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1. INTRODUCTION

It is well known that competitive equilibria in economies with complete
financial markets can be supported by a “representative agent”, in the
sense that it is always possible to replace the original consumers/investors
with a single agent who acts as a proxy for the individual consumers by
receiving the aggregate endowment and optimally holding the total sup-
ply of securities (and consuming the aggregate income) at the competitive
equilibrium prices. Moreover, the utility function of the representative
agent corresponds to a linear social welfare function (i.e., to a weighted
sum of utilities), which is completely identified by the weightings received
by the individual utilities (see Negishi (1960), Constantinides (1982) and
Huang (1987)). The search for an equilibrium can therefore be reduced to
the search for such weightings, as the equilibrium price process and con-
sumption allocation can be easily recovered from the representative agent’s
utility function. Negishi (1960) has first used this approach to provide an
alternative proof of the existence of equilibria in Arrow-Debreu economies
under the standard neoclassical assumptions on preferences. Karatzas,
Lehoczky and Shreve (1990) and Karatzas, Lakner, Lehoczky and Shreve
(1991) have recently exploited a similar technique to derive conditions for
existence and uniqueness of equilibrium in financial economies with com-
plete securities markets and continuous trading. Similarly, Huang (1987)
and Dumas (1989), among others, have utilized the representative agent
approach to characterize properties of equilibrium asset prices in models
with complete securities markets and continuous trading.

In this paper we show that the same type of analysis can be used to
characterize equilibria in event-tree economies with time-additive prefer-
ences and incomplete financial markets. Of course, equilibrium allocations
with incomplete financial markets are typically Pareto-inefficient, so that a
linear welfare function with constant weights will in general not exist. Nev-
ertheless, we show that the construction of a representative agent is still
possible: the representative agent’s utility function will again be a linear
combination of the individual utilities, but with stochastic weights, which
correspond to the equilibrium marginal rates of substitution across indi-
viduals.1 Since the equilibrium allocation and prices can be characterized
entirely in terms of these weights, the task of solving for an equilibrium can
again be reduced to the task of searching for the weightings in the represen-
tative agent’s utility that support the equilibrium allocation.2 As shown

1Constantinides (1982; p. 255) has observed that the construction of a representa-
tive agent with state-dependent utilities should be possible with incomplete markets,
although he does not pursue this possibility.

2The same approach has been used by Conze, Lasry and Scheinkman (1993) in an
international trade model with borrowing constraints.
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in the paper, the latter task boils down to solving a system of non-linear
algebraic equations. The advantage of this characterization is that it does
not require the derivation of the agents’ intertemporal demand functions
for consumption and investment and it allows us to transform the dynamic
general equilibrium problem into an equivalent static one: it is therefore
especially well suited for numerical computation. Moreover, since the di-
mension of the vector of weightings depends on the number of agents in
the economy and on the structure of uncertainty, but not on the number of
traded securities, our characterization of equilibria is typically more par-
simonious than characterizations based on the stochastic Euler equations
from dynamic programming.

In constructing a representative agent and deriving the conditions char-
acterizing an equilibrium, we use an approach similar to the martingale rep-
resentation technique introduced by Pliska (1986), Cox and Huang (1989,
1991), and Karatzas, Lehoczky and Shreve (1987) in the case of complete
markets. This approach proceeds in three steps: first the set of feasible con-
sumption processes is characterized, then the agents’ optimal consumption
processes in this set are determined using Lagrangian theory, and finally
the trading strategies needed to generate the optimal consumption pro-
cess are derived. With complete markets, the only constraint placed on
individual consumption policies is budget-feasibility: therefore, the set of
feasible consumption processes corresponds to the set of consumption pro-
cesses that are budget-feasible with respect to the unique set of underlying
state prices. With incomplete markets, the characterization of feasible con-
sumption processes is more complex, since there is in general more than
one set of state prices consistent with any given equilibrium, and not ev-
ery budget-feasible consumption process is attainable through a dynamic
trading strategy. He and Pearson (1991) have recently shown that, with
discrete trading, the set of consumption bundles that can be generated by a
budget-feasible dynamic trading strategy in incomplete markets is identical
to the set of consumption bundles that are budget feasible with respect to
all of the state prices consistent with no arbitrage and can be characterized
in terms of a finite number of budget constraints corresponding to the ex-
treme points of the closure of that set.3 We use a similar characterization
of feasible consumption processes.

Building on the martingale representation technique, the representative
agent approach developed in this paper allows us to transform a dynamic
general equilibrium problem into a static one in which the search for equi-
librium is reduced to the search for the stochastic weights (across time

3An essentially equivalent characterization of the feasible consumption policies as
those having the same price under all the equivalent martingale measures (state price
densities) consistent with the given price process has been provided by Pagès (1987) and
Jacka (1992) for infinite-dimensional economies.
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and across agents) that define the representative agent’s utility function.
In turn, the latter task involves solving a system of non-linear algebraic
equations. In contrast to the standard approach in the literature, dynamic
programming is not required in this process.

There is by now a vast literature in mathematical economics analyzing
the existence of general equilibrium in models with incomplete markets (see
the review articles by Geanakoplos (1990) and Magill and Shafer (1991),
and the references therein). While this literature typically allows for mul-
tiple goods and general utility functions, we assume that agents consume a
single numeraire good and that utility functions are time-additive. These
assumptions, which are standard in the finance literature, are critical for
our approach.

A homotopy technique for the computation of equilibria in incomplete
markets has recently been proposed by Brown, DeMarzo and Eaves (1996).
However, they assume that the economy is specified directly in terms of an
excess demand function, rather than of individual utilities and endowments.
The main focus of the approach proposed in this paper is precisely on
avoiding the computation of the demand functions.

The balance of the paper is organized as follows. Section 2 introduces
the main ideas through a simple example with complete markets. Section
3 starts our analysis with incomplete markets by describing the economy.
Section 4 formulates the static individual optimization problem and the
notion of equilibrium. Section 5 constructs the representative agent and
provides a characterization of the weightings in the representative agent’s
utility function which lead to an equilibrium. Section 6 uses this result
to show how the search for an equilibrium can be reduced to the search of
the weightings defining the representative agent’s utility function. Section 7
shows how this approach simplifies in the case in which the market structure
consists of a sequence of one-period securities. Section 8 contains some
concluding remarks.

2. AN EXAMPLE WITH COMPLETE MARKETS

We introduce the basic computational approach of the paper via a simple
example with complete financial markets. Consider an economy with a sin-
gle consumption good (the numeraire), two dates (t = 0, 1), and two possi-
ble states (ω1, ω2) at date 1, having equal probability (π(ω1) = π(ω2) = 1

2 ).
It is convenient to consider date 0 as just an additional state by redefining
the set of “states” to be Ξ = (ξ0, ξ1, ξ2) with π(ξ0) = 1 and π(ξ1) = π(ξ2) =
1
2 . Here “state” ξ0 corresponds to date 0, “state” ξ1 to state ω1 at date 1,
and “state” ξ2 to state ω2 at date 1. We assume complete markets with
Arrow-Debreu securities: i.e., there are two securities, the first of which
pays one unit of the consumption good at date 1 in state ω1 and nothing
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otherwise, and the second of which pays one unit of the consumption good
at date 1 in state ω2 and nothing otherwise. These securities are in zero
net supply. Following our convention of considering date 0 as just an addi-
tional state, we can represent the two securities by their dividend processes
d1 = (0, 1, 0) and d2 = (0, 0, 1). We will also assume that there are two
agents with utilities

U1(c) =
∑
ξ∈Ξ

π(ξ) log c(ξ) and U2(c) = −
∑
ξ∈Ξ

π(ξ)c(ξ)−1.

The first agent is endowed with one unit of the consumption good at date 0
and one unit of the consumption good at date 1 in each possible state, while
the second agent is endowed with one unit of the consumption good at date
0, one unit of the consumption good at date 1 in state ω1 and two units of
the consumption good at date 1 in state ω2. We will write the endowment
processes for the two agents as e1 = (1, 1, 1) and e2 = (1, 1, 2), respectively.
The aggregate endowment process is then given by ē = e1 + e2 = (2, 2, 3).

Let S = (S1, S2) denote the prices at date 0 of the two securities. It
is well known that if (S, c∗1, c

∗
2) is an equilibrium for the above economy,

then there exists a λ∗ > 0 such that (S, ē) is a no-trade equilibrium for the
economy with a single representative agent with utility

U(c) =
∑
ξ∈Ξ

π(ξ)u(c(ξ)) (1)

where
u(c) = max

z1+z2=c
log z1 − λ∗z−1

2 . (2)

Moreover

u(ē(ξ)) = log c∗1(ξ)− λ∗c∗2(ξ) (3)

i.e., (c∗1(ξ), c
∗
2(ξ)) solves the problem in (2) when c = ē(ξ). This implies

that

c∗1(ξ) =
2ē(ξ)2

λ∗ + 2ē(ξ) +
√
λ∗(λ∗ + 4ē(ξ))

(4)

and

c∗2(ξ) =

(
2λ∗ē(ξ)2

λ∗ + 2ē(ξ) +
√
λ∗(λ∗ + 4ē(ξ))

)1/2

. (5)

Note that (4) and (5) relate the individual optimal consumption policies in
“state” ξ to the aggregate consumption in that “state”: these expressions
are simply the Pareto-optimal sharing rules. Also, since ē is an optimal
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consumption choice for the representative agent given the price process S,
the stochastic Euler equations give:

S1 = π(ξ1)
u′(ē(ξ1))
u′(ē(ξ0))

=
1
2

(6)

S2 = π(ξ2)
u′(ē(ξ2))
u′(ē(ξ0))

=
2(6 + λ∗ +

√
λ∗(λ∗ + 12))

9(4 + λ∗ +
√
λ∗(λ∗ + 8))

. (7)

Equations (4)–(7) show that in order to find the equilibrium price and
consumption policies (S, c∗1, c

∗
2), we only need to find the weight λ∗ that

defines the representative agent utility. To determine λ∗, observe that the
budget constraint for agent 1 can be written as

(c∗1(ξ0)− 1) + (c∗1(ξ1)− 1)S1 + (c∗1(ξ2)− 1)S2 = 0 (8)

(we will show later that the above equation is in fact a necessary and suf-
ficient condition for λ∗ to define an equilibrium). Substituting the expres-
sions (4), (6) and (7) in (8) and solving for λ∗ gives a unique (real) solution,
λ∗ = 1.366, which implies S = (0.500, 0.289), c∗1 = (0.895, 0.895, 1.547) and
c∗2 = (1.105, 1.105, 1.453).

This is essentially the approach used by Negishi (1960) in a single period
model and by Dumas (1989) and Karatzas et alii (1990, 1991) in a multi-
period setting with continuous trading. In the remainder of the paper, we
will generalize this approach to incomplete securities markets with discrete
trading. More specifically, we will show that the same approach is still
valid provided we are willing to allow λ∗ to be a stochastic process.

3. THE ECONOMY

We consider a finite-horizon, pure-exchange economy with discrete trad-
ing, modeled as follows.

Information structure. There is a finite number of trading dates, indexed
by t = 0, 1, . . . , T , with T ≥ 1, and a finite number of possible states of
the world, indexed by ω ∈ Ω. As usual, a state of the world is taken
to be a complete description of the exogenous relevant uncertainty from
time 0 to time T . Information about the true state is partially revealed to
individuals over time and is represented by a refining sequence F = {Ft :
t = 0, 1, . . . , T} of partitions of Ω, such that F0 = Ω and FT = {{ω} :
ω ∈ Ω} is the discrete partition. We will refer to F as the information
structure. Also, we let Ft = σ{Ft} be the σ-field generated by Ft and
F = {Ft : t = 0, 1, . . . , T} be the corresponding filtration.

The above information structure can be usefully visualized as an event
tree, as follows. A pair ξ = (t, at) with t ∈ {0, 1, . . . , T} and at ∈ Ft will
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be referred to as a node. Let

Ξ =
⋃

t∈{0,1,...,T}
at∈Ft

(t, at)

denote the set of nodes. The node ξ0 = (0,Ω) is called the initial node. Let
Ξ+ = Ξ \ ξ0 denote the set of non-initial nodes. For each ξ = (t, at) ∈ Ξ+,
the unique node ξ− = (t − 1, at−1) ∈ Ξ with at−1 ⊃ at is called the
predecessor of ξ. A node ξ with ξ = (T, ω) is called a terminal node. Let
ΞT denote the set of terminal nodes and Ξ− = Ξ \ΞT denote the set of
non-terminal nodes. For each ξ = (t, at) ∈ Ξ−, the set

ξ+ = {ξ̂ ∈ Ξ : ξ̂ = (t+ 1, at+1), at+1 ⊂ at}

is called the set of immediate successors of ξ. The number of elements in
ξ+ is called the branching number of the node ξ and will be denoted by
b(ξ). We say that the node ξ̂ = (τ, aτ ) succeeds ξ = (t, at) if τ > t and
aτ ⊂ at, and we write ξ̂ � ξ.

Letting N = #Ξ denote the number of nodes in Ξ, it is clear that every
Rm-valued stochastic process adapted to the filtration F can be identified
with a function from Ξ into Rm, or equivalently with a vector in RmN .
In the following we will use the term m-dimensional process to refer inter-
changeably to a Rm-valued function on Ξ or to a vector in RmN . Also,
whenever the latter representation of an adapted process is used, the first
m coordinates represent the value at date 0, the next mb(ξ0) coordinates
the possible values at time 1, and so on.

Consumption sets. There is a single perishable good available for con-
sumption at each trading date, and we take this consumption good as the
numeraire. Each agent’s consumption set is the set of real-valued, strictly
positive, adapted processes and is thus denoted by RN

++.4

Securities market. The securities market is composed of K long-lived
securities, indexed by k = 1, . . . ,K, available for trading at each date t.5

Each security is identified by an adapted dividend process dk ∈ D = {0}×
RN−1 (expressed in units of the consumption good): negative dividends
are not ruled out. We let S = (S1, . . . , SK) denote the ex-dividend price

4For any positive integer n, Rn
+ denotes the positive cone of Rn (i.e., the set of vectors

in Rn with non-negative components) and Rn
++ denotes the interior of Rn

+ (i.e., the
set of vectors with strictly positive components). For an n-dimensional vector x, we
use the following notation: x ≥ 0 ⇐⇒ x ∈ Rn

+, x > 0 ⇐⇒ x ∈ Rn
+\{0} and

x � 0 ⇐⇒ x ∈ Rn
++.

5With a slight complication of notation, the case of securities issued at subsequent
nodes could also be treated. In Section 7 we examine the case in which the market
structure consists of a sequence of one-period securities.
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process, which is to be determined endogenously in equilibrium. Since
equilibrium prices are assumed to be observed by agents before trading,
the process S is adapted. Also, since prices are ex-dividend, S(ξ) = 0 for
all ξ ∈ ΞT .

Trading strategies. A trading strategy is an adapted (predictable) K-
dimensional process θ = (θ1, . . . , θK), where θk(ξ) denotes the number of
shares of security k in the portfolio established at node ξ and carried into
the nodes in ξ+. Since we assume that trading occurs at the ex-dividend
prices, there is clearly no point in trading securities at the terminal nodes.
Hence, we restrict θ to Ξ−. The space of trading strategies is therefore
Θ = RK(#Ξ−).

Agents. The economy is populated by a finite number I of agents, in-
dexed by i = 1, . . . , I, with I ≥ 2. Each individual i is endowed with an
adapted income process ei. There is no initial endowment of securities.6

We will let ē =
∑I

i=1 ei denote the aggregate endowment process.

Assumption 1. The endowment vectors satisfy ei � 0 for i = 1, . . . , I.

The beliefs of agent i are represented by a strictly positive probability
measure πi on (Ω,FT ). We will interpret πi as a function on Ξ by letting
πi(ξ) = πi(at) =

∑
ω∈at

πi(ω) for ξ = (t, at).

Assumption 2. Each agent i has preferences that can be represented by
a time- and state-additive utility function Ui : RN

++ → R, where

Ui(c) =
∑
ξ∈Ξ

πi(ξ)ui(c(ξ), ξ). (9)

Since we are allowing the utility function in (9) to be state-dependent,
we can assume without loss of generality (by setting π = π1 and redefining
ui(·, ξ) to be πi(ξ)

π(ξ) ui(·, ξ)) that πi = π for all i, and we will do so to
simplify the notation. We will make the following additional assumption
about investors’ preferences.

Assumption 3. The functions ui(·, ξ) in (9) are increasing, strictly con-
cave and twice continuously differentiable on R++ for all i = 1, . . . , I and
ξ ∈ Ξ. Moreover, they satisfy the Inada conditions:

lim
c↓0

∂

∂c
ui(c, ξ) = ∞ and lim

c↑∞

∂

∂c
ui(c, ξ) = 0.

6This is without loss of generality: if agent i has a positive endowment θ̄i of shares
at time 0 and we denote with θ̂i his trading strategy, then letting ei(ξ) = θ̄i · d(ξ) and

θi(ξ) = θ̂i(ξ)− θ̄i reduces to the case considered above.
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Assumption 3 guarantees in particular that ∂
∂cui(c, ξ) has a well defined

strictly decreasing inverse function fi(·, ξ) mapping (0,∞) onto itself and
that the solution of the individual maximization problem is an interior
solution.

In the following, we will denote with

E =
(
(Ξ, π), {Ui, ei}I

i=1, d
)

(10)

the primitives for the above economy.

4. INDIVIDUALS’ OPTIMIZATION PROBLEMS AND
EQUILIBRIUM

Each individual i chooses an adapted consumption process ci and an
adapted trading strategy θi = (θ1i , . . . , θ

K
i ) subject to ci ≥ 0,

ci(ξ)− ei(ξ) + θi(ξ) · S(ξ) ≤ θi(ξ−) · (S(ξ) + d(ξ)) ∀ξ ∈ Ξ− (11)

and

ci(ξ)− ei(ξ) ≤ θi(ξ−) · d(ξ) ∀ξ ∈ ΞT (12)

where θi(ξ−0 ) def= 0 and we have assumed that trading occurs at the ex-
dividend prices. A trading strategy θi satisfying (11)–(12) is said to finance
the net trade ci − ei.

Definition 4.1. A consumption process c is feasible for the endowment
e given the price process S if it is adapted, strictly positive, and there exists
an adapted portfolio strategy θ ∈ Θ that finances the net trade c− e.

Let B(e, S) denote the set of feasible consumption processes for the en-
dowment e given the price S. We then have the following definition of
equilibrium.

Definition 4.2. A (rational expectations) equilibrium for the economy
E is a price process S for the long-lived securities and a set (c∗, θ∗) =
{(c∗i , θ∗i ) : i = 1, . . . , I} of consumption plans and portfolio strategies such
that:

(i) c∗i maximizes Ui(c) on B(ei, S) for i = 1, . . . , I,
(ii) θ∗i ∈ Θ finances c∗i for i = 1, . . . , I,
(iii) the markets for the consumption good and the securities clear:∑I
i=1 c

∗
i = ē, and

∑I
i=1 θ

∗
i = 0.
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While under the usual Arrow-Debreu preference assumptions an equilib-
rium always exists in economies with dividend processes satisfying a span-
ning condition that guarantees market completion,7 existence is more prob-
lematic in economies with incomplete markets and real securities (i.e., secu-
rities with dividends specified in units of (multiple) consumption goods).8

Hart (1975) provided an example of a simple economy with two dates and
two consumption goods for which no equilibrium exists, and Magill and
Quinzii (1996; Proposition 24.1) have a similar non-existence result for
a three-dates economy with only one consumption good: in both cases,
the failure of the usual existence arguments is due to the discontinuities
in the agents’ demands at points where changes in prices induce changes
in the dimension of the space of marketed consumption processes. Duffie
and Shafer (1985, 1986) have however shown that in finite-dimensional
economies with incomplete markets and an arbitrary number of consump-
tion goods, an equilibrium exists generically (i.e., for all but an exceptional
set of economies parameterized by endowments and dividend processes).
The following proposition summarizes the existence results for our econ-
omy.

Proposition 1 (Existence of equilibrium). Under the stated assump-
tions, the following holds:

(a) If T = 1, the economy E always has an equilibrium.
(b) If T ≥ 2, there is an open set A ⊂ RIN

++×DK with null complement
such that for each ((e1, . . . , eI), d) ∈ A the economy ((Ξ, π), {Ui, ei}I

i=1, d)
has an equilibrium.

Proof. The first result was proved by Geanakoplos and Polemarchakis
(1986). For the second, it follows from Theorem 1 in Duffie and Shafer
(1986) that under the given assumptions there is an open set A ⊂ RIN

++×DK

with null complement such that for each ((e1, . . . , eI), d) ∈ A there exists a
security-spot market equilibrium, i.e., a price process S∗ for the K securi-
ties, a price process p ∈ RN

++ for the consumption good, and consumption
and investment strategies {(c∗i , θ∗i )}I

i=1 such that (c∗i , θ
∗
i ) maximizes Ui sub-

7Letting Dk(T ) be the random variable denoting the cumulative dividend paid by
security k up to the terminal date T , the required spanning condition is that the processes
Mk(t) = E[Dk(T )|Ft] form a martingale generator (under some equivalent probability
measure). In event-tree economies, this condition requires in particular that the number
of securities be no less than the maximum branching number: see Duffie and Huang
(1985), Duffie (1986) and Duffie and Zame (1989).

8Duffie (1987), extending previous work by Cass (1984) and Werner (1985), has shown
that an equilibrium always exists in event-tree economies with incomplete markets and
an arbitrary number of consumption goods, provided that securities are purely financial
(i.e., that dividends are specified in units of account).
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ject to

p(ξ)(c∗i (ξ)− ei(ξ)) + θ∗i (ξ) · S∗(ξ) ≤ θ∗i (ξ−) · (S∗(ξ) + p(ξ)d(ξ)) ∀ξ ∈ Ξ−

p(ξ)(c∗i (ξ)− ei(ξ)) ≤ θ∗i (ξ−) · (p(ξ)d(ξ)) ∀ξ ∈ ΞT

and the markets clear. Define the price process S by S(ξ) = S∗(ξ)/p(ξ).
It is then immediate to see that (S, c∗, θ∗) is an equilibrium for the economy
((Ξ, π), {Ui, ei}I

i=1, d).

A key result for what follows is that the dynamic problem of maximizing
(9) subject to the sequence of dynamic budget constraints in (11)–(12) is
equivalent to a static problem. To formulate this problem, we will need an
alternative characterization of feasible consumption processes. For a given
securities price process S and a non-terminal node ξ ∈ Ξ−, let Xξ,k

S be the
process describing the cash flows from a one-period investment in asset k
at node ξ, i.e.,

Xξ,k
S (ξ̂) =


−Sk(ξ), if ξ̂ = ξ

Sk(ξ̂) + dk(ξ̂), if ξ̂ ∈ ξ+

0, otherwise.

Let XS be the N ×K(#Ξ−) matrix obtained by putting side by side the
vectors Xξ,k

S , with ξ ∈ Ξ− and k = 1, . . . ,K. By the monotonicity of
preferences, the budget constraint in (11)–(12) is satisfied as an equality,
and hence can be written compactly using the matrix XS as

ci − ei = XS θi,

where we have used the convention of considering vectors as column vectors
whenever matrix operations are involved. In other words, a consumption
process ci ∈ RN

++ is feasible for endowment ei given the price process S if
and only if ci−ei ∈ span(XS), where span(XS) ⊂ RN denotes the subspace
spanned by the columns of XS .

Equivalently, letting

Φ(S) = {φ ∈ RN
++ : φ>XS = 0, φ(ξ0) = 1}

denote the set of state prices consistent with the given price process S, the
absence of arbitrage opportunities9 implies that

spanΦ(S) = {φ ∈ RN : φ>XS = 0} = XS ⊥
9An arbitrage opportunity (free lunch) is a trading strategy θ with XSθ > 0.
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where XS ⊥ denotes the orthogonal complement of XS ,10 and hence

c− e ∈ span(XS) ⇐⇒ φ · (c− e) = 0 ∀φ ∈ Φ(S). (13)

Equation (13) shows that a net trade c − e is feasible if and only if it
satisfies infinitely many Arrow-Debreu budget constraints formed using all
the possible set of state prices φ ∈ Φ(S) (or, equivalently, using all φ ∈
XS ⊥). However, since XS ⊥ is finite-dimensional and thus has a finite
generating subset, the orthogonality condition in (13) only needs to be
checked with respect to such a generating subset. Moreover, since absence
of arbitrage implies that XS ⊥= spanΦ(S), it is always be possible to
choose this generating subset so as to lie in Φ(S). Nevertheless, we will
find it convenient not to restrict the generating subset to consist of strictly
positive vectors. Letting

aff Φ(S) = {φ ∈ RN : φ>XS = 0, φ(ξ0) = 1}

denote the affine hull of Φ(S), the previous discussion then implies the
following.

Proposition 2 (Feasible consumption processes). Let S be a
no-arbitrage price process and let Φ̂(S) ⊂ affΦ(S) be such that spanΦ̂(S) =
XS ⊥. A consumption process c ∈ RN

++ is feasible for initial endowment e
given the price system S (i.e., c ∈ B(e, S)) if and only if

φ · (c− e) = 0 ∀φ ∈ Φ̂(S). (14)

We will henceforth refer to any element φ ∈ aff Φ(S) as a pseudo state
price. Of course, with (dynamically) complete markets11 #(aff Φ(S)) =
dimXS ⊥= 1, so that (14) involves a unique budget constraint. With in-
complete markets, He and Pearson (1991) have provided a similar charac-
terization of feasible consumption processes, using the set Φe(S) of extreme
points of the closure of Φ(S) in RN in place of our set Φ̂(S). While the
former characterization is more intuitive, we have chosen the latter since

10Since φ ∈ spanΦ(S) implies φ>XS = 0, clearly spanΦ(S) ⊂ XS ⊥. To prove the
equality of the two linear spaces, it is then enough to prove that dim(spanΦ(S)) ≥
dim XS ⊥. Let {x1, . . . , xR} ⊂ XS ⊥, where R = dim XS ⊥, be any maximal set
of linearly independent vectors from XS ⊥. Absence of arbitrage implies that XS ⊥
∩RN

++ 6= ∅, so that at least one of the xi, say x1, has a non-zero first component
x1(ξ0). Define x̂i = xi/xi(ξ0) if xi(ξ0) 6= 0 and x̂i = (xi + x1)/x1(ξ0) otherwise.
Then {x̂1, . . . , x̂R} is a set of dim XS ⊥ linearly independent vectors from Φ(S). Hence,
dim(spanΦ(S)) ≥ R.

11The market is said to be dynamically complete if dim(spanXS) = N − 1.
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it is more general (see Girotto and Ortu (1994)), and the determination of
aff Φ(S) is computationally easier than the determination of Φe(S), as it
does not involve any non-negativity constraint. This is made clear by the
following example.

Example 4.1. Consider an economy with two dates (t = 0, 1), three
possible states (Ω = {ω1, ω2, ω3}), and two traded assets. The first asset
is riskless and has dividend processes d1 = (0, 1, 1, 1). The second asset is
risky, with dividend process d2 = (0, 1, 2, 3). Let S1 = (S1(ξ0), 0, 0, 0) and
S2 = (S2(ξ0), 0, 0, 0) denote the price processes for the two securities. The
set Φe(S) of extreme points of the closure of Φ(S) is then easily verified to
be as follows:

Φe(S) =






1
0

3S1(ξ0)− S2(ξ0)
S2(ξ0)− 2S1(ξ0)

 ,


1

3S1(ξ0)−S2(ξ0)
2

0
S2(ξ0)−S1(ξ0)

2


 ,

if 1
3S2(ξ0)

< S1(ξ0)
≤ 1

2S2(ξ0);


1
3S1(ξ0)−S2(ξ0)

2

0
S2(ξ0)−S1(ξ0)

2

 ,


1

2S1(ξ0)− S2(ξ0)
S2(ξ0)− S1(ξ0)

0


 ,

if 1
2S2(ξ0)

< S1(ξ0)
< S2(ξ0);

∅, otherwise.

The set Φe(S) is empty if S1(ξ0) ≤ 1
3S2(ξ0) or S1(ξ0) ≥ S2(ξ0), since in this

case there are arbitrage opportunities. The advantage of our characteriza-
tion of feasible price processes over the one provided by He and Pearson
(1991) is that when solving for an equilibrium the two cases 1

3S2(ξ0) <
S1(ξ0) ≤ 1

2S2(ξ0) and 1
2S2(ξ0) < S1(ξ0) < S2(ξ0) need not be considered

separately. In fact, either set of extreme points could be taken as our set
Φ̂(S), as they are both subsets of the affine hull of Φ(S) and span XS ⊥
(equivalently, they give rise to constraints in (14) that are a linear trans-
formation of one another).

Using the second set of extreme points as the set Φ̂(S) of Proposition
2, we then have that a consumption process c ∈ RN

++ is feasible for initial
endowment e given the price system S if and only if it satisfies the two
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linear constraints

(c(ξ0)− e(ξ0)) +
3S1(ξ0)− S2(ξ0)

2
(c(ξ1)− e(ξ1))

+
S2(ξ0)− S1(ξ0)

2
(c(ξ3)− e(ξ3)) = 0

(c(ξ0)− e(ξ0)) + (2S1(ξ0)− S2(ξ0))(c(ξ1)− e(ξ1))
+(S2(ξ0)− S1(ξ0))(c(ξ2)− e(ξ2)) = 0,

where we have indexed the set of nodes by (ξ0, ξ1, ξ2, ξ3).

Since the characterization of feasible consumption processes in Proposi-
tion 2 contains no reference to the trading strategy θ that finances c − e,
we can then reformulate the notion of equilibrium entirely in terms of the
price process S and the consumption allocation {c∗1, . . . , c∗I}.

Definition 4.3. An effective equilibrium for the economy E is a price
process S and a set c∗ = {c∗i : i = 1, . . . , I} of consumption plans such
that:

(i) c∗i maximizes Ui(c) on B(ei, S) for i = 1, . . . , I,
(ii) the market for the consumption good clears:

∑I
i=1 c

∗
i = ē.

The following proposition establishes the equivalence of equilibria and
effective equilibria.

Proposition 3. If (S, c∗) is an effective equilibrium for the economy E,
then there exists a set θ∗ = (θ∗1 , . . . , θ

∗
I ) ∈ ΘI of trading strategies such that

(S, c∗, θ∗) is an equilibrium.

Proof. Since c∗i is feasible for all i, there are trading strategies θ∗i ∈
Θ for i = 1, . . . , I − 1 that finance the net trade c∗i − ei. Let θ∗I =
−
∑I−1

i=1 θ
∗
i . Then the securities markets clear, and it is easy to check, using

the clearing condition for the consumption good, that θ∗I finances c∗I−eI .

From now on we will find it convenient to use the notion of effective
equilibria and will thus refer to a pair (S, c∗) as an equilibrium, without
additional qualifications. For a given consumption policy c ∈ RN

++, let
∇∗Ui(c) = ∇Ui(c)/ ∂

∂cui(c(ξ0), ξ0) denote the normalized gradient at c for
agent i, i.e.,

∇∗Ui(c)(ξ) = π(ξ)
∂
∂cui(c(ξ), ξ)
∂
∂cui(c(ξ0), ξ0)

.
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We then have the following characterization of an equilibrium.

Proposition 4. A pair (S, c∗) is an equilibrium for the economy E if
and only if the following conditions are satisfied for some Φ̂(S) ⊂ affΦ(S)
such that spanΦ̂(S) = XS ⊥:

φ · (c∗i − ei) = 0 ∀i, ∀φ ∈ Φ̂(S) (15)
∇∗Ui(c∗i ) ∈ spanΦ̂(S) ∀i (16)

I∑
i=1

c∗i = ē (17)

Proof. First suppose that Φ̂(S) ⊂ aff Φ(S) is such that spanΦ̂(S) =
XS ⊥ and that (15)–(17) hold. From Proposition 2, the individual opti-
mization problem can then be written as:

max
ci∈RN

+

Ui(ci) (18)

s.t. φ · (ci − ei) = 0 ∀φ ∈ Φ̂(S). (19)

Under Assumptions 1–3, the non-negativity constraint is not binding and
the Slater condition is satisfied, so that the necessary as well as sufficient
conditions for this problem can be written as:

∇Ui(c∗i ) =
R∑

r=1

ψrφr (20)

φ · (c∗i − ei) = 0 ∀φ ∈ Φ̂(S) (21)

where (ψ1, . . . , ψR) denotes the vector of Lagrange multipliers on the con-
straints in (19), and r = 1, . . . , R indexes the elements of Φ̂(S). Clearly,
(15)–(17) imply that (20)–(21) are satisfied for all i and that the market for
the consumption good clears, so that (S, c∗) is an equilibrium. Conversely,
suppose that (S, c∗) is an equilibrium and let Φ̂(S) be any set of dimXS ⊥
linearly independent vectors from aff Φ(S). Then Proposition 2 implies that
c∗i solves the program in (18)–(19), so that the first-order conditions in (20)–
(21) are satisfied. Hence, (15)–(17) hold.

In the above proposition, (15) expresses the feasibility constraint, and
(17) the market clearing conditions. To interpret (16), observe that since
∇∗Ui(c∗i ) � 0 and ∇∗Ui(c∗i )(ξ0) = 1 for all i, ∇∗Ui(c∗i ) ∈ spanΦ̂(S) if
and only if ∇∗Ui(c∗i ) ∈ Φ(S). Therefore (16) requires that each agent’s
marginal rates of substitution constitute a valid set of state prices for S:
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this is simply the first-order condition for the static problem of maximizing
Ui(ci) over B(ei, S).

5. REPRESENTATIVE AGENT AND EQUILIBRIUM

Proposition 4 implies that in equilibrium the normalized gradient of each
agent at his/her optimal consumption choice is a vector of state prices
consistent with the equilibrium price S. This gives an expression for the
equilibrium price process in terms of the optimal consumption policy c∗i of
any agent. It is also possible to relate equilibrium prices to the aggregate
consumption process by introducing a representative agent.

Definition 5.1. A representative agent supporting the equilibrium
(S, c∗) for the economy E is a utility function U such that (S, ē) is a (no-
trade) equilibrium for the single-agent economy

(
(Ξ, π), U, ē, d

)
.12

The existence of a representative agent that supports any competitive
equilibrium in complete or essentially complete market economies is well
known.13 Moreover, if agents have homogeneous beliefs and time-additive,
state-independent utilities, the representative agent also has time-additive
and state-independent preferences and the same beliefs (see Constantinides
(1982)). With incomplete markets, the construction of a representative
agent is still possible, but his preferences are in general state-dependent,
even when the individual agents have state-independent utilities and ho-
mogeneous beliefs. Before stating this result, we will need the following
lemma:

Lemma 1. Let λ = (λ1, . . . , λI) ∈ RNI
++ and define the function U(·;λ) :

RN
++ → R by:

U(c;λ) =
∑
ξ∈Ξ

π(ξ)u(c(ξ), ξ;λ) (22)

where:

12A representative agent is in this setting simply a device to characterize equilibrium
asset prices, and the representative agent’s utility will in general depend not only on the
individual utilities and beliefs, but also on the endowment distribution and the particular
equilibrium (if there is more than one). The existence of a representative agent should
therefore not be confused with the more demanding notion of aggregation of Gorman
(1953) and Rubinstein (1974).

13Here, the term essentially complete refers to economies in which any conceivable new
security is welfare-irrelevant. A typical case, often exploited in the financial literature,
occurs when investors have homogeneous beliefs and time-additive, state-independent
hyperbolic absolute risk aversion (HARA) utilities with the same cautioness parameter:
the market is then essentially complete provided only that there exists a riskless asset
in addition to the market portfolio.
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u(c, ξ;λ) = max
z1+···+zI=c

I∑
i=1

λi(ξ)ui(zi, ξ). (23)

Then U(·;λ) is an increasing and strictly concave additive utility func-
tion. Moreover, the functions u(·, ξ;λ) are continuously differentiable for
all ξ ∈ Ξ and satisfy the Inada conditions limc↓0

∂
∂cu(c, ξ;λ) = ∞ and

limc↑∞
∂
∂cu(c, ξ;λ) = 0.

Proof. The first-order conditions for the maximization in (23) (which
are necessary and sufficient for this problem given our assumptions) are:

λi(ξ) ∂
∂cui(z∗i , ξ) = ψ (i = 1, . . . , I) (24)∑I

i=1 z
∗
i = c (25)

where ψ denotes the Lagrange multiplier for the constraint in (25). Since
∂
∂cui(·, ξ) is a strictly decreasing and continuously differentiable map from
R++ onto itself, it has a strictly decreasing and continuously differen-
tiable inverse function fi(ψ, ξ) mapping R++ onto itself. The function
K(ψ, ξ) =

∑I
i=1 fi(ψ/λi(ξ), ξ) is therefore also a strictly decreasing and

continuously differentiable map from R++ onto itself, and therefore it has
a strictly decreasing and continuously differentiable inverse Ψ(·, ξ) mapping
R++ onto itself. It then follows that

z∗i (c, ξ;λ) = fi

(
Ψ(c, ξ)
λi(ξ)

, ξ

)
. (26)

Since z∗i is a continuously differentiable function of c, u(·, ξ;λ) is continu-
ously differentiable. Moreover, we have:

∂

∂c
u(c, ξ;λ) =

I∑
i=1

λi(ξ)
∂

∂c
ui

[
fi

(
Ψ(c, ξ)
λi(ξ)

, ξ

)
, ξ

]
(27)

= Ψ(c, ξ)
I∑

i=1

∂

∂c
fi

(
Ψ(c, ξ)
λi(ξ)

, ξ

)
= Ψ(c, ξ)

∂

∂c
K(Ψ(c, ξ), ξ) = Ψ(c, ξ),

so that U is strictly concave and the Inada conditions are satisfied.

The following theorem establishes the existence of a representative agent
with possibly incomplete financial markets.
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Theorem 1 (Existence of a representative agent). Define the utility
function U(c;λ) as in (22)–(23) and suppose that (S, c∗) is an equilib-
rium for the economy E. Then (S, ē) is a (no trade) equilibrium for the
representative agent with utility function U(c;λ∗), where

λ∗i (ξ) =
∂
∂cu1(c∗1(ξ), ξ)
∂
∂cui(c∗i (ξ), ξ)

. (28)

The above utility function is increasing, strictly concave and continuously
differentiable. Moreover, the equilibrium consumption allocation
c∗ = (c∗1, . . . , c

∗
I) solves the problem (23) at c = ē(ξ) for all ξ ∈ Ξ.

Proof. Let (S, c∗) be a given equilibrium for the economy E . Define
the representative agent’s utility as in (22)–(23). We first show that when
c = ē(ξ), then the solution of the program in (23) is given by Ci(ξ;λ) ≡
z∗i (ē(ξ), ξ;λ) = c∗i (ξ). The first-order conditions in (24)–(25) give:

∂
∂cu1(C1(ξ;λ), ξ)
∂
∂cui(Ci(ξ;λ), ξ)

= λ∗i (ξ) =
∂
∂cu1(c∗1(ξ), ξ)
∂
∂cui(c∗i (ξ), ξ)

,

I∑
i=1

Ci(ξ;λ) = ē(ξ) =
I∑

i=1

c∗i (ξ).

Since the solution to (23) is unique, we have Ci(ξ;λ) = c∗i (ξ) for all i.
We now show that (S, ē) is an equilibrium for the economy with a single
representative agent as above. Note that

∂

∂c
u(ē(ξ), ξ;λ∗) =

I∑
i=1

λ∗i (ξ)
∂

∂c
ui(z∗i (ē(ξ), ξ;λ∗), ξ)

∂

∂c
z∗i (ē(ξ), ξ;λ∗)

=
∂

∂c
u1(c∗1(ξ), ξ)

[
I∑

i=1

∂

∂c
z∗i (ē(ξ), ξ;λ∗)

]
=

∂

∂c
u1(c∗1(ξ), ξ).

Therefore∇∗U(ē;λ∗) = ∇∗U1(c∗1), and hence, by Proposition 4,∇∗U(ē;λ∗)
∈ spanΦ̂(S) for some Φ̂(S) ⊂ aff Φ(S) such that spanΦ̂(S) = XS ⊥. By
Proposition 4 again (with I = 1 and U1(·) = U(·;λ∗)), this shows that (S, ē)
is an equilibrium for the representative agent economy. The rest of the theo-
rem follows from the previous lemma.

Note that with incomplete markets the representative agent is not unique
even within the class of utilities defined by (22)–(23). For example, it is
immediate to see that if u1 is replaced by uj in (28), with j 6= 1, then
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the weightings λ∗ will in general change, but the resulting utility function
U(c;λ∗) still supports the equilibrium. Of course, in the special case in
which the allocation is Pareto efficient (for which essentially complete mar-
kets suffice) the marginal rates of substitutions are equalized across agents,
so that we have

λ∗i (ξ) =
∂
∂cu1(c∗1(ξ), ξ)
∂
∂cui(c∗i (ξ), ξ)

=
∂
∂cu1(c∗1(ξ0), ξ0)
∂
∂cui(c∗i (ξ0), ξ0)

= λ∗i (ξ0),

for all i, and hence replacing u1 with uj in (28) amounts to simply mul-
tiplying the representative agent utility by a constant. It should also be
clear from the above discussion that the Pareto efficiency of the equilib-
rium allocation is sufficient for the existence of a representative agent with
state-independent utilities (constant weights).

Of course, the possibility of constructing a representative agent given the
equilibrium allocation is hardly surprising. However, we now show that this
construction proves fruitful when searching for equilibria.

Let the representative agent utility function U(c;λ) be defined as in (22)–
(23), and let Λ = {ι} × RN(I−1)

++ , where ι = (1, . . . , 1) ∈ RN . Theorem 1
(together with equations (26)–(27)) implies that if (S, c∗) is an equilibrium
for the economy E , then there exists a vector λ∗ = (ι, λ∗−1) ∈ Λ such that,
for all ξ ∈ Ξ:

S(ξ) = S(ξ;λ∗) =
∑
ξ̂�ξ

∇∗U(ē;λ∗)(ξ̂)
∇∗U(ē;λ∗)(ξ)

d(ξ̂) =
∑
ξ̂�ξ

π(ξ̂)
π(ξ)

uc(ē(ξ̂), ξ̂;λ∗)
uc(ē(ξ), ξ;λ∗)

d(ξ̂)

(29)
and

c∗i (ξ) = Ci(ξ;λ∗) = fi

(
uc(ē(ξ), ξ;λ∗)

λ∗i (ξ)
, ξ

)
. (30)

This shows that both the equilibrium price process and the equilibrium
allocation can be expressed as a function of the vector λ∗ of weights in the
representative agent utility and that it should therefore be possible to re-
formulate the conditions for an equilibrium entirely in terms of conditions
on λ∗. This program has been carried out by Negishi (1960) in the context
of Arrow-Debreu economies and by Karatzas, Lehoczky and Shreve (1990)
and Karatzas, Lakner, Lehoczky and Shreve (1991) in the context of finan-
cial economies with complete securities markets and continuous trading.

The following theorem establishes a similar characterization for our
incomplete-market economy.

Theorem 2. A security price process S and an allocation c∗ = (c∗1, . . . , c
∗
I)

constitute an equilibrium for the economy E if and only if S and c∗ are as in
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(29)–(30) for some λ∗ ∈ Λ and there exists a set Φ̂(S) ⊂ affΦ(S) such that
spanΦ̂(S) = XS ⊥ and the following two conditions hold for i = 2, . . . , I:

∇∗Ui(c∗i ) ∈ spanΦ̂(S) (31)
φ · (c∗i − ei) = 0 ∀φ ∈ Φ̂(S) (32)

Proof. First, suppose that (29)–(30) and (31)–(32) are satisfied for
i = 2, . . . , I. Then (31) guarantees that (16) is satisfied for i = 2, . . . , I.
That this condition is satisfied for i = 1 follows from (29) and the equality
∇∗U1(c∗1) = ∇∗U1(C1(λ∗)) = ∇∗U(ē;λ∗). Next, condition (32) guaran-
tees that c∗i ∈ B(ei, S) for i = 2, . . . , I. That c∗1 ∈ B(ei, S) follows from∑I

i=1 c
∗
i =

∑I
i=1 Ci(λ∗) = ē. Therefore, the conditions (15)–(17) for an

equilibrium are satisfied.
On the other end, suppose that the process (S, c∗) is an equilibrium.

Then conditions (15)–(17) are satisfied and it should be clear from the proof
of Theorem 1 that this implies that (29)–(30) and (31)–(32) are satisfied for
λ∗ defined as in (28).

Note that since S = S(λ∗) and c∗i = Ci(λ∗), equations (31) and (32) are
in fact restrictions on the vector of equilibrium weightings λ∗. Condition
(31) places a limit on the variability of each λ∗i across time and states.
In particular, if markets are complete, then Φ(S(λ∗)) consists of a unique
element, ∇∗U(ē;λ∗). Since

∇∗Ui(Ci(λ∗))(ξ) =
λ∗i (ξ0)
λ∗i (ξ)

∇∗U(ē;λ∗)(ξ),

we have

∇∗Ui(Ci(λ
∗)) ∈ spanΦ̂(S(λ∗)) ⇐⇒ λ∗i (ξ0)

λ∗i (ξ)
∇∗U(ē; λ∗)(ξ) = ∇∗U(ē; λ∗)(ξ) ∀ξ ∈ Ξ

so that the above condition restricts λ∗i to be constant for each individual
i. Condition (32) is a generalization of the condition provided by Negishi
(1960) and Karatzas et alii (1990, 1991) for complete markets: in that case,
condition (32) collapses into a single budget constraint with respect to the
unique Arrow-Debreu price system ∇∗U(ē;λ∗).

6. COMPUTATION OF EQUILIBRIA

The conditions derived in the previous section can be effectively used
when searching numerically for equilibria. Let Φ̂(S) be a set of R linearly
independent solutions of the linear system φ>XS = 0. Evaluating the



DYNAMIC AGGREGATION AND COMPUTATION OF EQUILIBRIA 285

above solutions at S = S(λ) gives the set Φ̂(S(λ)) = {φ1(λ), . . . , φR(λ)}.
Introducing a vector α ∈ RR(I−1) of auxiliary variables and using the fact
that

∇∗Ui(Ci(λ))(ξ) = π(ξ)
uc(ē(ξ), ξ;λ)/λi(ξ)
uc(ē(ξ0), ξ0;λ)/λi(ξ0)

,

conditions (31)–(32) can be rewritten as the following non-linear system
of (N + R)(I − 1) equations in the (N + R)(I − 1)-dimensional vector of
unknowns (λ−1, α):

0 =

R∑
r=1

αr
i φ

r(ξ; λ)− π(ξ)
uc(ē(ξ), ξ; λ)/λi(ξ)

uc(ē(ξ0), ξ0; λ)/λi(ξ0)
(i = 2, . . . , I; ξ ∈ Ξ)

0 =
∑
ξ∈Ξ

φr(ξ; λ)

[
fi

(
uc(ē(ξ), ξ; λ)

λi(ξ)
, ξ

)
− ei(ξ)

]
(i = 2, . . . , I; r = 1, . . . , R).

(33)

Theorem 2 implies that if (λ∗−1, α
∗) solves the above system and

spanΦ̂(S(λ∗)) = XS(λ∗) ⊥, then (S(λ∗), {C1(λ∗), . . . , CI(λ∗)}) is an equi-
librium for the economy E . The optimal trading strategies can also be de-
termined by solving the linear systems XS(λ∗)θ

∗
i = Ci(λ∗)− ei for θ∗i . The

main advantage of this procedure over the traditional numerical approach
based on stochastic dynamic programming is that it does not require the
determination of the agents’ demand functions and hence the solution of
the KI Bellman equations.14 In other words, there is no need to determine
the optimal policies at each node for all possible levels of wealth and all
possible no-arbitrage prices.

In order to write down the above system of equations, the only prelimi-
nary step required is the determination of a set Φ̂(S). In this regard, it is
important to note that when T ≥ 2 the dimension of XS ⊥ is not known
a priori, as it depends on the specific equilibrium price process S = S(λ∗).
However, it is still possible to determine (at least generically) the number
R of linearly independent pseudo state prices needed to characterize the set
of feasible consumption processes. First, note that since the space spanned
by the columns of XS depends on the investment opportunities available at
each non-terminal node of the tree, the column rank of XS can be charac-
terized as follows (see Magill and Quinzii (1996) for a proof). For ξ ∈ Ξ−,
let S(ξ+) and d(ξ+) denote the K × b(ξ) matrices with generic elements
Sk(ξ̂) and dk(ξ̂), respectively, with ξ̂ ∈ ξ+. Then, provided that S admits
no arbitrage opportunities,

rankXS =
∑

ξ∈Ξ−

rank(S(ξ+) + d(ξ+)) ≤
∑

ξ∈Ξ−

min(b(ξ),K).

14See Kehoe (1991) and Judd (1998) for an overview of numerical approaches to the
computation of rational expectations equilibria.
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As an intermediate step in proving existence of equilibria, Duffie and Schafer
(1985, 1986) have shown that the above inequality will indeed hold as an
equality for the generic set A of economies in Proposition 1. Therefore, for
this generic set of economies,

dimXS ⊥= N − rankXS = 1 +
∑

ξ∈Ξ−

max[0, b(ξ)−K], (34)

so that choosing R = 1 +
∑

ξ∈Ξ− max[0, b(ξ) − K] linearly independent
pseudo state prices will be sufficient for all but an exceptional set of
economies.

It is also worth noting that since φ>XS = 0 is satisfied if and only if

S(ξ) =
∑
ξ̂∈ξ+

φ(ξ̂)
φ(ξ)

(S(ξ̂) + d(ξ̂))

holds for all ξ ∈ Ξ−, it is possible to generate the pseudo state prices by
solving a series of simpler problems, as follows. For each non-terminal node
ξ ∈ Ξ−, define a set of conditional pseudo state prices for the immediate
successors of ξ to be a vector φξ ∈ Rb(ξ) solving

S(ξ) = [S(ξ+) + d(ξ+)]φξ. (35)

Each (unconditional) pseudo state price vector φ can then be obtained
by choosing a set of conditional pseudo state prices for each non-terminal
node and letting φ(ξ) be 1 if ξ = ξ0 and otherwise be the product of the
chosen conditional state prices along the path leading from the ξ0 to ξ.
If the computation of equilibria is repeated for different specifications of
preferences and endowments, then the construction of the set of pseudo
state prices has to be performed only once. The above discussion can be
clarified by considering some examples.

Example 6.1. Let us consider again the two-date, two-asset economy
presented in example 1, i.e., Ω = {ω1, ω2, ω3}, d1 = (0, 1, 1, 1) and d2 =
(0, 1, 2, 3). Write Ξ = (ξ0, (ξ1, ξ2, ξ3)) and suppose that the economy is
populated by two agents with beliefs represented by the vector of node
probabilities π = (1, 1

2 ,
1
3 ,

1
6 ) and utilities

U1(c1) =
∑
ξ∈Ξ

π(ξ)ρ1(ξ) log c1(ξ)

and
U2(c2) = −

∑
ξ∈Ξ

π(ξ)ρ2(ξ)c2(ξ)−1,
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respectively, with ρ1 = ρ2 = (1, .9, .9, .9). Also, assume that e1 = (1, 1, 1, 1)
and e2 = (1, 1, 2, 3), so that ē = e1+e2 = (2, 2, 3, 4). We demonstrate below
how the equilibrium prices S1(ξ0) and S2(ξ0) can be determined using the
“representative agent” approach.

Let λ = (ι, λ2) be given. The program in (23) can be solved analytically
to give:15

uc(ē(ξ), ξ; λ) =
2ρ1(ξ)ē(ξ) + ρ2(ξ)λ2(ξ) +

√
ρ2(ξ)λ2(ξ)(4ρ1(ξ)ē(ξ) + ρ2(ξ)λ2(ξ))

2ē(ξ)2
,

C1(ξ;λ) = ρ1(ξ)/uc(ē(ξ);λ),

and

C2(ξ;λ) =
√

(ρ2(ξ)λ(ξ))/uc(ē(ξ);λ).

The time-0 security prices are given in terms of λ by

S1(ξ0;λ) =
1
2
uc(2, ξ1;λ)
uc(2, ξ0;λ)

× 1 +
1
3
uc(3, ξ2;λ)
uc(2, ξ0;λ)

× 1 +
1
6
uc(4, ξ3;λ)
uc(2, ξ0;λ)

× 1

and

S2(ξ0;λ) =
1
2
uc(2, ξ1;λ)
uc(2, ξ0;λ)

× 1 +
1
3
uc(3, ξ2;λ)
uc(2, ξ0;λ)

× 2 +
1
6
uc(4, ξ3;λ)
uc(2, ξ0;λ)

× 3.

From Example 1, we know that we can take

Φ̂(S) =




1
3S1(ξ0)−S2(ξ0)

2
0

S2(ξ0)−S1(ξ0)
2

 ,


1

2S1(ξ0)− S2(ξ0)
S2(ξ0)− S1(ξ0)

0


 .

15For other preferences specifications, the computation of uc will in general have to
be performed numerically.
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Letting α = (α1
2, α

2
2), we can then write the system in (33) as

0 = α1
2 + α2

2 − 1

0 = α1
2

3S1(ξ0;λ)− S2(ξ0;λ)
2

+ α2
2(2S1(ξ0;λ)− S2(ξ0;λ))

−1
2
uc(2, ξ1;λ)/λ2(ξ1)
uc(2, ξ0;λ)/λ2(ξ0)

0 = α2
2(S2(ξ0;λ)− S1(ξ0;λ))− 1

3
uc(3, ξ2;λ)/λ2(ξ2)
uc(2, ξ0;λ)/λ2(ξ0)

0 = α1
2

S2(ξ0;λ)− S1(ξ0;λ)
2

− 1
6
uc(4, ξ3;λ)/λ2(ξ3)
uc(2, ξ0;λ)/λ2(ξ0)

0 = (C2(ξ0;λ)− 1) +
3S1(ξ0;λ)− S2(ξ0;λ)

2
(C2(ξ1;λ)− 1)

+
S2(ξ0;λ)− S1(ξ0;λ)

2
(C2(ξ3;λ)− 3)

0 = (C2(ξ0;λ)− 1) + (2S1(ξ0;λ)− S2(ξ0;λ))(C2(ξ1;λ)− 1)
+(S2(ξ0;λ)− S1(ξ0;λ))(C2(ξ2;λ)− 2)

The first four equations impose the condition that the shadow prices as-
signed by the two agents to the traded securities coincide. The other two
equations represent the feasibility constraints on the consumption pattern
of the second agent.

The vector (λ∗2, α
∗) = (1.402, 1.409, 1.367, 1.454, 0.397, 0.603) solves the

above system. The corresponding equilibrium stock prices are S1(ξ0) =
0.683 and S2(ξ0) = 0.975, while the optimal consumption policies are

c∗1 = (0.886, 0.884, 1.546, 2.208) and c∗2 = (1.114, 1.116, 1.454, 1.792).

The investment strategies that finance the chosen consumption policies are

θ∗1 = (−0.778, 0.662) and θ∗2 = (0.778,−0.662).

To summarize, we have shown that by using constructing a representative
agent we can reduce the problem of searching for a dynamic equilibrium
(via dynamic programming method) to a problem of finding a solution to
a system of non-linear algebraic equations where the non-linear functions
involved can be derived explicitly and conveniently from the utility func-
tions of individual investors. Specifically, whenever there is an analytical
solution for the utility function of the representative agent U , these non-
linear functions also have an analytical expression. If there is no analytical
expression for U , then numerical calculation of U as a function of λ evalu-
ated at the aggregate endowment would still lead to a well-defined system
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of non-linear algebraic equations as specified in (33). Standard numeri-
cal techniques such as the Newton-Raphson and successive over-relaxation
methods can now be applied to solve the system of non-linear equations.
We refer readers to Ortega and Rheinboldt (1070) and Press, etc. (1992)
for more details.

It is useful to note that the success of our representative agent approach
is parallel to the success we have already seen in solving individuals’ con-
sumption and investment problems using the martingale representation
technique. The main idea there is to map an individual’s dynamic con-
sumption and investment problem into a static one so that it can be han-
dled with relative ease. The idea of the representative agent approach
developed here is similar in the sense that we are transforming a dynamic
general equilibrium problem into a static one in which the search for equi-
librium is reduced to the search for the λ weightings at different dates,
states and for different agents, while the search for the λ weightings in-
volves solving a system of non-linear equations. In addition, searching over
the weightings λ, rather than over the portfolio policies θi of the individual
agents—as in the traditional approach based on the stochastic Euler equa-
tions of dynamic programming, results in a much more compact vector of
unknowns when the number of traded securities is large.

The computation of a set Φ̂(S) of pseudo state prices points is only
slightly more complicated when more than two periods are involved. The
following example illustrates how this can be done.

Example 6.2. Consider an economy with three dates (t = 0, 1, 2).
Assume that Ω = {ω1, ω2, . . . , ω8} and that the information structure is
given by F0 = Ω,

F1 = {{ω1, ω2, ω3}, {ω4, ω5, ω6}, {ω7, ω8}},

and F2 = {{ω1}, {ω2}, . . . , {ω8}}. There are two securities: one is a riskless
bond with dividend process d1 = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), and the other
is a stock with dividend process d2 = (0, 1, 2, 3, 1, 2, 3, 4, 5, 6, 7, 8). Let
Ξ = {ξ0, ξ1, . . . , ξ11} denote the set of nodes and Ξ− = {ξ0, ξ1, ξ2, ξ3} be
the set of non-terminal nodes.

For any ξ ∈ Ξ−, the conditional pseudo state price vectors φξ solve:

{
S1(ξ) =

∑
ξ̂∈ξ+ φξ(ξ̂)[S1(ξ̂) + d1(ξ̂)]

S2(ξ) =
∑

ξ̂∈ξ+ φξ(ξ̂)[S2(ξ̂) + d2(ξ̂)]
(36)

Assuming that S2(ξ0)
S1(ξ0)

6= S2(ξ1)+1
S1(ξ1)+1 , any solution of the above system for

ξ ∈ Ξ−\{ξ3} can be written as a linear combination of the following two
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conditional pseudo state prices

φ̂1
ξ =


S1(ξ)[S2(ξ+3)+d2(ξ+3)]−S2(ξ)[S1(ξ+3)+d1(ξ+3)]

[S1(ξ+1)+d1(ξ+1)][S2(ξ+3)+d2(ξ+3)]−[S1(ξ+3)+d1(ξ+3)][S2(ξ+1)+d2(ξ+1)]

0
S2(ξ)[S1(ξ+1)+d1(ξ+1)]−S1(ξ)[S2(ξ+1)+d2(ξ+1)]

[S1(ξ+1)+d1(ξ+1)][S2(ξ+3)+d2(ξ+3)]−[S1(ξ+3)+d1(ξ+3)][S2(ξ+1)+d2(ξ+1)]

 ,

and

φ̂2
ξ =


S1(ξ)[S2(ξ+2)+d2(ξ+2)]−S2(ξ)[S1(ξ+2)+d1(ξ+2)]

[S1(ξ+1)+d1(ξ+1)][S2(ξ+2)+d2(ξ+2)]−[S1(ξ+2)+d1(ξ+2)][S2(ξ+1)+d2(ξ+1)]
S2(ξ)[S1(ξ+1)+d1(ξ+1)]−S1(ξ)[S2(ξ+1)+d2(ξ+1)]

[S1(ξ+1)+d1(ξ+1)][S2(ξ+2)+d2(ξ+2)]−[S1(ξ+2)+d1(ξ+2)][S2(ξ+1)+d2(ξ+1)]

0

 ,

where we have indexed the elements in ξ+ by (ξ+1, ξ+2, ξ+3). When ξ = ξ3,
the system in (36) has a unique solution given by

φ̂ξ3 =
(

8S1(ξ3)− S2(ξ3)
S2(ξ3)− 7S1(ξ3)

)
.

The above conditional state prices lead to 2×2×2×1 = 8 possible choices
of unconditional state prices. After discarding linearly dependent vectors,
we are led to the following set Φ̂(S), shown in partitioned form:

Φ̂(S) =





1
· · ·
φ̂1

ξ0

· · ·
φ̂1

ξ0
(ξ1) φ̂1

ξ1

· · ·
0
· · ·

φ̂1
ξ0

(ξ3) φ̂1
ξ3


,



1
· · ·
φ̂1

ξ0

· · ·
φ̂1

ξ0
(ξ1) φ̂2

ξ1

· · ·
0
· · ·

φ̂1
ξ0

(ξ3) φ̂1
ξ3


,



1
· · ·
φ̂2

ξ0

· · ·
φ̂2

ξ0
(ξ1) φ̂1

ξ1

· · ·
φ̂2

ξ0
(ξ2) φ̂1

ξ2

· · ·
0


,



1
· · ·
φ̂2

ξ0

· · ·
φ̂2

ξ0
(ξ1) φ̂1

ξ1

· · ·
φ̂2

ξ0
(ξ2) φ̂2

ξ2

· · ·
0




,

where 0 denotes the zero vector in either R3 or R2. Note that in this case

1 +
∑

ξ∈Ξ−

max[0, b(ξ)−K] = 4,

so that 4 linearly independent pseudo state prices are generically sufficient
to span the orthogonal space of XS(λ∗).

Assuming the same preference specification as in the previous example,
with

ρ1 = ρ2 = (1, .9, .9, .9, .81, .81, .81, .81, .81, .81, .81, .81),
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π =
(

1,
3
8
,
3
8
,
2
8
,
1
8
,
1
8
,
1
8
,
1
8
,
1
8
,
1
8
,
1
8
,
1
8

)
,

and endowment processes

e1 = (1, 1, 1, 1, 1, 2, 3, 4, 1, 2, 3, 4)

e2 = (1, 1, 2, 3, 1, 1, 2, 2, 3, 3, 4, 4),

the vector (λ∗−1, α
∗) with

λ∗−1 = (1.660, 1.686, 1.549, 1.835, 1.894, 1.157, 2.583, 0.921, 3.426, 1.008, 1.835, 1.835)

and α∗ = (−0.122, 0.509, 0.476, 0.137) solves the system (33). Since for
this choice of λ∗ the condition spanΦ̂(S(λ∗)) = XS(λ∗) ⊥ is satisfied, we
conclude that λ∗ defines an equilibrium. The corresponding equilibrium
prices and consumption and investment policies are given by

S1 = (0.946, 0.567, 0.521, 0.405, 0, 0, 0, 0, 0, 0, 0, 0),

S2 = (2.070, 0.918, 2.634, 3.024, 0, 0, 0, 0, 0, 0, 0, 0),

c∗1 = (0.828, 0.822, 1.484, 2.057, 0.783, 1.628, 2.473, 4.065, 1.634, 3.203, 4.218, 4.978),

c∗2 = (1.172, 1.178, 1.516, 1.943, 1.217, 1.372, 2.527, 1.935, 2.366, 1.797, 2.782, 3.022),

θ∗1 = (−0.746, 0.424,−0.063,−0.155,−2.212, 0.569, 2.899,−0.240)

and θ∗2 = −θ∗1 .

7. ONE-PERIOD SECURITIES

The determination of a spanning set Φ̂(S) and the system in (33) are sim-
plified in the case in which the market consists of a sequence of one-period
securities.16 Let XS denote the N × K matrix describing the opportu-
nity set, where K now represents the total number of one-period securities
available in the economy. Let D = X0 denote the N ×K dividend matrix
and A the N × N matrix with Aij = 1 if i = j or ξj � ξi, and Aij = 0

16One-period securities are securities that pay a liquidating dividend one period after
they are created. Thus, new one-period securities must be created over time for each
node.
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otherwise. Then A has full rank and it is easy to see that, if φ ∈ Φ(S) is
any set of state prices, we have

Adiag(φ)XS = diag(φ)D

and hence

XS = diag(φ)−1A−1diag(φ)D.

This implies that if K spans D ⊥, then diag(φ)A>diag(φ)−1K spans XS ⊥,
and we have the following result, where we use the notation

vec (g(ē, λ)) = (g(ē(ξ1), λ(ξ1)), . . . , g(ē(ξN ), λ(ξN )))> .

Proposition 5. Suppose that securities are short-lived. A security price
process S and an allocation c∗ = (c∗1, . . . , c

∗
I) constitute an equilibrium for

the economy E if and only if S and c∗ are as in (29)–(30) for some λ∗ ∈ Λ
solving{

0 = D>diag(∇∗U(ē; λ))(A>)−1vec(λ−1
i ) (i = 2, . . . , I)

0 = K>diag(∇∗U(ē; λ))−1Adiag(∇∗U(ē; λ))vec
(
fi

(
uc(ē;λ)

λi

)
− ei

)
(i = 2, . . . , I)

(37)

where D denotes the dividend matrix and K is any matrix spanning D ⊥.
Moreover, a solution to the above system exists.

Proof. By theorem 2, a security price process S and an allocation
(c∗1, · · · , c∗I) constitute an equilibrium if and only if S = §(λ∗) and c∗i =
C(λ∗) for some λ∗ ∈ Λ such that ∇∗Ui(Ci(λ∗)) ∈ X§(λ∗) ⊥ and Ci(λ∗)−ei ∈
spanX§(λ∗) for all i. Since

X§(λ∗) = diag(∇∗U(ē;λ∗))−1A−1diag(∇∗U(ē;λ∗))D

and ∇∗Ui(Ci(λ∗)) is proportional to diag(∇∗U(ē;λ∗))vec(λ−1
i ), this implies

that an equilibrium exists if and only if there exists a solution to (37).

The existence of an equilibrium with short-lived assets, and hence of a
solution to (37), is a well known result. For completeness, a direct proof
of the existence of a solution to (37) using degree theory is provided in the
Appendix.17

17While we conjecture that Proposition 1 could potentially be proved using our repre-
sentative agent approach, we didn’t pursue this task in this paper. Hopefully, the proof
of existence for this simplified case can serve as an illustration.
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8. CONCLUSION

This paper has shown that a rational expectations equilibrium in an
economy with discrete trading and a finite number of states can be sus-
tained by a representative agent, provided only that the agents’ preferences
are additively separable and that some mild technical conditions hold. A
Pareto efficient allocation (essentially complete markets) corresponds to a
representative agent with state-independent preferences. Using the previ-
ous result on the existence of a representative agent, theorem 2 reduces the
search for an equilibrium to the solution of a system of nonlinear equations
in the unknown components of the vector λ that characterizes the repre-
sentative agent’s preferences. This representation of an equilibrium can be
usefully exploited for numerical computation.

APPENDIX

This Appendix provides a direct proof of the existence of a solution to
the system in (37). For ease of notation, we consider only the case I = 2
(the general case is similar).

Define the maps F : Λ → RN , G : Λ → RN and H : Λ× [0, 1] → RN by

F (λ) =

(
D>diag(∇∗U(ē;λ))(A>)−1vec(λ−1

2 )
K>diag(∇∗U(ē;λ))−1Adiag(∇∗U(ē;λ))vec

(
f2

(
uc(ē;λ)

λ2

)
− e2

)) ,
G(λ) =

(
D>diag(∇∗U(ē;λ))(A>)−1

K>diag(∇∗U(ē;λ))−1Adiag(∇∗U(ē;λ))

)
vec(λ−1

2 − 1),

and H(λ, t) = (1− t)G(λ)+ tF (λ). Clearly, (37) is equivalent to F (λ) = 0.
Also, since the N ×N matrix(

D>diag(∇∗U(ē;λ))(A>)−1

K>diag(∇∗U(ē;λ))−1Adiag(∇∗U(ē;λ))

)
has full rank for all λ ∈ Λ, the equation G(λ) = 0 has a unique solution
λ = ι. By the degree theorem in the Appendix of Geanakoplos and Shafer
(1990), in order to show that the equation F (λ) = 0, and hence (37), have
a solution, we only need to show that H−1(0) is compact (and hence so are
F−1(0) and G−1(0)).

To this end, we start by observing that (λ, t) ∈ H−1(0) implies

0 = D>diag(∇∗U(ē;λ))(A>)−1vec
(
λ−1

2 − (1− t)
)

0 = K>diag(∇∗U(ē;λ))−1Adiag(∇∗U(ē;λ))

× vec
(

(1− t)(λ−1
2 − 1) + t

(
f2

(
uc(ē;λ)
λ2

)
− e2

))
.
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Since K spans D ⊥, the above equalities imply that

diag(∇∗U(ē;λ))vec
(

(1− t)(λ−1
2 − 1) + t

(
f2

(
uc(ē;λ)
λ2

)
− e2

))
is in the span of A−1diag(∇∗U(ē;λ))D, and hence

0 = vec
(
λ−1

2 − (1− t)
)>

diag(∇∗U(ē;λ))

× vec
(

(1− t)(λ−1
2 − 1) + t

(
f2

(
uc(ē;λ)
λ2

)
− e2

))
.

On the other hand, we have, for all λ ∈ Λ

0 = ι>diag(∇∗U(ē;λ))XS(λ) = ι>A−1diag(∇∗U(ē;λ))D.

This suggests that

0 = ι>diag(∇∗U(ē;λ))vec
(

(1− t)(λ−1
2 − 1) + t

(
f2

(
uc(ē;λ)
λ2

)
− e2

))
,

and so we conclude that

0 = vec
(
λ−1

2 − 1
)>

diag(∇U(ē;λ)) (A.1)

× vec
(

(1− t)(λ−1
2 − 1) + t

(
f2

(
uc(ē;λ)
λ2

)
− e2

))
holds for all (λ, t) ∈ H−1(0).

Now we claim that (A.1) implies that H−1(0) is bounded. Suppose this
is not the case. Then there exists a sequence {(λn, tn)} ⊂ H−1(0) such
that |λn| → ∞. However, it is easy to see that the right-hand side of (A.1)
diverges as |λ| → ∞. This contradicts the equality in (A.1) and establishes
the boundedness of H−1(0).

Next, we claim that H−1(0) is closed. In fact, since H is continuous,
H−1(0) is closed in the relative topology of Λ × [0, 1], and therefore in
order to show that H−1(0) is closed, we only need to prove that the closure
of H−1(0) does not meet ∂Λ × [0, 1], where ∂Λ denotes the topological
boundary of Λ. Suppose that this is not the case. Then there exists a
sequence {(λn, tn)} ⊂ H−1(0) such that λn → λ ∈ ∂Λ. However, it is again
easily verified that the right-hand side of (A.1) diverges as λ approaches
∂Λ. This violates the equality in (A.1) and proves that H−1(0) is closed.

Since H−1(0) is closed and bounded, it is compact, and hence the system
(37) has a solution.
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