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This paper studies security markets with trading frictions, and offers a com-
plete characterization of viable convex cost systems. For frictional markets that
give rise to a convex-cone traded-payoff span and a sublinear payoff cost func-
tional, the following three conditions are equivalent: viability, the extension
property, and the absence of free lunches. Special cases in this class of mar-
kets include perfect-markets economies [Harrison and Kreps (1979)], economies
with proportional transaction costs [Jouini and Kallal (1992, 1995)], economies
with solvency constraints [Hindy (1995)], economies with no-short-selling, and
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1. INTRODUCTION

In the theory of asset pricing, a securities market is said to be viable
if some investor from certain preferences class can find an optimal trade.
Viability is indeed a minimal condition that any well-functioning market
should satisfy. In a perfect markets context, Harrison and Kreps (1979)
elegantly argue that this condition may also be sufficient to yield an equi-
librium for certain economies. They show that an asset price system is
viable if and only if this price system can be extended via a positive con-
tinuous linear functional to the entire space of contingent claims. Moreover,
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they find that viability is equivalent to the absence of free lunches or gen-
eral arbitrage opportunities.1 The Harrison-Kreps characterization further
formalizes the arbitrage arguments in Black and Scholes (1973), Cox and
Ross (1976), and Ross (1978), and thus provides a formal foundation for
the theory of asset pricing.

Recent attempts have been made to extend the results in Harrison and
Kreps (1979), Kreps (1981), and Ross (1978) to economies with market
frictions and/or transaction costs. For example, Jouini and Kallal (1992,
1995) examine the equivalent conditions of a viable “price system” when se-
curity transactions are costly and short sales are prohibited. Hindy (1995)
studies viable prices under solvency constraints. Prisman (1986) and Ross
(1987) extend the arbitrage argument to economies with income taxation.
While these and other interesting attempts have produced significant in-
sights into the structure of viable/arbitrage-free prices, it is not yet clear
how far and under what other types of market friction the Harrison-Kreps
results can be generalized.

In this paper, we do not assume specific types of market friction. Instead,
we start with a sufficiently general setup so that the results we derive apply
to a large class of frictional securities markets. Specifically, the discussion is
cast on a single-period economy with uncertainty. Given an arbitrary num-
ber of traded securities, let M denote the set of all feasible payoffs, where a
payoff is said to be feasible if it can be generated through a portfolio that
satisfies whatever constraints the economy has. Examples of trading con-
straints include: no-short-selling, limits on short positions, lower bounds
on asset holdings, upper bounds on holdings, solvency constraints, transac-
tion costs, taxes, and so on. Defined on M is a cost functional φ such that,
for any x ∈ M , the value φ(x) determines the minimum cost that it takes
to acquire x, where φ(x) includes the portfolio purchase costs, transaction
costs, and other applicable expenses. If −x ∈M , then −φ(−x) determines
how much an investor can receive from selling the payoff x (synthetically).
A cost system, denoted by the pair (M,φ), is said to be convex if both M
and φ are convex. Again, as the examples in Section 2 demonstrate, many
types of frictional or frictionless securities markets give rise to such a cost
system. It is also worth noting that, as will be shown later, a cost system
and a price system are generally not the same in frictional economies. Here,
a cost system determines how much an investor will have to pay in order
to receive a payoff, whereas a price system is what security issuers can use
to assign prices to securities, existing or new.

The purpose of this paper is to characterize a general convex cost system.
In the spirit of Harrison and Kreps (1979), a cost system (M,φ) is said

1See, among others, Back and Pliska (1991), Chen and Knez (1995), Clark (1993),
Duffie and Huang (1986), Hansen and Richard (1987), Hansen and Jagannathan (1991,
1997), Kreps (1981), and Ross (1978) for related developments and applications.
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to be viable if some investor from the increasing, continuous and convex
preferences class can find an optimal trade under (M,φ). It is said to satisfy
the extension property if φ has a strictly positive extension to the entire
consumption space such that this extension is linear if φ is linear, sublinear
if φ is sublinear, and convex otherwise.2 In this paper, the consumption
space is taken to be any space Lp of random variables whose p-th absolute
moment exists: X = Lp, for 1 ≤ p ≤ ∞. A summary of our main findings
follows:

1. A convex cost system (M,φ) is viable if and only if there is a strictly
positive continuous linear functional ψ lying below φ: ψ(x) ≤ φ(x) for each
x ∈M . When X = Lp, for any p satisfying 1 ≤ p <∞, another equivalent
condition is that there is some d ∈ Lq such that (i) d > 0 almost surely and
(ii) E(x · d) ≤ φ(x) for each x ∈ M , where q is determined by 1

q + 1
p = 1

and E(·) is the expectation operator.
2. If a convex cost system (M,φ) is viable, then it satisfies the extension

property and admits no free lunches.
3. Let X = Lp, for 1 ≤ p < ∞. Suppose that M is convex and φ is

sublinear. Then (M,φ) is viable if and only if it satisfies the extension
property.

4. Let X = Lp, for 1 ≤ p <∞. Suppose that M is a convex cone and φ
is sublinear. Then, (M,φ) is viable if and only if it admits no free lunches.

These results together offer a complete characterization of viable con-
vex cost systems. When either M or φ is not convex, for instance, the
proof of the first result will not follow through. For the class of frictional
economies that gives rise to a convex cone M and a sublinear φ, the fol-
lowing three conditions are equivalent: viability, the extension property,
and the absence of free lunches. Special cases in this class include: perfect-
markets economies [Harrison and Kreps (1979)], economies with propor-
tional transaction costs [Jouini and Kallal (1992, 1995)], economies with
solvency constraints [Hindy (1995)], economies with no-short-selling, and
economies with any combination of these frictions.

In addition to the above-mentioned characterizations, we offer an exam-
ple economy in Section 6 to make two points. First, in frictional economies,
the cost functional generally does not coincide with the equilibrium price
functional. This means that in the presence of frictions one may not be
able to use a hedging argument to even price a new security whose pay-
off is already marketed. This point shows the limitation of the arbitrage

2A functional φ defined on M is sublinear if (i) φ(x + y) ≤ φ(x) + φ(y) and (ii)
φ(λx) = λφ(x), for any x, y ∈ M and λ ≥ 0. Clearly, the class of linear functionals is
contained in the class of sublinear functionals which is in turn contained in the class of
convex functionals. This fact is useful for appreciating the results in this paper.



300 ZHIWU CHEN

valuation approach. Second, when trading is not continuous [as assumed
in Hindy (1995) and Jouini and Kallal (1992, 1995)], it is technically more
demanding to characterize the minimum hedging cost problem or the cost
functional φ via the Lagrange duality theorem. This point is useful when
one tries to study solution properties of the hedging cost problem.

Besides the existing work cited above, some other papers also incorporate
frictions to discuss asset pricing issues. For example, in a continuous-time
framework, Cvitanic and Karatzas (1993) study the minimum hedging cost
problem for contingent claims when asset holdings must lie in a convex set.
Others include, for a partial list, Cocharane and Hansen (1992), Constan-
tinides (1986), Dybvig and Huang (1988), Dybvig and Ross (1986), He
and Modest (1995), He and Pearson (1991a,b), Heaton and Lucas (1996),
Luttmer (1992), and Prisman (1986).

2. ECONOMIES WITH FRICTIONS

Consider a two-date economy in which decision-making takes place at
time 0 and payoffs to securities are made at time 1. Uncertain time-1 events
are described by a complete probability space {Ω,F , P r}, where Ω has
infinitely many states of nature. All agents share the same information as
contained in the probability space. There is a single perishable consumption
good used as the value numeraire.

Conceivable time-1 consumption bundles are taken to be in the space
X ≡ Lp(Ω,F , P r), for any p satisfying 1 ≤ p ≤ ∞, where Lp(Ω,F , P r), for
1 ≤ p < ∞, contains all random variables x such that E(| x |p) < ∞ and
L∞(Ω,F , P r) is the space of essentially bounded random variables. Denote
the positive cone of X by X+ ≡ {x ∈ X : Pr(x ≥ 0) = 1}. It is useful to
keep in mind that the norm dual of Lp is Lq, for 1 ≤ p <∞ and 1

p + 1
q = 1,

and the norm dual of L∞ is the space of bounded additive measures on
(Ω,F) that are absolutely continuous with respect to Pr [Dunford and
Schwartz (1966, p. 296)].3

Following convention, for any x, y ∈ X, we write “x = y” if Pr(x = y) =
1 (i.e. x and y are identified); “x ≥ y” if x− y ∈ X+; and “x > y” if x ≥ y
and Pr(x = y) < 1. A real-valued linear functional ψ on X is positive if
ψ(x) ≥ 0 for each x ∈ X+, and strictly positive if ψ(x) > 0 for every x > 0.
Let Ψ denote the set of strictly positive and continuous linear functionals
on X. A functional g : X → < is sublinear if, for every x, y ∈ X and
any scalar λ ≥ 0, (i) g(x + y) ≤ g(x) + g(y) and (ii) g(λx) = λg(x); and
it is convex if, for every x, y ∈ X and any scalar λ such that 0 ≤ λ ≤ 1,
g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y).

3See Bewley (1972) for a brief discussion on L∞ and its norm dual.
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Investors are characterized by their preference orderings, �, over the
net trade space < × X, where a pair (c0, x) ∈ < × X denotes c0 units of
time-0 consumption and x(ω) units of time-1 consumption in state ω ∈ Ω.
Let τ be the product topology of the Euclidean topology on < and the
norm topology on X. Each investor’s � is assumed to satisfy the following
conditions:

• � is convex in the sense that for any (c′0, x
′) ∈ <×X, the set {(c0, x) ∈

< ×X : (c0, x) � (c′0, x
′)} is convex;

• � is τ -continuous, that is, for each (c′0, x
′) ∈ <×X, the sets {(c0, x) ∈

< × X : (c0, x) � (c′0, x
′)} and {(c0, x) ∈ < × X : (c′0, x

′) � (c0, x)} are
τ -closed;
• � is strictly increasing, that is, if (c′0, x

′) ∈ <+×X+ and either c′0 > 0
or x′ > 0, then we have (c0, x)+ (c′0, x

′) � (c0, x) for every (c0, x) ∈ <×X,
where � denotes the strict preference relation induced by �.

Denote the set of all such preference relations on <×X by A.
For ease of discussion, assume that there are N limited-liability securities

traded on the market with payoffs xn ∈ X+ and prices Pn, for n ∈ N , where
N stands for both the number and the set of securities. The prices Pn are
taken from some equilibrium (to be defined later).

Given the N traded securities, a payoff x ∈ X is said to be feasible
if x can be obtained through some portfolio satisfying any given trading
constraints, transaction costs and/or other regulations. Let M be the set
of all feasible payoffs, and φ : M → < the cost functional such that φ(x),
for x ∈M , determines the minimum amount that any investor has to pay
to obtain x.

As noted before, we distinguish between a cost system and a price system.
A cost system, denoted by the pair (M,φ), determines what an investor
has to pay to achieve a feasible payoff x and what he can receive from
selling x [i.e., −φ(−x) if −x is also in M ], whereas a price system, denoted
by (X,π), determines what prices security issuers can quote for new and
existing securities, where π(·) : X → <. In frictionless economies, a cost
system is a price system (at least over the marketed payoff span) and vise
versa [e.g., Arrow (1964), Harrison and Kreps (1979), and Kreps (1981)].
However, as shown later, in frictional economies this is no longer true.

Assumption 1. In the economy under consideration, the cost system
(M,φ) is convex, that is, both M and φ are convex. Further, to avoid
trivial cases, there is at least one x ∈M such that Pr(x > 0) = 1.

The convexity of M imposes some structure on feasible asset holdings
while that of φ puts certain restrictions on security prices and transaction
technologies. However, the class of convex functionals is abundantly rich
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and it contains both linear and sublinear functionals as special cases. For
this reason, many types of economy possess a convex cost system. The
following are some interesting examples:

Example 1. Perfect markets economies. This is the case examined in,
among others, Harrison and Kreps (1979). The set M is a subspace in X:

M = {x ∈ X : ∃α ∈ <N s.t. x =
∑
n∈N

αnxn},

and the cost functional φ is linear:

φ(x) =
∑
n∈N

αnPn,

for any α ∈ <N such that x =
∑N
n=1 αnxn. Then, (M,φ) is convex trivially.

Example 2. Economies with proportional transaction costs. Jouini and
Kallal (1992, 1995) examine this case, for instance. To describe this type
of economy, let Pn and pn be the prices at which investors can respectively
buy and sell security xn. Further, let αn and θn be respectively a long
and a short position in xn. Clearly, the set of feasible payoffs, M , is still a
subspace as given in Example 1. The cost functional is, however, as follows:

φ(x) = min
αn≥0,θn≥0: n∈N

∑
n∈N

(αnPn − θnpn)

s.t.
∑
n∈N

(αn − θn)xn ≥ x,

for each x ∈ M . It is apparent that φ is convex. Moreover, as can be
checked, φ is sublinear.

Example 3. Economies with lower bounds on asset holdings. Let `n ∈
< be the lower bound on positions in security xn. In this case, M ={
x =

∑
n∈N αnxn : αn ≥ `n, ∀n

}
, which is convex, and

φ(x) = min
αn≥`n: n∈N

∑
n∈N

αnPn (1)

s.t.
∑
n∈N

αnxn ≥ x, (2)

for each x ∈ M . Again, φ is convex. A particular case in this class of
economies is when no short sales are allowed: `n = 0 for each n. In that
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case, one can verify that φ becomes a sublinear, instead of just convex, cost
functional and M is a convex cone.

Example 4. Economies with convex holding constraints, that is, an ≤
αn ≤ bn, for some an, bn ∈ < such that an < bn and for each n. Then,

M =

{
x =

∑
n∈N

αnxn : an ≤ αn ≤ bn, ∀n ∈ N

}
,

and

φ(x) = min
an≤αn≤bn: n∈N

∑
n∈N

αnPn

s.t.
∑
n∈N

αnxn ≥ x,

for each x ∈ M . Both M and φ are still convex, but in general φ can-
not be sublinear. In a continuous-time framework, Cvitanic and Karatzas
(1993) examine the contingent-claims hedging problem with such convex
constraints.

Example 5. Economies with solvency constraints. In a continuous-time
context, Dybvig and Huang (1988) and Hindy (1995) study this type of
economy. Given the single-period framework here, solvency constraints can
be modelled by requiring each feasible portfolio to generate a non-negative
future payoff. That is,

M =

{
x ∈ X+ : x =

∑
n∈N

αnxn, for some αn ∈ < and each n

}
,

where any large short position in a security is clearly allowed – so long as
the resulting portfolio payoff is non-negative almost surely. In this case,
M is a convex cone in X+, since (i) λx ∈ M for any x ∈ M and every
λ ∈ <+ and (ii) θx + (1 − θ)y ∈ M for each θ ∈ [0, 1] and x, y ∈ M . The
cost functional is, for each x ∈M ,

φ(x) = min
α∈<N

∑
n∈N

αnPn

s.t.
∑
n∈N

αnxn ≥ x,

which is apparently sublinear because the portfolio weights are not directly
constrained. It is, however, worth mentioning that φ in general will not be
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linear due to the solvency constraint and the fact that M is not a subspace.

Example 6. Economies with convex transaction costs. Suppose that for
a portfolio α ∈ <N , f(α1, . . . , αN ) determines its total cost, including the
security purchasing prices, and that there is no constraint on asset holdings.
Assume that f(·, . . . , ·) is strictly increasing and convex in portfolio weights
α. In this case, M is still the subspace spanned by the xn’s, while the cost
functional is

φ(x) = min
α∈<N

f(α1, . . . , αN )

s.t.
∑
n∈N

αnxn ≥ x,

for each x ∈M . Following standard steps, one can verify that φ so defined
is convex.

Example 7. Economies with taxes, transaction costs and holding con-
straints. As in Example 6, let the increasing and convex function f(α) be
the total cost of portfolio α, and `n the lower bound on positions in security
n. In addition, the after-tax future payoff of any portfolio α is assumed
to be given by some function h(·) : <N → X. Then, the set of feasible
after-tax payoffs is

M = {x = h(α) : αn ≥ `n ∀n} .

Assume the after-tax payoff function h(·) is such that the set M is convex.
For instance, when h(α) is sublinear or linear in portfolio vector α, one
can show that M is convex. At the same time, the minimum hedging cost
functional is

φ(x) = min
αn≥`n: n∈N

f(α)

s.t. h(α) ≥ x,

for each x ∈M . This φ is convex. Thus, economies with taxation can also
result in a convex cost system. For other features of economies with taxa-
tion, refer to Prisman (1986) and Ross (1987), who characterize arbitrage-
free asset prices under taxation but no transaction costs. Of course, caution
should be applied in generalizing their results to the type of economies as-
sumed in this example because, among other things, their discussions are
cast on a set-up with only finitely many states of nature.

The above examples are by no means exhaustive. For instance, any
combination of these cases will give rise to a convex cost system. Realizing
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the generality of Assumption 1, we turn to characterizing such a cost system
(M,φ).

3. VIABLE COST SYSTEMS

Definition 3.1. A convex cost system (M,φ) is viable if there exists
some �∈ A and (c∗0, x

∗) ∈ < ×M such that

• c∗0 + φ(x∗) ≤ 0;
• (c∗0, x

∗) � (c0, x) for all net trade pairs (c0, x) ∈ < × M such that
c0 + φ(x) ≤ 0.

This criterion makes sense because, if (M,π) is to be embedded in an eco-
nomic equilibrium, it is only natural to require that at least some investor
from the class A, when subject to the budget constraint c0 + φ(x) ≤ 0, be
able to achieve an optimal trade. According to Harrison and Kreps (1979)
and Kreps (1981), this criterion may also be sufficient for (M,φ) to be an
equilibrium cost system. To see this, suppose such � and (c∗0, x

∗) exist and
define �′ by

(c0, x) �′ (c′0, x
′) if (c0 + c∗0, x+ x∗) � (c′0 + c∗0, x+ x∗).

Clearly, �′∈ A and the net trade (0, 0) is optimal for all agents with both
�′ and the budget constraint in the definition. Therefore, if all investors
are from the class A, (M,φ) will be an equilibrium cost system.

Theorem 1. Under Assumption 1, a convex cost system (M,φ) is viable
if and only if there is a strictly positive, continuous linear functional ψ on
X such that ψ |M≤ φ, where · |M means “the restriction to M .”

Proof. To prove sufficiency, suppose there is such a ψ. Define some �
on <×X by

(c0, x) � (c′0, x
′) if c0 + ψ(x) ≥ c′0 + ψ(x′)

(c0, x) � (c′0, x
′) if c0 + ψ(x) > c′0 + ψ(x′).

As can be checked, � is in the class A. Furthermore, among all net trade
vectors (c0, x) ∈ < × M such that c0 + φ(x) ≤ 0, the no trade vector
(0, 0) is optimal for all investors with � since for each such trade vector,
c0 + ψ(x) ≤ c0 + φ(x) ≤ 0 = 0 + ψ(0). Thus, (M,φ) is viable.

To establish necessity, assume without loss of generality that, subject to
the budget constraint c0 +φ(x) ≤ 0, the pair (c∗0, x

∗) = (0, 0) is optimal for
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some investor with �∈ A. Define two sets:

G ≡ {(c0, x) ∈ < ×X : (c0, x) � (0, 0)}
H ≡ {(c0, x) ∈ < ×M : c0 + φ(x) ≤ 0}.

Then, G and H are disjoint because of the optimality of (0, 0) over all the
pairs in H, and both sets are convex (G is so because of the convexity of �
and H is so because both M and φ are convex). The continuity of � implies
that G is also open in the topology τ . By a separating hyperplane theorem
[Berberian (1974, theorem 30.6)], there is a non-trivial τ -continuous linear
functional f on < × X such that f(c0, x) > 0 for each (c0, x) ∈ G and
f(c0, x) ≤ 0 for (c0, x) ∈ H.

Since f is τ -continuous and � is strictly increasing, we have f(0, 0) = 0.
In addition, (1, 0) � (0, 0) and hence (1, 0) ∈ G. So f(1, 0) > 0. Renor-
malize f such that f(1, 0) = 1, and define ψ on X by f(c0, x) = c0 +ψ(x).
It is then straightforward that ψ is continuous (in the Lp norm topol-
ogy) and linear. Furthermore, for any x ∈ X+ such that x 6= 0, we have
(0, x) � (0, 0) and (0, x) ∈ G, which means f(0, x) = 0+ψ(x) > 0. That is,
ψ is strictly positive. To show that ψ|M ≤ φ, note that for any x ∈M , we
have (−φ(x), x) ∈ H and f(−φ(x), x) = −φ(x) + ψ(x) ≤ 0. So ψ(x) ≤
φ(x).

A convex cost system is therefore viable if and only if there is a strictly
positive, continuous linear functional supporting the cost functional φ.
Theorem 1 applies to any convex cost system. In this sense, it represents
a complete characterization of viable cost systems. Note that for viability
to imply a ψ ∈ Ψ lying below φ, it is necessary that both M and φ be
convex. Otherwise, the proof of Theorem 1 would not follow through (the
separating hyperplane theorem could not be used in that case).

Corollary 1. Suppose that Assumption 1 holds and that X = Lp for
some p, 1 ≤ p < ∞. Then, a convex cost system (M,φ) is viable if and
only if there is some stochastic discount factor d ∈ Lq, for q satisfying
1
p + 1

q = 1, such that (i) d > 0 almost surely and (ii) d satisfies

E(d · x) ≤ φ(x) ∀x ∈M. (3)

Proof. The norm dual of Lp is Lq, for q satisfying 1
p + 1

q = 1. By the
Riesz representation theorem, each continuous linear functional ψ on Lp

can be represented via some d ∈ Lq as follows:

ψ(x) = E(d · x) ∀x ∈ Lp. (4)
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Clearly, d > 0 almost surely if and only if ψ is strictly positive. Then, Theo-
rem 1 gives the desired corollary.

Remark 3.1. In Example 1, M is a subspace and φ is linear. Suppose
(M,φ) is viable. By Theorem 1, there is ψ ∈ Ψ such that, for each x ∈M ,
ψ(x) ≤ φ(x) and ψ(−x) ≤ φ(−x), which means ψ(x) = φ(x) because of
the linearity of both ψ and φ. Thus, Harrison and Kreps (1979, theorem
1) is a special case of Theorem 1.

Remark 3.2. In Example 2, M is a subspace but φ is sublinear. Granted
that (M,φ) is viable, Theorem 1 implies that there is some ψ ∈ Ψ such
that, for each x ∈ M , ψ(x) ≤ φ(x) and ψ(−x) ≤ φ(−x), which yields:
−φ(−x) ≤ ψ(x) ≤ φ(x). This is the result in Jouini and Kallal (1992,
theorem 2.1).

Remark 3.3. Recall Example 3 and let X = Lp, for any p satisfying
1 ≤ p < ∞. First, when `n = 0 for each security n and no short-selling
is allowed, the set M is a convex cone. Further, since xn ∈ X+ for each
n, M is a convex cone in X+. Provided that (M,φ) is viable, Corollary
1 implies that there is some d ∈ Lq+ such that d > 0 almost surely and
E(x · d) ≤ φ(x) for each x ∈ M , where 1

q + 1
p = 1. Note that −x 6∈ M ,

whenever x ∈ M . Thus, each such d is “bounded above” by φ but not
below (except that d > 0 almost surely), which means

0 ≤ E(x · d) ≤ φ(x) ∀x ∈M ⊆ X+.

Comparing this with the results in Remarks 1 and 2 reveals that the more
severe the trading frictions, the fewer restrictions viability puts on the ad-
missible stochastic discount factor d. This statement is true because, on the
one hand, no- short-selling is more severe than the proportional transaction
costs in Remark 2, which is in turn more severe than the absence of trading
frictions assumed in Remark 1; On the other hand, d has to satisfy, for each
x ∈M : E(x ·d) = φ(x) in Remark 1; −φ(−x) ≤ E(x ·d) ≤ φ(x) in Remark
2; and 0 ≤ E(x·d) ≤ φ(x) here in Remark 3. This observation explains why,
for instance, Luttmer (1992) can lower the Hansen-Jagannathan (1991)
bounds on stochastic discount factors by assuming the existence of trans-
action costs. For the same reason, we can expect the Hansen-Jagannathan
bounds to be even lower by assuming away short selling completely.

Next, suppose `n < 0 for at least some securities n (i.e., there are bounds
on short positions). In this case, as mentioned before, M is no longer a
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convex cone. Especially, for some payoffs x ∈ M , we have −x ∈ M .
Again, by Corollary 1, there is some d ∈ Lq such that d > 0 almost surely
and E(x · d) ≤ φ(x) for each x ∈ M . Then, for those payoffs x ∈ M
such that −x 6∈ M , the restriction on d is simply E(x · d) ≤ φ(x) and
nothing more. The other payoffs x ∈ M for which −x ∈ M , however, put
a stronger restriction on d: −φ(−x) ≤ E(x · d) ≤ φ(x), which is similar
to the restrictions discussed in Remark 2. In words, when `n < 0 for
some securities n, certain feasible payoffs play the role of “bounding” an
admissible stochastic discount factor from only above while others bound
it from both above and below. In this sense, limits on short positions are
not as severe a friction type as complete prohibition of short positions, but
more severe than the existence of transaction costs assumed in Example
2 and Remark 2. As a result, one should expect the Hansen-Jagannathan
bounds implied by the short position limits `n < 0 to be lower than those
implied by proportional transaction costs [and empirically estimated by
Luttmer (1992)], but higher than those implied by no-short-selling.

More generally, for any type of frictional economy that leads to a convex
cost system (M,φ), Hansen-Jagannathan bounds can be constructed solely
from the restriction: E(x · d) ≤ φ(x) for each x ∈M . This means that, in
order to use Hansen-Jagannathan bounds to test asset pricing models, it
may not be necessary to know the exact types of frictions that the actual
securities markets have – as long as one can identify φ and M . In this
regard, it is worth remembering that the set {d ∈ Lq+ : E(x·d) ≤ φ(x) ∀x ∈
M} is typically a proper subset of {d ∈ Lq+ : E(xn · d) ≤ Pn ∀n}. For
further discussions on implementing Hansen-Jagannathan bound tests in a
frictional markets context, the reader is referred to Cochrane and Hansen
(1992), He and Modest (1995), and Luttmer (1992).

Remark 3.4. Recall Example 5, which differs from Example 1 only in
that the set of feasible payoffs is, instead of a subspace, a convex cone
contained in X+. This difference is, however, sufficient to prevent us from
drawing the same conclusion as in Remark 1. Under solvency constraints,
the equivalent condition of viability is the existence of some ψ ∈ Ψ such
that ψ |M≤ φ, rather than the requirement that ψ |M= φ (as in Remark
1).

Remark 3.5. The result in Corollary 1 might not hold when X =
L∞, because the norm dual of L∞ is not L1 but the space of bounded
additive measures on (Ω,F). If we endow L∞ with the L1-Mackey topology,
however, L1 becomes its topological dual [see Bewley (1972)]. In that case,
each Mackey-continuous linear functional ψ on L∞ can be represented by
some d ∈ L1 as in (4). Therefore, when X = L∞, the result in Corollary 1
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can hold, except that L∞ may have to be given a topology different from
its norm topology.

Remark 3.6. We can also replace each stochastic discount factor d
in Corollary 1 with an equivalent probability measure µ and an implicit
riskfree rate r0. Briefly, let each d in Corollary 1 be the Radon-Nikodym
derivative of some probability measure µ on (Ω,F) with respect to Pr.
Then, by the Radon-Nikodym theorem,

ψ(x) = E(x · d) =
Eµ(x)
1 + r0

,

for ψ ∈ Ψ, where Eµ(·) is the expectation operator with respect to µ and
r0 is the implicit riskfree rate determined by E(d) ≡ 1

1+r0
. Furthermore,

since d > 0 almost surely, µ must be an equivalent probability measure of
Pr. Then, from Corollary 1, a convex cost system (M,φ) is viable if and
only if there are an equivalent probability measure µ of Pr and an implicit
riskfree rate r0 such that

Eµ(x)
1 + r0

≤ φ(x) ∀x ∈M.

4. THE EXTENSION PROPERTY

Suppose that all bundles in X are marketed somewhere and (M,φ) is
only part of a larger equilibrium. Then, if (M,φ) is to be embedded in
the larger equilibrium, it is minimal that some “reasonable” extension of φ
to all of X exist. In the frictionless case examined by Harrison and Kreps
(1979), the minimal requirement is that φ have a strictly positive, continu-
ous linear extension to all of X, which is clearly satisfied by the viability of
(M,φ). Absent of frictions, the existence of such a linear extension seems
a natural requirement. When (M,φ) is an arbitrary convex cost system,
however, difficulty arises. The following definition nonetheless represents
one generalization of the Harrison-Kreps extension property:

Definition 4.1. A convex cost system (M,φ) has the extension
property if there exists a continuous, strictly positive extension of φ to
all of X that shares the same properties with φ, that is, there is some
υ(·) : X → < such that (i) υ is strictly positive on X; (ii) υ |M= φ; and
(iii) υ is linear if φ is linear, sublinear if φ is sublinear, and, otherwise,
convex.
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The first two conditions in Definition 1 do not need further explanation.
The last condition should be natural because it would not make sense to
require that the extension be linear when φ is strictly convex or vise versa.

Theorem 2. Under Assumption 1, (M,φ) satisfies the extension prop-
erty if (M,φ) is viable.

Proof. Suppose (M,φ) is viable. Then, by Theorem 1, there is a ψ ∈ Ψ
such that ψ |M≤ φ. Let P ≡ {ψ ∈ Ψ : ψ |M≤ φ}. The rest of the proof is
divided into three cases:

1. φ is linear. In this case, the result holds trivially.
2. φ is sublinear. Let M ′ be the convex cone generated by M : M ′ ≡

{λx : ∀λ ∈ <+ and ∀x ∈ M}. Then, for each x′ ∈ M ′, there exist some
x ∈M and λ ∈ <+ such that λx = x′, in which case we set φ′(x′) = λφ(x),
where φ′ : M ′ → <. It is easy to see that φ′ |M= φ. To verify that φ′ is
sublinear, first note that, by design, φ′(λx′) = λφ′(x′) for each λ ∈ <+ and
x′ ∈ M ′. Second, for any x′, y′ ∈ M ′ such that x′ = λ1x and y′ = λ2y for
some λ1, λ2 ∈ <+ and x, y ∈M , we have

φ′(x′ + y′) = φ′
(

(λ1 + λ2)(
λ1

λ1 + λ2
x+

λ2

λ1 + λ2
y)

)
= (λ1 + λ2)φ

(
λ1

λ1 + λ2
x+

λ2

λ1 + λ2
y

)
≤ λ1φ(x) + λ2φ(y)
= φ′(x′) + φ′(y′),

where in the second step the following fact is used: λ1
λ1+λ2

x+ λ2
λ1+λ2

y ∈M
because of the convexity of M .

Now extend φ′ to all of X by υ′ : X → <:

υ′(x) ≡
{
φ′(x) if x ∈M ′

supψ∈P ψ(x) otherwise.

It holds by design that υ′ |M ′= φ′ and υ′ is strictly positive. Since each
ψ ∈ P is strictly positive and linear, the supremum operator in the above
definition is, as can be checked, sublinear. Then, the extension υ′ must
also be sublinear, which proves the desired result.

3. φ is convex. In this case, consider the extension υ : X → <:

υ(x) ≡
{
φ(x) if x ∈M
supψ∈P ψ(x) otherwise.
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It is true by design that υ |M= φ and υ is strictly positive. It is also
straightforward to show that υ is convex. Thus, the extension property ob-

tains.

Can the extension property imply viability for a convex cost system? –
Our answer to this question remains a partial one, which is stated in the
next theorem:

Theorem 3. Let X = Lp, for any p satisfying 1 ≤ p <∞. Assume that
the non-empty set of feasible payoffs, M , is convex and the cost functional φ
is sublinear. Then, the cost system (M,φ) satisfies the extension property
if and only if it is viable.

Proof. Sufficiency follows from Theorem 2. To prove necessity, suppose
that the extension property holds and that υ is a strictly positive sublinear
extension of φ. First notice that X = Lp, for 1 ≤ p < ∞, is a separable
Banach space. So must be the product space <×X. Next, define two sets:

S ≡ {(c0, x) ∈ <+ ×X+ : (c0, x) 6= (0, 0)}
T ≡ {(c0, x) ∈ < ×X : c0 + υ(x) ≤ 0}.

Here, S is the positive cone of < × X with the origin deleted and hence
convex. The set T is also a non-empty convex cone because υ is sublin-
ear, with (0, 0) ∈ T . By assumption, υ is strictly positive on X, which
means that S and T must be disjoint and that S must have empty inter-
section with the τ -closure of (T − S). Then, by the separating hyperplane
theorem for convex cones [Clark (1993, theorem 5)], there exists a non-
trivial τ - continuous linear functional h on < × X such that h(c0, x) > 0
for each (c0, x) ∈ S and h(c0, x) ≤ 0 for each (c0, x) ∈ T . That is,
there are λ0 ∈ < and a continuous linear functional ψ on X such that
h(c0, x) = λ0c0 + ψ(x). Since (1, 0) ∈ S and (0, x) ∈ S for x ∈ X+ such
that x 6= 0, it holds that λ0 > 0 and ψ(x) > 0. Thus, ψ ∈ Ψ. Choose
λ0 = 1 so that h(c0, x) = c0 + ψ(x). At the same time, for any x > 0,
(−υ(x), x) ∈ T , which means −υ(x) + ψ(x) ≤ 0. Therefore, ψ ≤ υ and
ψ |M≤ υ |M= φ, implying (M,φ) is viable (according to Theorem 1).

In proving Theorem 3, we relied on the fact that the epigraph of a sublin-
ear functional on X is a convex cone. Then, the heart of the proof became
finding a hyperplane to separate two convex cones, which is technically
much easier to do than to separate two general convex sets. This is why
we restricted attention to the class of sublinear cost functionals in Theo-
rem 3. For two convex cones in a separable Banach space, the separating
hyperplane theorem does not require either cone to have an interior [Clark
(1993, theorem 5)]. In order for there to be a hyperplane separating two



312 ZHIWU CHEN

general convex sets, however, it is typically necessary that at least one of
the two sets have interior points. In the case of the proof of Theorem 3, this
means the positive cone of X should have a non-empty interior. Unfortu-
nately, the common spaces Lp, for all p satisfying 1 ≤ p <∞, do not meet
this requirement.4 For further discussion on this technical requirement, see
Luenberger (1969, pages 133-134 and 219).

Remark 4.1. For the perfect-markets economies in Example 1, φ is linear
and hence sublinear as well. For economies with proportional transaction
costs (Example 2), with no-short-selling (Example 3), or with solvency con-
straints (Example 5), their corresponding cost functionals are all sublinear.
Thus, for these types of economy, viability is equivalent to the extension
property.

5. FREE LUNCHES

Another related criterion on a cost system is the absence of arbitrage
opportunities or, more generally, of free lunches. Indeed, for (M,φ) to be
a reasonable securities market model, it is natural that no one can obtain
something for nothing, either now or in the future. Formally, a free lunch
is defined below:

Definition 5.1. A convex cost system (M,φ) admits free lunches if
there exists a sequence, {(ck,mk, xk) : k = 1, 2, . . .} ⊆ < ×M ×X, such
that (i) {(ck, xk) : k = 1, 2, . . .} converges to some (c∗, x∗) ∈ <+ ×X+, for
(c∗, x∗) 6= (0, 0); (ii) mk ≥ xk for each k; and (iii) lim infk[ck+φ(mk)] ≤ 0.

Theorem 4. Suppose that a cost system (M,φ) satisfying Assumption
1 is viable. Then, (M,φ) admits no free lunches.

Proof. Suppose a convex cost system (M,φ) is viable. By Theorem 1,
there is ψ ∈ Ψ such that ψ |M≤ φ. Consider a sequence, {(ck,mk, xk) :
k = 1, 2, . . .} ⊆ <×M ×X, such that (i) {(ck, xk) : k = 1, 2, . . .} converges
to some (c∗, x∗) ∈ <+ ×X+, for (c∗, x∗) 6= (0, 0) and (ii) mk ≥ xk for each

4To get around this problem, one can assume X = L∞, as we will in Section 6,
because L∞+ has an interior. However, in that case, we need S to be open in order
to obtain strict separation between S and T in the proof of Theorem 3 [see Berberian
(1974, theorem 30.6)]. Alternatively, one could assume X to be the space of real-valued
continuous functions defined on the state space Ω, taking it as given that Ω is some
closed interval on the real line. That, however, would not fit the purpose of modelling
an economy with uncertainty. See Mas- Collel (1986) for other uses of such a modelling
structure.
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k. Then, for each k, ck +φ(mk) ≥ ck +ψ(mk) ≥ ck +ψ(xk). By continuity
of ψ, we have: lim infk[ck+φ(mk)] ≥ lim infk[ck+ψ(xk)] = c∗+ψ(x∗) > 0,
because (c∗, x∗) ≥ (0, 0) and (c∗, x∗) 6= (0, 0). Thus, there cannot be free
lunches.

The absence of free lunches is therefore necessary for (M,φ) to be viable.
The following result states that for certain securities markets, it is also
sufficient.

Theorem 5. Let X = Lp for some p satisfying 1 ≤ p <∞, and suppose
that M is a convex cone and φ is sublinear. Further, assume there is some
x ∈ M such that Pr(x > 0) = 1. Then, (M,φ) is viable if and only if it
admits no free lunches.

Proof. Necessity follows from Theorem 4. To prove sufficiency, suppose
no free lunches exist. Consider again the following two sets:

S = {(c, x) ∈ <+ ×X+ : (c, x) 6= (0, 0)}
T ′ ≡ {(c, x) ∈ < ×M : c+ φ(x) ≤ 0},

where S is the same non-empty, convex positive cone used in the proof
of Theorem 3. By assumption, M is a non-empty convex cone and φ is
sublinear, which means, as can be easily verified, that T ′ is also a non-
empty convex cone. The absence of free lunches implies that S must have
an empty intersection with the τ -closure of (T ′ − S). Note that X is
a separable Banach space. Then, by the separating hyperplane theorem
[Clark (1993, theorem 5)], there is some τ -continuous linear functional f
on <×X such that (i) f(c, x) > 0 for each (c, x) ∈ S and (ii) f(c,m) ≤ 0 for
each (c, x) ∈ T ′. Using the same steps as in the proof of Theorem 3, we can
verify that there is some ψ ∈ Ψ such that ψ |M≤ φ. Thus, (M,φ) is
viable.

Theorem 5, which is due to Jouini and Kallal (1992, theorem 2.2), says
that if M is a convex cone and φ is sublinear, viability is then equivalent
to the absence of free lunches. When M is a general convex set or φ is an
arbitrary convex functional, we don’t yet know whether the absence of free
lunches is also sufficient for the viability of (M,φ). Again, the difficulty lies
in the fact that it is generally extremely hard to find a hyperplane strictly
separating the positive cone S from some arbitrary convex set T ′, where
S and T ′ are defined as in the above proof. Also see the brief discussion
following Theorem 3.

Remark 5.1. By Theorems 3 and 5, the three criteria – viability, ab-
sence of free lunches, and the extension property – are equivalent at least for
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the following types of economy: perfect-markets economies (Example 1),
economies with proportional transaction costs (Example 2), economies with
no-short-selling (Example 3), economies with solvency constraints (Exam-
ple 5), and any combination thereof.

6. VIABLE COSTS AND EQUILIBRIUM PRICES: AN
EXAMPLE

In this section, we explicitly consider the type of economy specified in
Example 3 and use the Lagrange duality theorem to characterize the hedg-
ing cost problem in (1). The purpose of this exercise is two-fold. First,
it is to show that the replication-based hedging cost for a given payoff x,
φ(x), is generally different from the equilibrium price of x. Second, we
demonstrate the technical conditions under which a hedging cost problem
can be characterized in infinite dimensional spaces. For a similar analysis
of the hedging cost problem in a finite state space setup, see Chen (1995).

6.1. The Cost Functional
Suppose X = L∞ and denote its dual by ba, where ba is the space of

bounded additive measures on (Ω,F) that are absolutely continuous with
respect to Pr. Let ` ≡ (`1, . . . , `N )′ be the vector of lower bounds on
positions in the N traded securities. Rewrite the hedging cost problem
below:

φ(x) = inf
α≥`

∑
n∈N

αn · Pn (5)

s.t.
∑
n∈N

αn · xn ≥ x, (6)

for any x ∈M . The constraint in (6) does not require an exact replication
state-by-state because other portfolios that satisfy the constraint may cost
less than an exact replication [e.g., Bensaid et al (1992)].

Theorem 6. For every x ∈ M , there is a solution to (1) if and only
if the set D is non-empty, where D contains all positive continuous linear
functionals on X, ψ, satisfying

ψ(xn) ≤ Pn ∀n ∈ N, (7)

and there exists a solution to

φ(x) = sup
ψ∈D

{
ψ(x) +

∑
n∈N

`n[Pn − ψ(xn)]

}
. (8)
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Proof. For any x ∈ M , define g(α, x) ≡
∑
n∈N αn · xn − x. Fix any

x ∈M and its corresponding α ∈ <N such that α ≥ ` and x =
∑
n∈N αnxn

(this α exists since x ∈ M). Note that by Assumption 1, there is some
x′ ∈ M such that Pr(x′ > 0) = 1. Pick any such x′ and let α′ be such
that (i) α′ ≥ ` and (ii) x′ =

∑
n∈N α

′
nxn. Then, g(α + α′, x) = x′ and,

since Pr(x′ > 0) = 1, g(α+α′, x) is an interior point of X+. Note that the
positive cone X+ = L∞+ has a non-empty interior. Thus, the space X and
the constraint g(α, x) ≥ 0 satisfy the technical conditions for the Lagrange
duality theorem [Luenberger (1969, p. 224)].

Define for any µ ∈ ba the dual functional of (5) as

δ(µ) ≡ inf
α≥`

{∑
n∈N

αnPn +
∫

Ω

(x−
∑
n∈N

αn · xn)dµ

}

or, equivalently,

δ(µ) = inf
θ≥0

{∑
n∈N

θn[Pn −
∫

Ω

xndµ] +
∫

Ω

xdµ+
∑
n∈N

`n[Pn −
∫

Ω

xndµ]

}
.

(9)

By the Kuhn-Tucker condition, any solution θ∗ to (9) must satisfy

∑
n∈N

θ∗n · {Pn −
∫

Ω

xndµ} = 0, (10)

for each µ ∈ ba satisfying∫
Ω

xndµ ≤ Pn ∀n ∈ N. (11)

For those µ violating (11), no solution to (9) exists. In other words, a
necessary and sufficient condition for the existence of solution to (9) is
that there be some µ satisfying (11). Since ba is the dual of X and hence
each µ ∈ ba+ defines a positive continuous linear functional ψ on X, this
means that, in order for there to exist a solution to (9), it is necessary and
sufficient that the set D is non-empty, where ba+ ≡ {µ ∈ ba : µ ≥ 0}.

For any µ satisfying (11), the solution to (9) yields

δ(µ) =
∫

Ω

xdµ+
∑
n∈N

`n[Pn −
∫

Ω

xndµ]. (12)
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Now, suppose there is a solution to (5) with φ(x) > −∞. By the La-
grange duality theorem,

φ(x) = sup
µ∈ba+

δ(µ), (13)

has a solution, which means that there is some µ ∈ ba+ satisfying (11) and
D is non-empty. Equation (13), together with (11) and (12), gives rise to

φ(x) = sup

{∫
Ω

xdµ+
∑
n∈N

`n[Pn −
∫

Ω

xndµ] : µ ∈ ba+ and µ satisfies (11)

}
,

= sup
ψ∈D

{
ψ(x) +

∑
n∈N

`n[Pn − ψ(xn)]

}
.

This proves (8).
To prove sufficiency, assume there is some ψ ∈ D. Then, by the du-

ality relation between X and ba, there is some µ ∈ ba+ representing ψ
such that µ satisfies (11), implying a solution to the dual problem in
(13) exists, with φ(x) = sup{

∫
Ω
xdµ +

∑
n∈N `n[Pn −

∫
Ω
xndµ] : µ ∈

ba+ and µ satisfies (11)} > −∞. By the Lagrange duality theorem, a solu-
tion to the primal in (5) also exists.

Note that the use of the Lagrange duality theorem in the above proof
requires the positive cone ofX to have interior points. As mentioned before,
this requirement is not met by any Lp, for 1 ≤ p <∞, except by L∞. This
is why we started with X = L∞. Clearly, this technical condition is quite
troublesome, because it means that in almost all Lp spaces, we cannot
apply the duality theorem to interpret the hedging cost problems specified
in Examples 2 through 7. Also note that in a relative sense, the viability
criterion on (M,φ) is indeed strong because it is sufficient to induce some
“duality” restriction on φ (Theorem 1 and Corollary 1).

Remark 6.1. Suppose (M,φ) is viable. Then, the set D contains some
ψ such that ψ ∈ Ψ. To see this, note that by design, φ(xn) ≤ Pn for
each security n. By Theorem 1, this means there is ψ ∈ Ψ such that
ψ(xn) ≤ φ(xn) ≤ Pn for each n. Thus, ψ ∈ D.

Notice that even when (M,φ) is viable, it may not hold that Pn = φ(xn)
for any n. The lemma below specifies one demanding condition under which
this equality holds:

Lemma 1. Assume that each investor from A solves the hedging problem
in (5) for some x ∈ M and that (M,φ) is viable. Suppose there is some
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investor whose position in every security n exceeds the lower bound `n.
Then Pn = φ(xn) for every n.

Proof. Suppose some investor i who solves the hedging problem in (5)
for some xi ∈M finds it optimal to hold αin shares of security n such that
αin > `n. Let µi ∈ ba+ be the solution to the dual problem in (8), when x
is replaced by xi. Rewrite the Kuhn-Tucker condition in (10) as follows

∑
n∈N

(αin − `n)(Pn −
∫

Ω

xndµ
i) = 0.

Since αin > `n and Pn ≥
∫
Ω
xndµ

i for every n ∈ N (see the proof of
Theorem 6), it must hold that Pn =

∫
Ω
xndµ

i for each n. Let ψ′ ∈ D be the
positive continuous linear functional defined by µi. So, Pn = ψ′(xn). Then,
Pn ≥ φ(xn) = supψ∈D {ψ(xn) +

∑
j∈N `j [Pj − ψ(xj)]} ≥ ψ′(xn)

= Pn.

6.2. The Equilibrium Price Functional
Suppose (M,φ) is viable. Given the characterization of φ in Theorem 6,

we are ready to compare it with an equilibrium price functional. To define
a specific equilibrium, assume that in the economy under consideration, the
normalized supply of each security n is one unit and there are I investors.
Let the initial endowment of investor i be given by some time-0 portfolio,
αi0 ∈ <N+ , and his preferences represented by the time-separable expected
utility:

∑
t=0,1E[U i(ct, t)], for a consumption plan c ≡ (c0, c1) ∈ < × X,

where, for t = 0, 1, U i(·, t) : < → < is strictly increasing, concave and twice
continuously differentiable. At time 0, investor i is assumed to solve

maxc0,α≥`

{
U i(c0, 0) + EU i(

∑
n∈N

αn · xn, 1)

}
(14)

s.t.
∑
n∈N

αin,0 · Pn = c0 +
∑
n∈N

αn · Pn. (15)

Let (ci, αi) be investor i’s optimal consumption-portfolio plan that solves
(14) (when it exists).

For the frictional exchange economy, define an equilibrium to be a
collection:

E ≡
{
[(xn, Pn) : n ∈ N ], [(ci, αi) : i ∈ I]

}
,

such that (i) for each investor i, the plan (ci, αi) is optimal given (xn, Pn)
for n ∈ N and initial endowment αi0; and (ii) the securities market at time



318 ZHIWU CHEN

0 as well as the goods market at time 0 and in each non-zero probability
event at time 1 clear. On the existence and efficiency characterizations of
such an equilibrium, refer to Allen and Gale (1988) and Hart (1979). Here,
we take the existence of equilibrium as given.

The above definition does not yet involve a price functional that firms
and innovators can use to quote prices for new securities. To incorporate
a price functional as part of the equilibrium condition [as in Allen and
Gale (1988)], consider the Kuhn-Tucker condition for investor i’s problem
in (14):

Pn ≥ E
(
mi · xn

)
∀n ∈ N, (16)

with equality whenever αin > `n, where

mi ≡ U ic(c
i
1, 1)

U ic(ci0, 0)
, (17)

is the intertemporal marginal rate of substitution (IMRS) between time-0
and time-1 consumption. Since mi ∈ L1(Ω,F , P r), setting

ψi(x) ≡ E(x ·mi) ∀x ∈ X,

we obtain ψi ∈ Ψ. Economically, ψi(x) stands for how much investor i
would be willing to pay in order to hold at the margin a small quantity of
the security x. In other words, ψi(x) is investor i’s marginal valuation.

Given both the differences in marginal valuations ψi among investors and
the trading frictions, the price that firms and innovators expect to receive
upon issuing a security should be the maximum amount that any investor
would be willing to pay in order to hold a small quantity at the margin.
This is what Allen and Gale (1988) and Hart (1979) refer to as the rational
conjecture condition. Formally, this condition defines the equilibrium price
functional π : X → <:

π(x) ≡ max
i∈I

ψi(x) ∀x ∈ X, (18)

where the maximum exists since I is finite. Note that π is sublinear and
strictly positive on X, because each ψi is strictly positive and linear. As-
suming that for each security n there is at least one investor who holds
more than the lower bound `n, we have, by the Kuhn-Tucker condition,
π(xn) = Pn for ∀n ∈ N . For more discussion on the rational conjecture
condition, see Allen and Gale (1988) and Hart (1979).
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6.3. Relations between a Viable Cost System and an Equilib-
rium Price System

Fix (X,π), which we refer to as the equilibrium price system. Suppose
(M,φ) is the viable cost system embedded in (X,π). Can there be cases
in which (X,π) is an extension of (M,φ)? – An answer to this question
is important because it allows us to see the effectiveness of the “pricing
by arbitrage” approach in frictional economies. For instance, if the answer
were yes, one could then use φ to price any marketed or feasible payoff in
M and, in particular, it would not make a difference whether a security
issuer uses φ or π (at least over M).

Theorem 7. Suppose that the economy is in equilibrium and that for
each security n ∈ N there is at least one investor who holds more than the
lower bound `n. Then, the following statements are true:

1.When the frictions are such that `n ≥ 0 for each n, which includes
no-short-selling as a special case, it holds that

φ(x) ≥ π(x) ∀x ∈M. (19)

In this case, φ(xn) = π(xn) = Pn for each traded security n ∈ N .
2.Under more general frictions, φ(x) ≥ π(x) for certain payoffs x ∈ M ,

but there can exist other payoffs y ∈ M for which φ(y) < π(y). Further-
more, for each traded security n, φ(xn) ≤ π(xn) = Pn.

Proof. The proof of this result is analogous to the proof of Proposition
3 in Chen (1995). For completeness, adopt his proof here. Let ∆ ≡ {ψi :
i ∈ I}. By definition, ∆ ⊆ D in equilibrium. First, observe that for any
n ∈ N , φ(xn) ≤ Pn by definition of the hedging cost problem in (5). Since
π(xn) = Pn, it holds that φ(xn) ≤ π(xn).

Next, consider the case in which `n ≥ 0 for each n. By equation (8), we
have for every x ∈M :

φ(x) ≥ max
ψ∈D

ψ(x)

≥ max
ψ∈∆

ψ(x) = π(x).

For each traded security n, the above derivations show that φ(xn) ≥ π(xn)
and φ(xn) ≤ π(xn), meaning φ(xn) = π(xn) = Pn. This proves the first
statement.

To prove the second statement, suppose there is at least one security n for
which `n < 0. Pick some x ∈M for which the solution to (1) is α∗ such that
α∗n > 0 for every n (clearly such x exist). For this x, φ(x) =

∑N
n=1 α

∗
nPn.
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Since Pn ≥ ψi(xn) for each n, we have for every i ∈ I:
∑
n∈N α

∗
nPn ≥

ψi
[∑

n∈N α
∗
nxn

]
, which implies φ(x) ≥ π(

∑N
n=1 α

∗
nxn) ≥ π(x).

There can be payoffs x ∈ M for which the solution to (5) is such that
αn < 0 for some n. In such cases, we can have φ(x) < π(x) or φ(x) ≥ π(x),
both of which are possible. For example, we have shown that φ(xn) ≤
Pn = π(xn) for each n, where strict inequality can arise in equilibrium
(for instance, the condition in Lemma 1 is not satisfied here). To see this,
suppose that for some security n′,

φ(xn′) < π(xn′) = max
i∈I

ψi(xn′),

that is, there is at least some investor i′ such that

φ(xn′) < ψi
′
(xn′) = max

i∈I
ψi(xn′);

further, assume the solution α′ to (5), when the x in (5) is replaced by this
xn′ , is such that α′n” = `n” < 0 for some n”. Then, if the existing optimal
consumption-portfolio plan (ci

′
, αi

′
) of investor i′ is also such that αi

′

n” =
`n” and αi

′

n′ > `n′ , investor i′ may not be able to use portfolio α′ to substi-
tute for security n′ because that may lead to a short position in n” exceed-
ing the lower bound `n”. Thus, in some economies, it can occur that in equi-
librium φ(xn) < Pn for some n.

Theorem 7 has important implications for the characterization of fric-
tional economies. First, the equilibrium price system (X,π) in general
cannot be an extension of the viable cost system (M,φ). Since φ(x) gives
the “arbitrage price” of x for each x ∈ M , in most cases the arbitrage
price is not an achievable equilibrium price (even as x is redundant!). In
contrast, it is known that in frictionless economies the arbitrage price is
the same as the equilibrium price, at least over the marketed payoff span
[e.g., Arrow (1964), Harrison and Kreps (1919) and Ross (1978)]. Next, in
view of π |M 6= φ, (M,φ) cannot be a price system to be used by security
issuers. This explains why we chose to refer to (M,φ) as a cost system.

Theorem 7 also has implications for the economic role of financial inno-
vation. For instance, suppose `n ≥ 0 for each n. Then, φ(x) ≥ π(x) for
each x ∈ M . Now, take any y ∈ M such that y 6= xn for any n ∈ N .
Clearly, φ(y) is the existing minimum portfolio cost for y and π(y), which
may be lower than φ(y), is the price that would prevail if a market would be
opened for y. This means that opening a market for y can reduce the cost
for y. For further discussion on financial innovation in frictional economies,
see Allen and Gale (1988) and Chen (1995).
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7. CONCLUDING REMARKS

In this paper, we have provided a general characterization of a viable
convex cost system. The main conclusion is that a convex cost system is
viable if and only if there is a strictly positive continuous linear functional
lying below the cost functional (over the set of feasible payoffs). This
result is quite general since many types of frictional or frictionless securities
markets can be described by a convex cost system. For some subclasses
of frictional markets, we were also able to show that viability is equivalent
to the generalized extension property which is in turn equivalent to the
absence of free lunches.

There are still some open issues to be resolved in future research. For
instance, can the extension property also be sufficient to guarantee the
viability of a general convex cost system? Can the absence of free lunches
imply viability for a general convex cost system? — Any answer to these
two related questions depends on whether one can weaken the technical
conditions for the existence of a strictly separating hyperplane in infinite
dimensional spaces. Our conjecture is that when X = Lp, for 1 ≤ p < ∞,
the answer to the above two questions is likely to be negative.

The discussion in this paper was cast on a single-period framework where
securities trading takes place only once. It is straightforward to extend the
discussion to a framework in which trading occurs at discrete time points
and in which asset prices and dividends follow discrete-time processes. In
that regard, the set-up in Hansen and Richard (1987) should be helpful.
Extension of our discussion to a continuous-time framework, however, may
not be simple. Hindy (1995) and Jouini and Kallal (1992, 1995) study
viable price processes by assuming specific types of friction. For more
general convex cost systems (M,φ), where M is presumably the convex set
of feasible dividend/price processes and φ maps each process in M to a
minimum hedging cost process, we expect that the viability of (M,φ) will
be equivalent to the existence of some equivalent martingale measure with
respect to which there is a discounted martingale process lying below φ(x)
for each process x ∈M (see Remark 6). We leave this interesting extension
for future research.
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