (5)

The maximization of (3) is taken overK� . Note that we still allow arbitrary

�rst and last regimes. In particular, when we only have a single break

point, the search is taken over the entire set [1; T ]. When two breaks are

allowed, the search is taken over all pairs of (k1; k2) such that k1 and k2
are �T apart. Typically, �T is speci�ed as a small integer in practice.

The restricted search greatly lessens the technical diÆculty in theoretical

proofs. Since � > 0 can be arbitrarily small, the hypothesized change

points, k1; :::; km; are permitted to take on values within a single true regime

such that k0i < k1 < � � � < km < k
0
i+1.

3. ASSUMPTIONS AND ESTIMATION THEORY

Assumption A1. The f�t;Ftg form a sequence of martingale di�er-

ences, where Ft = �-�eld fYt; Yt�1; ::::g. That is, E(�tjFt�1) = 0. In

addition, E(�t�
0
tjFt�1) = I, and suptE(k�tk4+Æ) <1.

Assumption A2. (�0i ;�
0
i ) 6= (�0i+1;�

0
i+1). That is, there exists an entry

in (�0i ;�
0
i ) that is di�erent from the corresponding entry in (�0i+1;�

0
i+1).

Each true regime parameter (�0i ;�
0
i ) corresponds to that of a stationary

process so that unit roots and explosive roots are ruled out.

Assumption A3. k0i = [T�0i ] (i = 1; :::;m) with 0 < �
0
1 < �

0
2 < � � � �0m <

1.
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Under A3, the number of observations in a single regime increases as the

sample size increases. This is not the way that data are generated. This

assumption allows for asymptotic theoretical analysis. Since in practice, T

is �nite, the assumption is always satis�ed. The problem is whether the

asymptotic distributions derived from such an assumption can approximate

the �nite-sample distributions well. Various simulation studies have shown

that the asymptotic distribution delivers a satisfactory approximation. In

fact, the precision of change-point estimators is not so much determined

by the sample size but rather by the magnitude of shift. The idea is that

sample size is not crucial for the behavior of change-point estimators.

Now we de�ne the estimated fractions as �̂i = k̂i=T .

Theorem 1. Under A1-A3, we have

T (�̂i � �
0
i ) = Op(1) (i = 1; :::;m);

p
T (�̂i � �

0
i ) = Op(1) (i = 1; :::;m + 1);

p
T (�̂i � �0

i ) = Op(1) (i = 1; :::;m + 1):

In terms of the fractions of the sample size, the estimated break points

converge rapidly to the true fraction. In terms of the real time index, the

result is that k̂i = k
0
i + Op(1). Thus with large probability, the estimated

break point deviates from the true one by a �nite number of observations

no matter how large the sample is.

Corollary 1. Under the assumptions of Theorem 1, the limiting dis-

tributions of �̂ and �̂ are the same as those of known k01 ; ::::; k
0
m.

In the following, we characterize the limit distribution of the estimated

break points. We introduce a random process de�ned on the set of integers.

Let

W
(i)
1 (r) = �r

2

�
log j�0

i j � log j�0
i+1j

�
(6)

�1

2

k0i+rX
k0i+1

"
0
t

�
(�0

i )
�1 � (�0

i+1)
�1
�
"t

���0i
k0i+rX
k0i+1

(Vt 
 I)(�0
i )
�1
"t �

1

2
��0i

k0i+rX
k0i+1

(VtV
0
t 
 (�0

i )
�1)��i
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(r = 1; 2; :::), where ��i = �
0
i+1 � �

0
i . Let

W
(i)

2 (r) = �
r

2

�
log j�0

i+1j � log j�0
i j
�
�

1

2

k0iX
k0
i
+r

"
0
t

�
(�

0
i+1)

�1 � (�
0
i )
�1
�
"t (7)

+��
0
i

k0iX
k0
i
+r

(Vt 
 I)(�
0
i+1)

�1
"t �

1

2
��

0
i

k0iX
k0
i
+r

(VtV
0
t 
 (�

0
i+1)

�1
)��i

(r = �1;�2; :::). Finally, let

W
(i)(r) =

8><
>:
W

(i)
1 (r) r = 1; 2; :::;

0 r = 0

W
(i)
2 (r) r = �1;�2; :::

The process W (i)(r) only depends on the true parameters of the model.

The following theorem characterizes the limiting distribution under �xed

magnitude of shift.

Theorem 2. Assume that A1-A3 hold and that �t has a continuous

distribution for all t, then

k̂i � k
0
i

d�! argmaxrW
(i)(r)

Three comments are in order.

1. When there is only a shift in the variance-covariance matrix, the third

and forth terms of (6) and (7) vanish, the limiting distribution is determined

by the �rst two terms. When there is only a shift in the autoregressive

parameters, the �rst two terms disappear, yielding similar results as in Bai

(1997) and Bai and Perron (1998).

2. The limiting distribution depends on the distribution of "t, thus not

asymptotically distribution free.

3. It is diÆcult to derive an analytical solution for the density function of

the change-point estimator because it depends on the distribution of "t, in

view of the second comment. One approach to overcome this diÆculty is to

consider shrinking shifts. That is, the magnitude of shifts converges to zero

as the sample size increases to in�nity. Under shrinking shifts, the limiting

distribution of the estimated break points has a limiting distribution free

from nuisance parameters. In addition, the analytical density function

can be derived so that feasible con�dence intervals can be constructed.

Simulations show that the con�dence intervals obtained this way are also

applicable for large shifts.
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Assumption A4. (shrinking shifts) The magnitude of shift satis�es (�0i+1;T�
�
0
i;T ) = vT Æi and (�

0
i+1;T ��0

i;T ) = vT�i, where (Æi;�i) 6= 0, not depending

on T . Moreover, vT is a sequence of positive numbers such that

vT ! 0;
p
TvT =(log T )

2 !1: (8)

Finally, �0
i;T ! �0 for every i.

Even though the magnitude of shift in variance is shrinking, we do not

assume variances themselves become small. Otherwise this amounts to

strong assumptions in terms of \information-noise ratio." For example, If

we assume the variance is such that �0
i;T = vT�, then �0

i;T ! 0 because

vT ! 0. This makes the problem less interesting because, in the limit, there

is no noise in the system. In addition, if �0i;T = vT �, then the result will be

identical to a �xed magnitude of shift because the \information-noise ratio"

k�0
i;T k=k�0i;T k = k�k=k�k is a constant. We thus assume that the variance

of each regime converges to a common positive de�nite matrix, while the

magnitude of shift (the di�erence of two consecutive regimes) in variance

converges to zero. In this way, less information is assumed, making it a

nontrivial task to identify break points. This is due to the fact that the

smaller the magnitude of shift, the more diÆcult it will be to identify the

breaks.

Under shrinking shifts we have

Theorem 3. Under A1-A4, we have

Tv
2
T (�̂i � �

0
i ) = Op(1);

p
T (�̂T � �

0
T ) = Op(1);

p
T (�̂T � �0T ) = Op(1):

The convergence rate for the estimated break points is slower under

shrinking magnitude of shift, but the rate for the estimated regression

parameters and the variance-covariance matrices is the same.

We note that there is no need to estimate vT . It is only used for theoret-

ical purposes. The �nal result will be expressed in terms of the estimated

parameters of �0i;T and �0
i;T (i = 1; :::;m + 1). For notational simplicity,

the subscript T attached to the parameters will be suppressed.

Corollary 2. Under the assumptions of Theorem 2, the limiting dis-

tribution of �̂ and �̂ are the same as those of known k01; ::::; k
0
m.
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To derive the limiting distribution for the estimated break points, we

need additional assumptions. Assume the following functional central limit

theorem holds (note that E(�t�
0
t) = I)

vT

k0i+[vv
�2

T
]X

k0i+1

(�t�
0
t � I)) �1(v) (9)

where the weak convergence is in the space D[0;M ]q
2

for each �xed M >

0.1 Each entry of the matrix �1(v) is a (nonstandard) Brownian motion

process de�ned on [0;1): We note that the partial sum involves O(v�2T )

observations, thus the normalizing factor is vT . Similarly, assume

vT

k0iX
k0i+[vv

�2

T
]

(�t�
0
t � I)) �2(�v) (10)

for v < 0. Let �(v) = �1(v) for v > 0 and �(v) = �2(�v) for v < 0, and

�(0) = 0, then each entry of �(v) is a two-sided (nonstandard) Brownian

motion on the real line. Let

plim
1

�k0i

k0i+�k0iX
k0i+1

(VtV
0
t 
 (�0

i+1)
�1) = Q: (11)

where �k0i = k
0
i+1 � k

0
i , the length of regime i + 1. Under the setup of

shrinking shift, the limiting matrix Q does not depend on i. We assume

the following functional central limit theorem:

vT

k0i+[vv
�2

T
]X

k0i+1

[Vt 
 (�0
i )
�1=2]�t ) Q

1=2
�1(v); v > 0 (12)

where �1(v) is vector of independent and standard Brownian motion pro-

cesses. For v < 0, let the limit be denoted by Q1=2
�2(�v). De�ne a vector

of standard Brownian motion processes on the real line by �(v) = �1(v) for

v > 0 and �(v) = �2(�v).

1This is equivalent to the weak convergence in the space of D[0;1)q
2

under the
topology of compacta, see Pollard (1984).
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Let (�(i); �(i)) be independent copies of the stochastic processes (�; �),

and de�ne

�(i)(v) = �jvj4�1tr(A2
i ) + 2�1tr(Ai�

(i)(v)) + Æ
0
iQ

1=2
�
(i)(v)� 1

2
jvjÆ0iQÆi

(13)

where Ai = �
�1=2
0 �i�

�1=2
0 , and Æi, �i and �0 are de�ned in Assumption

A4. We have

Theorem 4. Under assumptions A1-A4 and (9)-(12), we have for each

i, on compact set of v 2 [�M;M ],

log
�T (k̂1; :::; k̂i�1; k0i + [vv�2T ]; k̂i+1; :::; k̂m)

�T (k̂1; :::; k̂i�1; k0i ; k̂i+1; :::; k̂m)
) �(i)(v)

Theorem 5. Under the assumptions of Theorem 4,

v
2
T (k̂i � k

0
i )

d�! argmaxv �
(i)(v):

Throughout, we shall omit the superscript attached to � and �, in case

of no confusion. Typically, �(v) and �(v) are dependent. If we assume

E(�tk�t`�th) = 0 for all k; `; h, and for every t, then �(v) and �(v) will

be independent. This is the case under normality assumption for �t. For

simplicity, we consider several useful results under the assumption of inde-

pendence of � and �.

Corollary 3. Under assumptions of Theorem 4 and E(�tk�t`�th) = 0,

we have2
64

�
2�1tr(A2

i ) + Æ
0
iQÆi

�2
4�1vec(Ai)0
vec(Ai) + Æ0iQÆi

3
75 v2T (k̂ � k

0
i )

d�! argmaxvfU(v)� jvj=2g

where 
 = var(��(1)) and �� = vec(�), Ai and Q are de�ned earlier, and

U(v) is a two-sided standard Brownian motion process on the real line.

Remark 3.1. The term vec(Ai)
0
vec(Ai) represents the variance of

tr(Ai�(1)). Because both Ai and � are symmetric matrices, tr(Ai�(1)) =
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vec(Ai)
0vec(�(1)): It follows that the variance of tr(Ai�(1)) is given by

vec(Ai)
0
vec(Ai). Note that 
 is a singular matrix due to the symmetry

of �(1) (vec(�) has many repeated variables). Alternatively, tr(Ai�(1)) =P
h
ahh�hh+2

P
h<`

ahl�h`, where ah` is the (h; `)th entry of Ai and �h` is

the (h; `)th entry of �(1). The variance of the trace can be easily derived

in terms of the covariance matrix of the non-redundant elements of �(1).

But the �nal result is identical.

Let

V
� = argmaxvfU(v)� jvj=2g

This random variable has a known analytical density function, see Bai

(1997) and the references therein.

In order to use Corollary 3 to construct con�dence intervals for k0i , the

unknown scaling factor of (k̂i � k
0
i ) in Corollary 3 must be estimated. Let

�̂i and �̂i be the estimators given in (4). Let B̂i = �̂
�1=2
i (�̂i+1� �̂i)�̂

�1=2
i .

Then B̂i is an estimator of AivT . Similarly, (�̂i+1 � �̂i) is an estimator of

ÆivT .

Corollary 4. Assume the conditions of Corollary 3. Let 
̂ be a con-

sistent estimator for 
 and Q̂ be a consistent estimator for Q. Then2
64

�
2�1tr(B̂2

i ) + (�̂i+1 � �̂i)
0
Q̂(�̂i+1 � �̂i)

�2
4�1vec(B̂i)0
̂vec(B̂i) + (�̂i+1 � �̂i)0Q̂(�̂i+1 � �̂i)

3
75 (k̂i � k

0
i )

d�! V
�

If the �t's are iid, then 
 is equal to the covariance matrix of vec(�t�
0
t�I).

Thus we can estimate 
 by 
̂ = T
�1PT

t=1 vec(�̂t�̂
0
t�I)� vec(�̂t�̂0t�I)0, where

�̂t is the estimated residual. There are a number of ways to estimating the

matrix Q. The �rst approach is regime-length weighted estimation. It is

given by

Q̂ =
1

T

mX
i=0

k0i+�k0iX
k0i+1

(VtV
0
t 
 �̂�1i+1):

(cf. (11)). The second approach is equal-weighted estimation. Let �̂ =

(m+ 1)�1
Pm

i=0 �̂i and de�ne

Q̂ =
1

T

TX
t=1

(VtV
0
t 
 �̂�1):
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The third approach is regime-speci�c estimation, de�ned by

Q̂ =
1

k̂i+1 � k̂i

k̂i+1X
k̂i+1

(VtV
0
t 
 (�̂i+1)

�1):

Bai and Perron (1999) discuss the pros and cons of various estimation

procedures.

For a univariate autoregressive process, the estimation can be simpli�ed.

Let

�̂
2
i =

1

k̂i � k̂i�1

k̂iX
k̂i�1+1

(Yt � V
0
t �̂i)

2
;

Ĥ =
1

T

TX
t=1

VtV
0
t ;

�̂t = (Yt � V
0
t �̂i)�̂

�1
i ; for t 2 [k̂i�1; k̂i]

i = 1; :::;m + 1. Then

B̂i = (�̂2i+1 � �̂
2
i )=�̂

2
i ;

Q̂ = Ĥ=�̂
2
;


̂ =
1

T

TX
t=1

(�̂2t � 1)2:

where �̂2 = T
�1Pm

i=0(k̂i+1� k̂i)�̂2i+1. We note that B̂i and 
̂ are scalars.

Corollary 5. For univariate series, if there is no change in the regres-

sion parameters but only changes in variance, then

h (�̂2i+1 � �̂
2
i )

2

�
4
i 
̂

i
(k̂i � k

0
i )

d�! V
�
:

If there is no change in the variance but only changes in regression param-

eters, then "
(�̂i+1 � �̂i)

0
Ĥ(�̂i+1 � �̂i)

�̂2

#
(k̂i � k

0
i )

d�! V
�
:

Under normality assumption, the results of Corollary 3 and Corollary 4

can be further simpli�ed.
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Corollary 6. For VAR models with �t � N(0; I). Then

h
2�1tr(A2

i ) + Æ
0
iQÆi

i
v
2
T (k̂i � k

0
i )

d�! V
�

and h
2�1tr(B̂2

i ) + (�̂i+1 � �̂i)
0
Q̂(�̂i+1 � �̂i)

i
(k̂i � k

0
i )

d�! V
�
:

Corollary 7. For univariate time series and �t � N(0; 1), we have

"
1

2

�
�̂
2
i+1 � �̂

2
i

�̂
2
i

�2
+
(�̂i+1 � �̂i)

0
Ĥ(�̂i+1 � �̂i)

�̂
2
i

#
(k̂i � k

0
i )

d�! V
�

The �̂2i can be replaced by �̂
2 without a�ecting the limiting distribution.

Con�dence intervals for change points. We can use Corollary 4 to

construct con�dence intervals. Denote by â the scaling factor of (k̂i�k0i ) in
Corollary 4 (i.e., the expression inside the bracket). Then the 100(1��)%
con�dence interval can be constructed as

[k̂i � h� 1; k̂i + h+ 1]

where h = [c=â] represents the integer part of c=â. The constant c can be

found from the distribution of V �. For example, for � = 0:05; c = 7:0, see

Bai (1997).

4. DETERMINING THE NUMBER OF BREAKS

The number of break points can be determined by the BIC criterion, as

in Yao (1988), who �rst studies the problem for mean shifts in an otherwise

iid setting under normality assumption. His analysis is designed for �xed

shift only. Here we show how this criterion can be applied to both �xed and

shrinking shifts. The penalty term in the criterion function can be quite

exible but still permits consistent estimation of the number of breaks. The

reason is that overestimating the number of breaks can only increase the

log likelihood by a magnitude of Op(log T ), whereas under estimating the

number of breaks will decrease the log-likelihood by a magnitude of O(T )

for �xed shifts (by a magnitude of O(Tv2T ) for shrinking shifts). Thus any

penalty that is in between log T and O(Tv2T ) will yield consistent estimates.

Let L(k̂1; :::; k̂m) denote the optimal likelihood function when m breaks are
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allowed. That is,

L(k̂1; :::; k̂m) = max
k1;:::;km

max
�i;�i;1�i�m+1

m+1Y
i=1

kiY
t=ki�1+1

f(YtjYt�1; :::; Yt�p; �i;�i)

The information criterion is de�ned as

BIC(m) = � logL(k̂1; :::; k̂m) +mg(T )

Suppose thatm0
< M for a speci�ed integerM . Let m̂ be chosen such that

the BIC criterion is minimized overm �M . That is, m̂ = argminm�MBIC(m).

Theorem 6. Assume A1-A4 hold. Furthermore, assume vT � 1 or

vT ! 0 but satisfying (8). Let g(T ) be a sequence of positive numbers such

that g(T )=(Tv2T )! 0 but g(T )= log T !1. Then m̂! m0.

The information criterion approach requires to estimate more than one

change point even though only one or no change point is present for the

underlying model. However, at most O(T 2) quasi-maximum likelihood

estimations are needed no matter how many changes are entertained. This

is because there are at most O(T 2) distinct segments. Once the likelihood

value for each segment is computed, dynamic programming approach can

be used to eÆciently select the optimal change points. Bai and Perron

(1998) give a detailed discussion on this point.

5. CONCLUSION

In this paper, we studied the problem of multiple structural changes

in VAR models occurring at unknown times. We considered shifts in the

variance-covariance matrices in addition to shifts in the regression coeÆ-

cients. Various theoretical properties of the estimators were obtained. We

gave a uni�ed analysis for �xed and shrinking magnitude of shifts.

This paper provides a systematic treatment of multiple structural changes.

We derive a number of results that are stated in a series of lemmas. The

methodology and central idea are applicable for di�erent estimation meth-

ods such as GMM and robust estimations. They are also applicable for

di�erent models, such as nonlinear models with structural changes. All

that is needed is to derive the counterparts of these lemmas under the new

setting, be it either a new estimation method, or a new model. If these

lemmas can be proved, then the rate of convergence follows automatically.

This is true because our proof of rate of convergence does not make any

reference to VAR. The limiting distribution of the estimators varies with
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estimation methods and with the underlying model. However, limiting dis-

tribution is much easier to obtain than rate of convergence in the context

of structural change. The former is a local property of the objective func-

tion (likelihood function in the present paper) and the latter is a global

property, which is much more diÆcult to analyze. We hope the method-

ology developed in this paper will lead to progress in analyzing structural

changes for di�erent models and di�erent estimation methods.

APPENDIX A

Preliminary Results

To prove the main results, we �rst establish a series of properties of

sequential quasi-likelihood ratios and sequential estimators to be de�ned

below in the absence of structural change. We then show that the main

results can be derived from these properties. To begin with, let

Yt = �+A1Yt�1 + � � �+At�pYt�p + "t

Yt = (V 0t 
 I)�0 + "t

where "t = �
1=2
0 �t, V ar(�t) = I, V 0t = (1; Y 0t�1; :::; Y

0
t�p); �0 = Vec(�;A1;

:::; Ap) and the "t are martingale di�erences with variance �0. This model

is otherwise identical to model (1), but no change point is allowed here.

Let (�0;�0) denote the true parameter. Consider the centered-likelihood

ratio based on the �rst k observations,

L(0; k; �;�) =
Qk

t=1 f(YtjYt�1; � � � ; �0 + T
� 1

2 �;�0 + T
� 1

2�)Qk

t=1 f(YtjYt�1; � � � ; �0;�0)
(A.1)

=
j�0 + T

� 1

2�j�k=2 exp
n
� 1

2

Pk

t=1 "t(�)
0(�0 + T

�1=2�)�1"t(�)
o

j�0j�k=2 expf� 1
2

Pk

t=1 "
0
t�
�1
0 "tg

:

where "t(�) = Yt�(V 0t 
I)(�0+T�
1

2 �) = "t�T�1=2(V 0t 
I)�. The �rst two
arguments (0; k) in L(�) emphasizes the likelihood ratio is for observations

t 2 (0; k]. Likehilood ratio for an arbitrary segment will be introduced

later. We shall call L(�) the (centered) quasi-sequential likelihood ratio.

The �rst �ve lemmas are proved in Bai, Lumsdaine and Stock (1998)

(hereafter, BLS). Denote by �̂(k) and �̂(k) the values of � and � that

L(0; k; �;�) achieves its maximum. Then we have

Lemma 1. For each Æ 2 (0; 1],

sup
T�k�TÆ

�
k�̂(k)k+ k�̂(k)k

�
= Op(1);
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sup
T�k�TÆ

L(0; k; �̂(k); �̂(k)) = Op(1)

This lemma says that the sequential likelihood ratios and the sequential

estimators are bounded in probability if a positive fraction of observations

are used. This result is a direct consequence of the functional central limit

theorem for martingale di�erences.

Proof. See Property 1 of BLS.

The following lemma is concerned with the supremum of the likelihood

ratios over all k and over the whole parameter space.

Lemma 2. For each � > 0, there exists a B > 0 such that for all large T

Pr

�
sup

1�k�T
T
�BL(0; k; �̂(k); �̂(k)) > 1

�
< �

This property says that the log-valued quasi-sequential likelihood ratio

has its maximum value bounded by Op(log T ).

Proof. see Property 2 of BLS.

Let ST = f(�;�); k�k � log T or k�k � log Tg: We assume that �0 +

T
� 1

2� is positive de�nite so that the likelihood ratio is well de�ned.

Lemma 3. For any Æ 2 (0; 1); D > 0; � > 0, the following holds when

T is large

Pr

 
sup

T�k�TÆ
sup

(�;�)2ST
T
DL(0; k; �;�) > 1

!
< �

Proof. see Property 3 of BLS.

The following lemma will be used in the proof of Theorem 6, the consis-

tency of BIC criterion.

Lemma 4. Let aT be a sequence of positive numbers such that aT � log T

and aT =
p
T is bounded. Then for every � > 0, there exists a c > 0 such

that, for all large T ,

Pr

 
sup
k�TÆ

sup
k�k�aT ; ork�k�aT

logL(0; k; �;�) > �ca2T

!
< �:
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Proof. This lemma is implicitly proved by BLS. Let bT = aT =
p
T . The

proof of Property 3 of BLS is valid for either bT = o(1) or bT = O(1). The

equation immediately below (A.15) together with (A.19) of BLS says that

logL(0; k; �;�) < �(TÆ)cb2T = �cÆa2T with large probability. This implies

the lemma. The details are omitted.

As a corollary of this lemma we have for aT = a
p
T (a > 0), there exists

a c > 0 such that

Pr

 
sup
k�TÆ

sup
k�k�a

p
T ; ork�k�a

p
T

logL(0; k; �;�) > �cT
!
< � (A.2)

for all large T . For aT = a
p
TvT , where vT = 1 or vT ! 0 but satisfyingp

TvT � log T , then by Lemma 4 for any � > 0, there exists a c > 0, such

that for all large T ,

Pr

 
sup
k�TÆ

sup
k�k�a

p
TvT ; ork�k�a

p
TvT

logL(0; k; �;�) > �cTv2T

!
< �: (A.3)

Lemma 5. Let hT and dT be positive sequences such that hT is non-

decreasing, dT ! +1, and (hT d
2
T )=T ! h > 0, where h < 1. Let

ST = f(�;�); k�k � dT or k�k � dT g: Then for any � > 0, there exists an

A > 0, such that when T is large

Pr

 
sup

T�k�AhT
sup

(�;�)2ST
L(0; k; �;�) > �

!
< �:

Remark A.1. The existence of a limit for hT d
2
T =T is not necessary. It

is suÆcient to have lim infT!1 hT d
2
T =T � h > 0. In addition, if Property

5 holds for h < 1, then it holds for h = 1 (larger h corresponds to a

smaller set ST ). Lemma 3, for example, is a case where h = 1. The

assumption that h <1 is convenient for proof and is also the actual case

in the application of this lemma.

Proof. see Property 5 of BLS.

Lemma 6. Assume vT = 1 or vT ! 0 but satisfying (8). Let � = �1 �
�0. For each given � and �1 > 0 such that k�k � MvT and k�k �MvT ,

with M <1 (an arbitrary given constant),

sup
1�k�

p
Tv
�1

T

sup
�;�

L(0; k;
p
T�+ �;

p
T�+ �)

L(0; k;
p
T�;

p
T�)

= Op(1)
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where the supremum with respect to � and � is taken over a compact set

such that k�k �M and k�k �M .

This lemma will be applied in the context that � represents the magni-

tude of shift in regression parameters such as �0i+1 � �
0
i , and � represents

the magnitude of shift in covariance matrices such as � = �0
i+1��0

i . This

lemma is useful in establishing jk̂i � k
0
i j = Op(

p
Tv

�1
T ):

Proof. We prove that the logarithm of left hand side is Op(1). We can

write

logL(0; k; �;�) = L1;T (0; k; �;�) + L2;T (0; k; �;�)

where

L1;T = �1

2
k log jI +	T j �

1

2
k

"
1

k

kX
t=1

�
0
t(I +	T )

�1
�t �

1

k

kX
t=1

�
0
t�t

#

(A.4)

and

L2;T = T
� 1

2 �
0
�
I 
 (I +	T )

�1
� kX
t=1

(Vt 
 �t)

� 1

2

k

T
�
0
 
1

k

kX
t=1

VtV
0
t 
 (I +	T )

�1
!
� (A.5)

with �t = �
�1=2
0 "t and 	T = T

� 1

2 (�
�1=2
0 ��

�1=2
0 ). It suÆces to show

L1;T (0; k;
p
T�+ �;

p
T�+ �)� L1;T (0; k;

p
T�;

p
T�) = Op(1); (A.6)

L2;T (0; k;
p
T�+ �;

p
T�+ �)� L2;T (0; k;

p
T�;

p
T�) = Op(1): (A.7)

Consider (A.7). Take � to be
p
T�+�, we have I+	T = �

�1=2
0 ��

�1=2
0 +

T
�1=2��1=20 ��

�1=2
0

def
= A + T

�1=2
B: And if we take � to be

p
T�, then

I+	T = A. Using (A+T�1=2B)�1�A�1 = �T�1=2A�1B(A+T�1=2B)�1,
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we �nd the left hand side of (A.7) is equal to

1p
T
�
0
�
I 
A

�1
B(A+ T

�1=2
B)
��1Pk

t=1(Vt 
 �t)

� 1p
T
�
0
�
I 
 (A+ T

�1=2
B)�1

�Pk

t=1(Vt 
 �t)

� kp
T
�
0
�
1
k

Pk

t=1 VtV
0
t 
A

�1
B(A+ T

�1=2
B)�1

�
�

� kp
T
�
0
�
1
k

Pk

t=1 VtV
0
t 
 (A+ T

�1=2
B)�1

�
�

� k
T
�
0
�
1
k

Pk

t=1 VtV
0
t 
 (A+ T

�1=2
B)�1

�
�

(A.8)

The �rst two and the last expressions are Op(1) uniformly in k 2 [1; T ] and

uniformly in bounded � and �. The third and fourth are Op(1) uniformly in

k �
p
Tv

�1
T and in bounded � and �. For example, k kp

T
�k � kv�1T �k �M

since k�k �MvT . Next consider (A.6). It can be written as

�k
2

�
log jA+ T

�1=2
Bj � log jAj

�
� 1

2

"
kX

t=1

�
0
t(A+ T

�1=2
B)�1 �A

�1)�t

#

(A.9)

From

(A+ T
�1=2

B)�1 � A
�1 = �T�1=2A�1BA�1 +O(T�1)

the second term of (A.9 ) is, ignoring the factor 1=2,

1p
T

kX
t=1

�
0
tA

�1
BA

�1
�t +

k

T

�1
k

kX
t=1

�
0
t�t

�
O(1)

= � kp
T
tr(A�1BA�1) + tr

h
A
�1
BA

�1 1p
T

kX
t=1

(�t�
0
t � I)

i
+ op(1)

where the op(1) follows from k=T = o(1) for k �
p
Tv

�1
T and 1

k

Pk

t=1 j�tk2 =
Op(1). The second term on r.h.s. above is op(1) because

1p
T

Pk

t=1(�t�
0
t �

I) = 1

(
p
TvT )1=2

1

(
p
Tv
�1

T )1=2

Pk

t=1(�t�
0
t � I) = 1

(
p
TvT )1=2

Op(1) = op(1) uni-

formly in k �
p
Tv

�1
T . Thus the second term of (A.9) is equal to

kT
�1=2tr(A�1BA�1)+op(1). Next, by Taylor expansion, log jA+T�1=2Bj�

log jAj = T
�1=2tr(A�1B) + O(T�1). It follows that (A.9) can be written

as

� k

2
p
T

�
tr(A�1B)� tr(A�1BA�1)

�
+ op(1)
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By the de�nition of A and B, A�1B � A
�1
BA

�1 = A
�1
B�

�1=2
0 ��

�1=2
0 .

Thus k kp
T
tr(A�1B�A�1BA�1)k � v

�1
T k�k � v

�1
T MvT =M . This proves

the lemma.

The above lemma can be strengthened if we restrict the supremum with

respect to k to be taken over a smaller range. The right hand side Op(1)

can be replaced by op(1) after taking logarithm. Without taking logarithm,

Op(1) is replaced by 1 + op(1).

Lemma 7. Under the assumptions of the previous lemma. We have

sup
1�k�Mv

�2

T

sup
�;�

log
L(0; k;

p
T�+ �;

p
T�+ �)

L(1; k;
p
T�;

p
T�)

= op(1)

where the supremum with respect to � and � is taken over a compact set

such that k�k �M and k�k �M .

Proof. The proof is virtually identical to the proof of of Lemma 6. The

details are omitted.

Lemma 8.

sup
T�k�[TÆ]

sup
�;�;�;�

log
L(0; k;�+ T

�1=2
�;�+ T

�1=2�)

L(0; k;�;�) = op(1)

where the supremum with respect to �;�; �;� are taken over an arbitrary

bounded set.

Proof. The proof is the same as that of Lemma 6 with the following

changes. Replace each of �;�; �; and � by itself multiplied by T�1=2. The

rest of argument is similar (note that the range of k is enlarged to T .

Lemma 9. Let T1 = [Ta] for some a 2 (0; 1], and let T2 = [
p
Tv

�1
T ],

where vT � 1 or vT ! 0 but satisfying (8). Consider

Yt = (Vt 
 I)�01 + (�0
1)
1=2
�t t = 1; 2; :::; T1

Yt = (Vt 
 I)�02 + (�0
2)
1=2
�t t = T1 + 1; :::; T1 + T2

(A.10)

where k�01 � �
0
2k � MvT and k�0

1 � �0
2k � MvT for some M < 1. Let

n = T1 + T2 be the size of the pooled sample. Let (�̂n; �̂n) be the estimator

based on the pooled sample (treated as a single regime). Then

�̂n � �
0
1 = Op(T

�1=2);
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�̂n ��0
1 = Op(T

�1=2):

Proof. This lemma says that when pooled data from two regimes

are used, the estimated parameters are close to those of the \dominating

regime." This is of course obvious. But this lemma quantities the intuition
in terms of the rate of convergence. The proof is trivial and thus is omit-

ted.

Lemma 10. Assume the same setup as in Lemma 9, but with T2 =

[Mv
�2
T ]. Then

�̂n � �
0
1 = Op(T

�1=2);

�̂n ��0
1 = Op(T

�1=2);

�̂n � �̂1 = Op(T
�1); and

�̂n � �̂1 = Op(T
�1):

where (�̂1; �̂1) is the estimator of (�01;�
0
1) based on the �rst T1 observations

only.

For vT � 1, T2 is �nite. In this case, the results of this lemma are easy to

prove. This is because only a �nite number of observations do not belong

to the \dominating regime." When vT converges to zero, T2 converges to

in�nity. In this case, the second regime (i.e., the non-dominating regime)

contains an increasing number of observations. However, the lemma is still

true and the proof is still easy. The idea is to use the fact the magnitude of

shift itself is also decreasing as T increases. This idea can be found in Bai

(1994, 1997), where it is proved that the estimated regression coeÆcients

have the same rate of convergence as if the change points are known (even

though the estimated change point can be Mv
2
T away from the true ones).

The details will be omitted.

Proofs of Theorems 1-5

We introduce here additional notation to simplify some expressions.

Likelihood ratio of a segment. Denote by D(k; `; �;�) the likelihood

ratio of the segment (k; `] (for observations from k + 1 to `, treated as a

single regime). That is,

D(k; `; �;�) =

Q`

t=k+1 f(YtjYt�1; :::; Yt�p; �;�)Q`

t=k+1 f("t)
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and its optimized value

D(k; `) = sup
�;�

D(k; `; �;�): (A.11)

The likelihood ratio for the entire sample can be written as

�T (k1; :::; km) = D(0; k1) �D(k1; k2) � � �D(km; T ) (A.12)

Centered Likelihood Ratio of a Segment. Suppose that (�0i ;�
0
i ) is

the true parameter for the segment (k; `] (i.e., (k; `] � (k0i�1; k
0
i ]), we de�ne

the centered likelihood ratio as

L(k; `; �;�) = D(k; `; �0i + T
� 1

2 �;�0
i + T

� 1

2�): (A.13)

The centered likelihood ratio is only de�ned for segments that do not con-

tain breaks. However, we can always express the likelihood ratio of a seg-

ment in terms of the centered ones even though the segment overlaps with

more than one true regime. For example, suppose a segment (k; `] overlaps

with two regimes such that the segment contains portion of regime i and

portion of regime i+ 1 such that k0i 2 [k + 1; `� 1], then

D(k; `;�;�) = L(k; k0i ;
p
T (�� �

0
i );
p
T (�� �0

i ))

� L(k0i ; `;
p
T (�� �

0
i+1);

p
T (�� �0

i+1)):

The optimal values of centered and non-centered likelihood are the same.

That is,

sup
�;�

L(k; `; �;�) = D(k; `): (A.14)

This fact will be useful.

We next give a uni�ed proof for �xed and shrinking shifts.

Proposition 1. Assume A1-A4. For vT � 1 or for vT ! 0 but satisfy-

ing (8), we have for every � > 0,

P (jk̂j � k
0
j j >

p
Tv

�1
T ) < � (j = 1; :::;m):

Proof. Let N = [
p
Tv

�1
T ]. Let Aj = f(k1; :::; km) 2 K� ; jki � k

0
j j >

N; i = 1; :::;mg where K� is given in (5). Because �T (k̂1; :::; k̂m) �
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�T (k
0
1 ; :::; k

0
m) � �T (k

0
1; :::; k

0
m; �

0
;�0) = 1, to show (k̂1; :::; k̂m) 62 Aj , it

suÆces to show

P

�
sup

(k1;:::;km)2Aj

�T (k1; :::; km) > �

�
< �: (A.15)

We now extend the de�nition of �T to every subset f`1; :::; `rg of f1; 2; :::; T�
1g such that �T (`1; :::; `r) = �T (`(1); :::; `(r)) where 0 < `(1) < � � � < `(r)

are the ordered version of `1; :::; `r. For every (k1; :::; km) 2 Aj ,

�T (k1; :::; km) � �T (k1; :::; km; k
0
1 ; :::; k

0
j�1; k

0
j �N; k

0
j +N; k

0
j+1; :::; k

0
m):

(A.16)

The right hand side above can be written as the product of at most (2m+2)

terms expressible as D(`; k), see (A.12). There are at most (2m+2) terms

because ki may coincide with k0` for some i and `. One of these (2m + 2)

terms is D(k0j � N; k
0
j + N) and all the rest can be written as D(`; k)

with (`; k] � [k0i + 1; k0i+1] for some i. By Lemmas 1 and 2, logD(`; k) =

Op(log T ) uniformly in `; k such that k0i + 1 � ` < k � k
0
i+1 with j`� kj �

T�. That is, D(k; `) = Op(T
B) for some B > 0. Thus

�T (k1; :::; km) � Op(T
(2m+1)B) �D(k0j �N; k

0
j +N): (A.17)

We next showD(k0j�N; k0j+N) is small. Introduce the reparameterization,

L�(k; `; �;�) = D(k; `; �0 + (`� k)�1=2�;�0 + (`� k)�1=2�)

assuming that (�0;�0) is the true parameter of the segment (k; `]. (Note the

di�erence between L� and L; the latter uses T�1=2 rather than (`� k)�1=2
in the reparameterization). We note that

D(k
0
j �N; k

0
j +N) = sup

�;�

h
D(k

0
j �N; k

0
j ; �;�) �D(k

0
j ; k

0
j +N ; �;�)

i

= sup

�;�

h
L�
�
k
0
j �N; k

0
j ;

p
N(� � �

0
j );

p
N(�� �

0
j)

�
(A.18)

� L�
�
k
0
j ; k

0
j +N ;

p
N(� � �

0
j+1);

p
N(�� �

0
j+1)

�i
:

The above follows from the de�nition of L� and the fact that (�0j ;�
0
j) is

the true parameter for the segment [k0j �N; k0j ] and (�0j+1;�0
j+1) is the true

parameter for the segment [k0j +1; k0j +N ]. From maxfkx� zk; ky� zkg �
kx� yk=2 for all (x; y; z), we have for all � and �,

maxf
p
Nk� � �

0
jk;

p
Nk� � �

0
j+1kg �

p
Nk�0j � �

0
j+1k=2
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maxf
p
Nk�� �0

jk;
p
Nk�� �0

j+1kg �
p
Nk�0

j � �0
j+1k=2:

By A4, we either have
p
Nk�0j � �0j+1k=2 � logN or

p
Nk�0

j � �0
j+1k=2 �

logN . This follows from if k�0j � �
0
j+1k � vTC for some C > 0, then

N
1=2k�0j � �

0
j+1k=2 = (

p
Tv

�1
T )1=2vTC = C(

p
TvT )

1=2 � log T � logN .

Now suppose that
p
Nk�0j ��0j+1k=2 � logN (the case for which

p
Nk�0

j �
�0
j+1k=2 � logN is the same). Then we have either (i)

p
Nk���0jk � logN

or (ii)
p
Nk� � �

0
j+1k � logN . For case (i), we can apply Lemma 3 to the

�rst term inside the bracket of (A.18) to obtain

L�
�
k
0
j �N; k

0
j ;
p
N(� � �

0
j );
p
N(�� �0

j)
�
= Op(N

�A)

for every A > 0 (The lemma is applied with T replaced by N and with

Æ = 1). Moreover, by Lemma 2, the second term inside the bracket of (A.18)

is bounded by Op(log T ). Similarly, for case (ii), we can apply Lemma 3

to show that the second term of (A.18) is Op(N
�A) and the �rst term is

bounded by Op(log T ). So for each case, we have

D(k0j �N; k
0
j +N) = (log T )Op(N

�A)

for an arbitrary A > 0. But N�A � T
�A=2 since N � T

1=2 for all large T .

Thus from (A.17),

�T (k1; :::; km) � Op(T
(2m+1)B� 1

2
A) log T

p! 0

for a large A. This proves (A.15) and thus the proposition.

Proposition 2. Assume A1-A4. For every � > 0, there exists a C > 0

such that

P (jk̂j � k
0
j j > Cv

�2
T ) < � (j = 1; :::;m)

Proof. For concreteness, we shall prove the proposition for j = 2 (the

case of j = 1 or j = m is simpler. Other cases are the same as j = 2). Let

A2 = f(k1; :::; km); jki � k0i j �
p
Tv

�1
T ;8ig and let A2(C) be a subset of A2

such that A2(C) = f(k1; :::; km) 2 A2 : jk2 � k
0
2 j > Cv

�2
T g. By Proposition

1, P (k̂1; :::; k̂m) 2 A2)! 1. From

�T (k̂1; k̂2; :::; k̂m)

�T (k̂1; k
0
2 ; k̂3; :::; k̂m)

� 1;
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to show jk̂2 � k02 j � Cv
�2
T or, equivalently, (k̂1; :::; k̂m) 62 A2(C) for large C

with large probability, it suÆces to establish that

P

 
sup
A2(C)

�T (k1; k2; :::; km)

�T (k1; k
0
2 ; k3; :::; km)

> �

!
< �: (A.19)

Canceling common terms, we �nd

�T (k1; k2; :::; km)

�T (k1; k
0
2 ; k3; :::; km)

=
D(k1; k2)D(k2; k3)

D(k1; k
0
2)D(k

0
2; k3)

� D(k1; k2)

D(k1; k
0
2 ; �

0
2;�

0
2)
� D(k2; k3)

D(k02 ; k3; �
0
3;�

0
3)
(A.20)

where the inequality follows fromD(k1; k
0
2) � D(k1; k

0
2 ; �

0
2;�

0
2) (cf. (A.11)).

For concreteness, we assume k1 � k
0
1, k2 < k

0
2 �Cv�2T , and k3 � k

0
3 . Other

cases are similar. Let �02 = (�02;�
0
2) and �

0
3 = (�03;�

0
3) denote the true

parameters of regime 2 and regime 3, respectively. Suppose �̂2 = (�̂2; �̂2)

maximizes D(k1; k2; �;�). We can write

D(k1; k2) = D(k1; k2; �̂2) = D(k1; k
0
1 ; �̂2) �D(k01 ; k2; �̂2) (A.21)

Similarly,

D(k1; k2; �
0
2) = D(k1; k

0
1 ; �

0
2) �D(k01 ; k2; �02) = D(k1; k

0
1 ; �

0
2) (A.22)

We have used the fact that the likelihood ratio D(k01 ; k2; �
0
2) = 1 because

[k01 + 1; k2] � [k01 + 1; k02 ] and �
0
2 is the true parameter for this segment.

Thus, from (A.21) and (A.22),

D(k1; k2)

D(k1; k2; �
0
2)

=
D(k1; k

0
1 ; �̂2)

D(k1; k
0
1 ; �

0
2)
D(k01 ; k2; �̂2) (A.23)

By Lemma 9,
p
T (�̂2 � �

0
2) = Op(1) (apply the lemma with T1 = k2 � k

0
1

and T2 = k
0
1 � k1. Note that T1 � aT for some a > 0 and T2 �

p
Tv

�1
T by

the de�nition of Aj). From the relationship between D and L (cf. (A.13))

and in view of �01 being the true parameter for the segment (k1; k
0
1 ], we can

write

D(k1; k
0
1 ; �̂2)

D(k1; k
0
1 ; �

0
2)

=
L(k1; k01 ;

p
T (�02 � �

0
1) +

p
T (�̂2 � �

0
2))

L(k1; k01 ;
p
T (�02 � �

0
1))

:

Because jk1 � k
0
1 j � T

1=2
v
�1
T , we can apply Lemma 6 to the above expres-

sion, applied with (�;�) = (�02 � �
0
1), and (�;�) =

p
T (�̂2 � �

0
2) = Op(1).
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Note that k�k � MvT by Assumption A4. The same is true for �. Thus

we have by Lemma 6

D(k1; k
0
1 ; �̂2)

D(k1; k
0
1 ; �

0
2)

= Op(1): (A.24)

Furthermore,

D(k01 ; k2; �̂2) � D(k01; k2) = Op(1) (A.25)

by Lemma 1 because [k01+1; k2] involves a positive fraction of observations

from a single true regime (i.e., jk2 � k
0
1 j � aT for some a > 0 and [k01 +

1; k2] � [k01 + 1; k02 ]). Equations (A.23)-(A.25) imply that the �rst factor

on the right hand side of (A.20) is Op(1).

Next, consider the second factor on the right hand side of (A.20). Let

�̂3 = (�̂3; �̂3) maximize D(k2; k3; �;�). Then

D(k2; k3) = D(k2; k
0
2 ; �̂3) �D(k02 ; k3; �̂3)

By Lemma 9,
p
T (�̂3 � �

0
3) = Op(1) because the regime misspeci�cation

is bounded by O(
p
Tv

�1
T ) observations (the dominating regime is (k02 ; k

0
3 ],

and jkj � k
0
j j �

p
Tv

�1
T for j = 2; 3).

Note that for the segment (k2; k
0
2 ], the true parameter is �

0
2. Thus

D(k2; k
0
2 ; �̂3) = D(k2; k

0
2 ; �

0
2 + (�03 � �

0
2) + (�̂3 � �

0
3))

= L(k2; k02 ;
p
T (�03 � �

0
2) +

p
T (�̂3 � �

0
3))

� sup
juj�M

L(k2; k02 ;
p
T (�03 � �

0
2) + u)

with large probability for large M because
p
T (�̂3 � �

0
3) = Op(1). For

juj �M , by assumption A3 and A4, k
p
T (�03��02)+uk � k

p
T (�03��02)k�

kuk � 1
2
k
p
T (�03 � �

0
2)k � b

p
TvT for some b > 0. By the de�nition of

A2(C), k
0
2 � k2 � Cv

�2
T . Apply Lemma 5 (with reversed data order) with

hT = v
�2
T , A = C, dT = b

p
TvT , and (�;�) =

p
T (�03��02)+u, we see that

for every � > 0, there exists C > 0 such that,

P

�
sup

k2�k02�Cv2T
D(k2; k

0
2 ; �̂3) > �

�
< �: (A.26)

Finally, because D(k02 ; k3; �̂3) � D(k02; k3) = Op(1) by Lemma 1 (be-

cause k3 � k
0
2 � Ta for some a > 0). Thus the second factor on the

right hand side of (A.20) is Op(1) � D(k2; k02 ; �̂3). Since the �rst factor
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is already shown to be Op(1), we see that (A.20) is bounded by Op(1) �
D(k2; k

0
2 ; �̂3). In view of (A.26), we prove (A.19) and thus the proposi-

tion.

Proof of Theorem 1 and Theorem 3. The rate convergence is implied

by Proposition 2, which holds for �xed vT as well as shrinking vT . The

rate of convergence of the estimated regression parameters and covariance

matrices is a consequence of the fast rate of convergence of the estimated

break points. See Bai (1997) and Bai and Perron (1998) for details.

Proof of Theorem 2. Notice

k̂i = argmax` �T (k̂1; :::; k̂i�1; `; k̂i+1; :::; k̂m): (A.27)

or equivalently,

k̂i � k
0
i = argmax` �T (k̂1; :::; k̂i�1; k

0
i + `; k̂i+1; :::; k̂m): (A.28)

= argmax` D(k̂i�1; k
0
i + `) �D(k0i + `; k̂i+1)

= argmax`
D(k̂i�1; k0i + `) �D(k0i + `; k̂i+1)

D(k̂i�1; k0i ) �D(k0i ; k̂i+1)
:

The behavior of the above expression as a function of ` will be examined.

We focus on the case of ` > 0. The case of ` < 0 is similar.

Lemma 11. For vT �xed or vT ! 0 but satisfying (8), we have uniformly

in ` (0 � ` �Mv
�2
T )

D(k̂i�1; k0i + `) �D(k0i + `; k̂i+1)

D(k̂i�1; k0i ) �D(k0i ; k̂i+1)
=

D(k0i ; k
0
i + `; �0i )

D(k0i ; k
0
i + `; �0i+1)

(1 + op(1)):

(A.29)

Proof. Let �̂i and �̂i+1 be the estimators of �
0
i and �

0
i+1 based on the

subsamples (k̂i�1; k0i + `] and (k0i + `; k̂i+1], respectively (these estimators

depend on `. But for notational simplicity, the dependence is suppressed).

Similarly, let �̂�i and �̂�i+1 be the estimators of �0i and �0i+1 based on the

subsamples (k̂i�1; k0i ] and (k
0
i ; k̂i+1], respectively. Break up the segmented-

likelihood ratio D(k̂i�1; k0i +`) into two segments both evaluated at �̂i such
that

D(k̂i�1; k
0
i + `) = D(k̂i�1; k

0
i ; �̂i) �D(k0i ; k0i + `; �̂i)
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and, similarly

D(k0i ; k̂i+1) = D(k0i ; k
0
i + `; �̂�i+1) �D(k0i + `; k̂i+1; �̂

�
i+1):

In addition, by de�nition, D(k̂i�1; k0i ) = D(k̂i�1; k0i ; �̂
�
i ) andD(k

0
i+`; k̂i+1) =

D(k0i + `; k̂i+1; �̂i+1). Thus the left side of (A.29) can be rewritten as

D(k̂i�1; k0i ; �̂i)

D(k̂i�1; k0i ; �̂
�
i )
� D(k0i ; k

0
i + `; �̂i)

D(k0i ; k
0
i + `; �̂�i+1)

� D(k
0
i + `; k̂i+1; �̂i+1)

D(k0i + `; k̂i+1; �̂
�
i+1)

: (A.30)

Next consider the �rst term of (A.30). By Lemma 10, uniformly in j`j �
Mv

�2
T ,

�̂j � �
0
j = Op(T

�1=2) (j = i; i + 1);

�̂
�
j � �

0
j = Op(T

�1=2) (j = i; i+ 1);

�̂j � �̂
�
j = Op(T

�1) (j = i; i + 1):

Using these results, we will show the �rst term of (A.30) is 1 + op(1).

Suppose k̂i�1 � k
0
i�1, then we can use Lemma 8 to show it is 1+ op(1). To

see this, the denominator can be written as L(k̂i�1; k0i ;
p
T (�̂�i��0i )) and the

numerator as L(k̂i�1; k0i ;
p
T (�̂�i � �0i )+ T�1=2[T (�̂i� �̂�i )]). (Note the true

parameter for this segment is �0i .) Now take (�;�) =
p
T (�̂�i ��0i ) = Op(1)

and (�;�) = T (�̂i � �̂
�
i ) = Op(1), the desired result follows readily from

Lemma 8 (note that Lemma 8 is stated in terms of log-valued likelihood.

Without taking logarithm, it is 1 + op(1)). Now suppose that k̂i�1 � k
0
i�1.

Then

D(k̂i�1; k0i ; �̂i)

D(k̂i�1; k0i ; �̂
�
i )

=
D(k̂i�1; k0i�1; �̂i)

D(k̂i�1; k0i�1; �̂
�
i )
�
D(k0i�1; k

0
i ; �̂i)

D(k0i�1; k
0
i ; �̂

�
i )
:

We can again apply Lemma 8 to the second term on the right. But for the

�rst term on the right, we can apply Lemma 7 twice after dividing both

the numerator and the denominator by D(k̂i�1; k0i�1; �
0
i ) and conclude the

resulting two ratios are each 1 + op(1) so that itself is also 1 + op(1) (this

idea is elaborated below for other terms).

The entire analysis above is also applicable for the third term of (A.30)

and so it is also 1 + op(1).
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Next, consider the middle term of (A.30), which can be rewritten as

D(k0i ; k
0
i + `; �0i )

D(k0i ; k
0
i + `; �0i+1)

� D(k
0
i ; k

0
i + `; �̂i)

D(k0i ; k
0
i + `; �0i )

=
D(k0i ; k

0
i + `; �̂�i+1)

D(k0i ; k
0
i + `; �0i+1)

(A.31)

The last two terms of above are each 1+op(1) by Lemma 7. To see this, con-

sider the middle term. The denominator is equal to L(k0i ; k0i + `;
p
T (�0i �

�
0
i+1)) and the numerator is equal to L(k0i ; k0i + `;

p
T (�0i ��0i+1)+

p
T (�̂i�

�
0
i )) (note the true parameter for the segment (k

0
i ; k

0
i + `] is �0i+1). Now

take (�;�) = (�0i � �0i+1), and (�;�) =
p
T (�̂i� �0i ), then the conditions of

Lemma 7 are satis�ed. Thus the middle term of (A.31) is 1+op(1) uniformly

in 0 � ` � Mv
�2
T . Summarizing these results, we obtain (A.29). This

proves Lemma 11.

For �xed vT , k̂i � k
0
i = Op(1). Thus to prove Theorem 2, it suÆces to

consider j`j �M . Now, for ` > 0, we have

D(k0i ; k
0
i + `; �0i )

D(k0i ; k
0
i + `; �0i+1)

=
j�0

i j�`=2 exp(� 1
2

Pk0i+`

k0i+1
[Yt � (V 0t 
 I)�0i ]

0(�0
i )
�1[Yt � (V 0t 
 I)�0i ]

j�0
i+1j�`=2 exp(� 1

2

Pk0i+`

k0i+1
"0t(�

0
i+1)

�1"t)
:

For t > k
0
i , the true parameter is (�

0
i+1;�

0
i+1). Thus Yt� (V 0t 
I)�0i = "t+

(V 0t 
 I)(�0i+1� �0i ). From this, expanding and taking logarithm (logarithm

transformation does not alter the value of the argmax functional), we obtain

W
(i)(`) given in (6). The case of ` < 0 corresponds to W

(i)
2 (`) given in (7).

In summary and in view of Lemma 11, we have

log
D(k̂i�1; k0i + `) �D(k0i + `; k̂i+1)

D(k̂i�1; k0i ) �D(k0i ; k̂i+1)
)W

(i)(`) (A.32)

on bounded set of `. The assumption of continuous distribution of "t guar-

antees the uniqueness of the maximum value of W (i)(r). This implies that

k̂i � k
0
i = argmax`�T (k̂1; :::; k̂i�1; k

0
i + `; k̂i+1; :::; k̂m)

d�! argmax`W
(`)(`):

The detailed argument for the last claim can be found in Bai (1997). The

proof of Theorem 2 is now complete.

Proof of Theorem 4. From k̂i = argmaxk �T (k̂1; :::; k̂i�1; k; k̂i+1; :::; k̂m)
and v2T (k̂i � k

0
i ) = Op(1), we consider the following parameterization:

�T (k̂1; :::; k̂i�1; k
0
i + [vv�2T ]; k̂i+1; :::; k̂m)



332 JUSHAN BAI

for v on an arbitrary bounded set. Consider

log
�T (k̂1; :::; k̂i�1; k0i + [vv�2T ]; k̂i+1; :::; k̂m)

�T (k̂1; :::; k̂i�1; k0i ; k̂i+1; :::; k̂m)

= log
D(k̂i�1; k0i + [vv�2T ]) �D(k0i + [vv�2T ]; k̂i+1)

D(k̂i�1; k0i ) �D(k0i ; k̂i+1)

= W
(i)([vv�2T ]) + op(1);

The second equality follows from Lemma 11 (also cf. (A.32)). To prove

Theorem 4, it is suÆcient to prove that W (i)([vv�2T ])) �(i)(v). The latter

process is de�ned in the main text.

Let r = [vv�2T ] for v � 0. Then r � 0. The �rst term on the right side of

(6) is

�
r

2

�
log j�0

i j � log j�0
i+1j

�
=

r

2
log

���[�0
i + (�

0
i+1 � �

0
i )](�

0
i )
�1
���

=
r

2
log j[�0

i + vT�i](�
0
i )
�1j

=
r

2
log jI + vT�i(�

0
i )
�1j (A.33)

=
r

2
vT tr(�i(�

0
i )
�1

)�
r

4
v
2
T tr([�i(�

0
i )
�1

]
2
) + o(v

2
T ):

Next, consider the second term on the right side of (6). Note E"t"
0
t =

�0
i+1 for t 2 (k0i ; k

0
i+1]. Subtracting and adding �0

i+1 and noting that

[(�0
i )
�1 � (�0

i+1)
�1]�0

i+1 = (�0
i )
�1(�0

i+1 � �0
i ) = vT (�

0
i )
�1�i, we have

�1

2

k0i+rX
k0i+1

"
0
t

�
(�0

i )
�1 � (�0

i+1)
�1
�
"t

= �1

2
tr

0
@k0i+rX
k0i+1

h
(�0

i )
�1 � (�0

i+1)
�1
ih
�0
i+1 + ("t"

0
t � �0

i+1)
i1A (A.34)

= �r
2
� vT tr(�i(�

0
i )
�1)

� 1

2
tr

h
(�0

i+1)
1=2
�
(�0

i )
�1 � (�0

i+1)
�1
�
(�0

i+1)
1=2

k0i+rX
k0i+1

(�t�
0
t � I)

i

= �r
2
� vT tr(�i(�

0
i )
�1)

� 1

2
tr

h
(�0

i+1)
1=2(�0

i )
�1�i(�

0
i+1)

�1=2
vT

k0i+rX
k0i+1

(�t�
0
t � I)

i
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The �rst two terms on the right side of (6) is equal to, by combining (A.33)

and (A.34)

� r

4
v
2
T tr([�i(�

0
i )
�1]2)

� 1

2
tr

h
(�0

i+1)
1=2(�0

i )
�1�i(�

0
i+1)

�1=2
vT

k
0

i+rX
k0i+1

(�t�
0
t � I)

i

Since �0
i ! �0 for all i, we have tr([�i(�

0
i )
�1]2) ! tr([�i(�0)

�1]2) =
tr(A2

i ). In addition, (�0
i+1)

1=2(�0
i )
�1�i(�

0
i+1)

�1=2 ! Ai. Furthermore,

r v
2
T = [vv�2T ]v2T ! v uniformly over bounded v. Finally, from (9),

vT

Pk0i+r

k0i+1
(�t�

0
t � I) ) �1(v) for r = [vv�2T ]. Combining these results and

noting that �1(v) and ��1(v) have the same distribution, we obtain the

�rst two expressions of �(i)(v) de�ned in (13). Next, consider the last two

terms of (6). From ��i = vT Æi,

��0i

k0i+rX
k0i+1

(V 0t 
 I)(�0
i )
�1
"t = Æ

0
i vT

k0i+[vv
�2

T
]X

k0i+1

[Vt 
 (�0
i )
�1=2]�t

) Æ
0
iQ

1=2
�1(v); v > 0

by (12). Next, by (11),

��0i

k0i+rX
k0i+1

[VtV
0
t 
 (�0

i )
�1]��i = Æ

0
i v

2
T

k
0

i+[vv
�2

T ]X
k0i+1

[VtV
0
t 
 (�0

i )
�1]Æi �! v Æ

0
iQÆi

Combining these results, we have

W
(i)
1 ([vv�2T ])) �(i)(v) ; v > 0:

The proof for v < 0 is similar.

Proof of Theorem 5. Let v̂ = argmaxv�T (k̂1; :::; k̂i�1; k0i+[vv
�2
T ]; k̂i+1; :::;

k̂m): This implies that k̂i�k0i = [v̂v�2T ]. From j[x]�xj � 1, jv2T (k̂i�k0i )�v̂j =
jv2T [v̂v�2T ]� v̂j � v

2
T ! 0. Thus we have v2T (k̂i � k

0
i ) = v̂ + op(1). Note the

identity

v̂ = argmaxv log
�T (k̂1; :::; k̂i�1; k0i + [vv�2T ]; k̂i+1; :::; k̂m)

�T (k̂1; :::; k̂i�1; k0i ; k̂i+1; :::; k̂m)
: (A.35)
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This is because the denominator does not depend on v and log(x) is an

increasing function. Theorem 5 then follows from Theorem 4 and the

continuous mapping theorem. We point out that the argmax functional

generally is not a continuous functional. But it becomes continuous on the

set of continuous functions de�ned on a bounded set with each function

having a unique maximum. Because we already established the fact that

v̂ = Op(1), we can limit the domain of the argmax functional on functions

de�ned on bounded sets. This illustrates the importance of establishing

the rate of convergence for v̂. The sample path of �(i)(v) is continuous and

has a unique maximum with probability one. Bai (1992) gives a thorough

discussion on the argmax functional.

Proof of Corollary 3. We use the fact that if X � N(0; A), then b0X �
(b0Ab)1=2N(0; 1) (this is true even if A is a singular matrix). It follows

that tr(Ai�(v)) = vec(Ai)
0vec(�(v))

d
= (�a0
�a)1=2U(v) and Æ

0
iQ

1=2
�(v)

d
=

(Æ0iQÆi)
1=2
V (v), where U(v) and V (v) are standard two-sided Brownian

motions and 
 = Evec(�(1))vec(�(1))0: Note that E�(1)�(1)0 = I, an

identity matrix because �(v) is a vector of independent standard Brow-

nian motions. The assumption on the third moment implies the indepen-

dence of �(v) and �(v). Thus, 2�1tr(Ai�(v)) + Æ
0
iQ

1=2
�(v)

d
= bB(v) where

b = [4�1�a0
�a + Æ
0
iQÆi]

1=2, and B(v) is also a standard two-sided Brown-

ian motion. Thus �(i)(v) is equal (in distribution) to �jvj2�1c + bB(v)

where c = 2�1tr(A2
i ) + (Æ0iQÆi). By a change in variable, it can be shown

that argmaxvf�jvj2�1c+bB(v)g
d
= (b2=c2)argmaxsf�jsj2�1+B(s)g. This

implies that

v
2
T (k̂i � k

0
i )

d�! (b2=c2)argmaxsf�jsj2�1 +B(s)g:

Equivalently, (c2=b2)v2T (k̂i�k0i )
d�! argmaxsf�jsj2�1+B(s)g. This proves

Corollary 3.

Proof of Corollary 4. From Corollary 3, it is seen that the scaling factor

of k̂i � k
0
i (multiplying both the numerator and the denominator by v2T )

can be written as �
2�1tr([AivT ]

2) + vT Æ
0
iQÆivT

�2
4�1vec(AivT )0
vec(AivT ) + vT Æ

0
iQÆivT

Because �ivT = �0
i+1��0

i and ÆivT = �
0
i+1� �0i , this scaling factor can be

rewritten as �
2�1tr(B2

i ) + (�0i+1 � �
0
i )
0
Q(�0i+1 � �

0
i )
�2

4�1vec(Bi)0
vec(Bi) + (�0i+1 � �0i )
0Q(�0i+1 � �0i )

(A.36)
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where Bi = �
�1=2
0 (�0

i+1 � �0
i )�

�1=2
0 . This follows from AivT =

�
�1=2
0 �i�

�1=2
0 vT = Bi. Let �̂i and �̂i be estimators such that �̂i � �0

i =

Op(T
�1=2) and �̂j � �0j = Op(T

�1=2). De�ne B̂i = �̂
�1=2
i (�̂i+1 � �̂i)�̂

�1=2
i

then B̂i is consistent for Bi. In addition, if 
̂ and Q̂ are consistent estima-

tors of 
 and Q, respectively, then we have

(�̂i � �i)(k̂i � k
0
i ) = op(1); (A.37)

where �i denotes the whole expression of (A.36) and �̂ is the estimated

version. Note that it is not suÆcient to have �̂i � �i = op(1) because

k̂i � k
0
i = Op(v

�2
T ), which converges to in�nity when vT converges to zero.

However, it is also true that �0i+1 � �
0
i = O(vT ) and �0

i+1 � �0
i = O(vT ),

which converge to zero. Together with the rate of convergence of �̂i and

�̂i, equation (A.37) can be proved in a routine fashion (by adding and

subtracting terms). In fact, it can be shown that the left hand side of

(A.37) is of Op(1=(
p
TvT )). The proof of Corollary 4 is complete.

Proof of Corollary 5. This corollary is a special case of Corollary 4.

Proof of Corollary 6. We �rst prove that under normality, the scaling fac-

tor of v2T (k̂
0
i�k0i ) in Corollary 3 is simpli�ed to 2�1tr(A2

i )+Æ
0
iQÆ

0
i. It is suÆ-

cient to show vec(Ai)
0
vec(Ai) = 2tr(A2

i ). If this is the case, the numerator

will be the square of the denominator and the desired simpli�cation follows.

Let akl denote the (k; l)th entry of Ai. Then tr(A
2
i ) =

P
k a

2
kk+2

P
k<l a

2
kl.

Recall that vec(Ai)
0
vec(Ai) is the variance of tr(Ai�(1)). Let  kl de-

note the (k; l)th entry of �(v) for v = 1. Because �(v) is the limiting

distribution of vT
P
(�t�t � I), vec(�(1)) has the same covariance ma-

trix as vec(�t�
0
t � I). Now tr(Ai�(1)) =

P
akk kk + 2

P
k<l akl kl. So

vec(Ai)
0
vec(Ai) = E(

P
akk kk + 2

P
k<l akl kl)

2 = E[
P
akk(�

2
tk � 1) +

2
P

k<l akl�tk�tl]
2 = 2

P
a
2
kk+4

P
k<l a

2
kl = 2tr(A2

i ). We have used the fact

that under normality (f�2tk�1gq
k=1; f�tk�tlgk<l) is a vector of uncorrelated

random variables with E(�2tk � 1)2 = 2 and E(�2tk�
2
tl) = 1. This proves

the desired simpli�cation under normality. As for the second part of the

corollary, the argument is identical to the proof of Corollary 4.

Proof of Corollary 7. This corollary is a special case of Corollary 6.

To prove Theorem 6, we need additional results.

Lemma 12. Let hT , dT and ST be the same as in Lemma 5, then for

every given A > 0,

sup
1�k�AhT

sup
(�;�)2ScT

L(0; k; �;�) = Op(1):

where ScT is the complement set of ST .
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Proof. See Property 6 of BLS.

Lemma 13. Letm0 be the true number of change points, and let (k̂1; :::; k̂m0)

be the estimator de�ned in Section 3. Then

�T (k̂1; :::; k̂m0) = Op(1):

This lemma says that the optimal likelihood ratio is stochastically

bounded. Because �T (k̂1; :::; k̂m0) � 1, the log-valued optimal likelihood

ratio is also stochastically bounded.

Proof. From �T (k̂1; :::; k̂m0) = D(0; k̂1)D(k̂1; k̂2) � � �D(k̂m0 ; T ), we shall

prove each of D(�; �) is Op(1). Consider D(k̂1; k̂2) for concreteness. Let

�̂2 = (�̂2; �̂2) be the estimator of (�
0
2;�

0
2) based on the segment (k̂1; k̂2].

The estimator is root-T consistent by Theorem 3. Suppose that k̂1 � k
0
1

and k̂2 � k
0
2 , which is the most complicated situation. Then

D(k̂1; k̂2) = D(k̂1; k
0
1 ; �̂2) �D(k01 ; k02 ; �̂2) �D(k02 ; k̂2; �̂2):

The middle term on the right hand side is Op(1) because D(k
0
1; k

0
2 ; �̂2) �

D(k01 ; k
0
2) = Op(1) by Lemma 1 (single true regime and positive fraction of

observations). Consider the third term.

D(k02 ; k̂2; �̂2) = L(k02; k̂2;
p
T (�̂2 � �

0
2) +

p
T (�02 � �

0
3)): (A.38)

Now k
p
T (�̂2 � �

0
2) +

p
T (�02 � �

0
3)k � 2k

p
T (�02 � �

0
3)k � C

p
TvT by As-

sumption A4. In addition, k̂2 � k
0
2 � Mv

�2
T by Theorem 3. By Lemma

12, applied with hT = v
�2
T , dT = C

p
TvT , and A = M (note thatp

T (�̂2 � �02) +
p
T (�02 � �03) is in the set ScT ), we see the right hand side of

(A.38) is Op(1). Similarly, D(k̂1; k
0
1 ; �̂2) = Op(1). Thus D(k̂1; k̂2) =

Op(1).

Proof of Theorem 6. We �rst show that P (m̂ < m
0)! 0. It is suÆcient

to show P (minm<m0 BIC(m) � BIC(m0) � 0) ! 0 as T increases. Let

m < m
0, and let (k̂�1 ; :::; k̂

�
m0) be the optimal estimator of the break points

with m0 known. We have

BIC(m)� BIC(m0) = � logL(k̂1; :::; k̂m) + logL(k̂�1 ; :::; k̂
�
m0) + (m�m

0)g(T )

= � log �T (k̂1; :::; k̂m) + log �T (k̂
�
1 ; :::; k̂

�
m0) + (m�m

0)g(T ):

The second equality follows from by adding and subtracting log �T
t=1f("t)

and by the de�nition of �T . The second term on the right hand side does
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not depend on m and it is Op(1) by Lemma 13. Thus

BIC(m)� BIC(m0) = � log �T (k̂1; :::; k̂m) + (m�m
0)g(T ) +Op(1):

When m < m
0, there must exist at least one change point that cannot

be consistently estimated. This implies that the model parameters for

some regime cannot be consistently estimated. That is, there exists a

segment (k; `] which satis�es (i) ` � k � TÆ for some Æ > 0, (ii) (k; `] is a

subset of the intersection (k̂h�1; k̂h] \ (k0i�1; k
0
i ] for some h and i, and (iii)p

Tk�̂h � �
0
i k � b

p
TvT or

p
Tk�̂ � �0

i k � b
p
TvT for some b > 0. By

Lemma 4 or (A.3), the likelihood ratio for this segment

logD(k; `; �̂h; �̂h) = logL(k; `;
p
T (�̂h � �

0
i );
p
T (�̂h � �0

i ))

is less than �cTv2T for some c > 0 with large probability. By Lemma 2,

the maximum value of the log-likelihood ratio for all other segments is at

most Op(log T ). Thus BIC(m) � BIC(m0) � cTv
2
T � jOp(log T )j � jm0 �

mjg(T )� jOp(1)j � cTv
2
T �m

0
g(T )� jOp(log T )j ! +1 with probability

tending to 1. This implies that P (m̂ < m
0)! 0.

Next, we show P (m̂ > m
0) ! 0. Suppose m > m

0. By Lemma 2,

when adding a break point in estimation, when there is in fact no break

point, the log-likelihood ratio is increased at most by Op(log T ). Thus, for

m > m
0 and m �M ,

BIC(m)� BIC(m0) = � log �(k̂1; ::::; k̂m) + (m�m
0)g(T ) +Op(1)

� � log �(k̂1; ::::; k̂M ) + g(T ) +Op(1) � �jOp(log T )j+ g(T )! +1:

This implies that P (m̂ > m
0)! 0. The proof of Theorem 6 is complete.

APPENDIX: COMPUTATION

Assumem is known. For each set of hypothesized change points (k1; :::; km),

let �̂i = �̂i(k1; :::; km) be the estimator of �
0
i using the segment (ki�1; ki]

(cf. model (2)). De�ne

�̂i(k1; :::; km) =
1

ki � ki�1

kiX
t=ki�1

[Yt � (Vt 
 �̂i)][Yt � (Vt 
 �̂i)]
0

Then the log-valued quasi-likelihood as a function of (k1; :::; km) is simply

logL(k1; :::; km) =

m+1X
i=1

(ki � ki�1) log det[�̂i(k1; :::; km)]
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where det(B) is the determinant of matrix B. Thus the change point

estimator is

(k̂1; :::; k̂m) = argmink1;:::;km logL(k1; :::; km):

When m > 1, eÆcient algorithm based on dynamic programming is avail-

able. Note that �̂i(k1; :::; km) and �̂i(k1; :::; km) actually only depend on

ki�1 and ki. The dynamic programming algorithm requires the calculation

of the following number for each segment (k; `],

(`� k) log det �̂(k; `):

Once this is computed for all segments of (k; `] (there are at most T (T�1)=2
distinct segments with at least two observations), the algorithm can quickly

search the optimal change points based on the principle of optimality. De-

tails are given in Bai and Perron (1999) for univariate series with least

squares estimation. But the idea is applicable for quasi-maximum likeli-

hood method. Their computer code is also available upon request.
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