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We consider the problem of estimating conditional probability distributions
that are multivariate in both the conditioned and conditioning variable sets.
This is an extension of Hall, Racine, and Li (forthcoming), who considered
the case of a univariate conditioned variable but who also considered the more
general case of both irrelevant and relevant conditioning variables. Following
Hall et al. (forthcoming), we use the kernel method with the smoothing param-
eters selected from the cross-validated minimization of a weighted integrated
squared error of the kernel estimator. We derive the rate of convergence of
the smoothing parameters to some non-stochastic optimal smoothing param-
eter values, and establish the asymptotic normal distribution of the resulting
nonparametric conditional probability (density) estimator. Simulations show
that the proposed method performs quite well with a mixture of categorical
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1. INTRODUCTION

In this paper we consider the problem of estimating conditional proba-
bility (density) functions that are multivariate in both the conditioned and
conditioning variable sets. Likelihood cross-validation is known to break
down when modeling ‘fat-tail’ continuous data with commonly used com-
pact support kernels such as the Epanechnikov kernel or thin-tailed kernels
such as the widely used Gaussian kernel (see Hall (1987a,1987b)), and so
we select the smoothing parameters by cross-validated minimization of a
weighted integrated squared error of the kernel estimator. We derive the
rate of convergence of the smoothing parameters to some benchmark non-
stochastic optimal smoothing parameters, and establish the asymptotic
normal distribution of the resulting nonparametric conditional probability
(density) estimator. This paper extends results found in Hall, Racine, and
Li (forthcoming), who consider the case of univariate conditioned variables
and do not derive the rate of convergence of the cross validation selected
smoothing parameters to some benchmark optimal values. However, Hall
et al. (forthcoming) consider both irrelevant and relevant conditioning vari-
ables that we do not address here.

Related work includes that of Hall (1981), who considered bandwidth
selection issues that arise when using the method of Aitchison and Aitken
(1976) when there exist empty cells for categorical data, and who proposed
a robust solution to this problem, Titterington (1980), Wang and Ryzin,
(1981), Hall and Wand (1988), Scott (1992), Simonoff (1996), Li and Racine
(2003), and Racine and Li (2004), to mention only a few. We note that
Tutz (1991) has considered cross-validation for estimating conditional den-
sity functions with mixed variables, though he only shows the consistency
of his proposed estimator and does not establish rates of convergence or
asymptotic distributions.

This paper proceeds as follows. In Section 2 we consider the proposed
nonparametric estimator of the conditional density function in the presence
of categorical and continuous data types; Section 3 reports simulation re-
sults that examine the finite-sample performance of the proposed estimator.
Proofs of the main results are given in Appendices A and B.

2. ESTIMATION OF CONDITIONAL DISTRIBUTIONS

Let Z = (X, Y ) denote a vector of random variables. We assume that
Z consists of k discrete variables and q continuous variables, and we use
Zd to denote a k × 1 vector of discrete variables. In this section, for
expositional simplicity, we will first consider the case where Zd ∈ {0, 1}k.
We use Zc ∈ Rq to denote the continuous components of Z. We also
write X = (Xc, Xd), where Xc ∈ Rp is the continuous components of
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X, and Xd ∈ {0, 1}r is the discrete components of X. Similarly we have
Y = (Y c, Y d), Y c ∈ Rq−p and Y d ∈ {0, 1}k−r.

Let f(z) = f(x, y) denote the joint density function of Z = (X, Y ),
let m(x) denote the marginal density function of X, and let g(y|x) =
f(x, y)/m(x) denote the conditional density of Y given X = x.

We use Zd
t,i to denote the tth component of Zd

i . For Zd
t,i, Zd

t,j ∈ {0, 1},
define a univariate kernel function l(Zd

t,i, Z
d
t,j) = 1 − λ if Zd

t,i = Zd
t,j , and

l(Zd
t,i, Z

d
t,j) = λ if Zd

t,i 6= Zd
t,j , where λ is a smoothing parameter.

Define dzi,zj
= (Zd

i −Zd
j )′(Zd

i −Zd
j ). dzi,zj

; takes values in ∈ {0, 1, 2, . . . , k},
and it equals the number of disagreement components between Zd

i and Zd
j .

The product kernel is given by

L(Zd
i , Zd

j , λ) =
k∏

t=1

l(Zd
t,i, Z

d
t,j) = (1− λ)k−dzi,zj λdzi,zj . (1)

It is straightforward to generalize the above to the case of a k-dimensional
vector of smoothing parameters λ. For simplicity of presentation and with-
out loss of generalization, only scalar λ is treated here. In practice, we
employ multidimensional numerical search routines that indeed allow λ to
differ across variables.

Letting Zc
i,t denote the tth component of Zc

i , letting w(·) be a univariate
kernel function for a univariate continuous variable, and letting W (·) be
the product kernel function for the continuous variables, we have

Wh(Zc
i , Zc

j ) ≡ h−qW

(
Zc

i − Zc
j

h

)
def
= h−q

q∏
t=1

w

(
Zc

i,t − Zc
j,t

h

)
. (2)

To avoid introducing too much notation, we shall use the same notation
L(·) and W (·) to denote the product kernel for Xd and Xc, i.e.,

L(Xd
i , Xd

j , λ) =
r∏

t=1

l(Xd
t,i, X

d
t,j) = (1− λ)r−dxi,xj λdxi,xj , (3)

where dxi,xj
= (Xd

i −Xd
j )′(Xd

i −Xd
j ) equals the number of disagreement

components between Xd
i and Xd

j , and

Wh(Xc
i , Xc

j )
def
= h−pW

(
Xc

i −Xc
j

h

)
= h−p

p∏
t=1

w

(
Xc

i,t −Xc
j,t

h

)
. (4)

Similarly we define

L(Y d
i , Y d

j , λ) =
k−r∏
t=1

l(Y d
t,i, Y

d
t,j) = (1− λ)r−dyi,yj λdyi,yj , (5)
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and

Wh(Y c
i , Y c

j ) = h−(q−p)W

(
Y c

i − Y c
j

h

)
= h−(q−p)

q−p∏
t=1

w

(
Y c

i,t − Y c
j,t

h

)
. (6)

We estimate f(z) by

f̂(z) =
1
n

n∑

i=1

KZi,z, (7)

where KZi,z = LZd
i ,zdWZc

i ,zc , Lzd
i ,zd = L(Zd

i , zd, λ), and WZc
i ,zc = Wh(Zc

i , zc)
are defined in (1) and (2), respectively.

Similarly, we estimate the marginal density m(x) by

m̂(x) =
1
n

n∑

i=1

KXi,x, (8)

where KXi,x = LXd
i ,xdWXc

i ,xc , LXd
i ,xd = L(Xd

i , xd, λ) and WXc
i ,xc =

Wh(Xc
i , xc) are defined in (3) and (4), respectively.

Therefore, we estimate g(y|x) = f(x, y)/m(x) by

ĝ(y|x) =
f̂(x, y)
m̂(x)

. (9)

It is well established that maximum-likelihood cross-validation methods
do not lead to consistent estimation for fat-tail distributions with the kernel
functions typically used in practice (Hall (1987a,b)). Therefore, we will
choose the smoothing parameters by cross-validation methods that involve
the minimization of a weighted integrated square error. We first introduce
some notation. We will use subscripts i, j, and l to denote observations
(i.e.,

∑
i =

∑n
i=1,

∑
i

∑
j 6=i =

∑n
i=1

∑n
j=1,j 6=i, etc.). When zd, xd, and

yd appear as the summation index, it runs over the support of zd: Dz =
{0, 1}k, the support of xd: Dx = {0, 1}r, and the support of yd: Dy =
{0, 1}k−r, i.e.,

∑
zd =

∑
zd∈Dz

,
∑

xd =
∑

xd∈Dx
, and

∑
yd =

∑
yd∈Dy

.
Using the notation

∫
dz =

∑
zd

∫
dzc, a weighted integrated square dif-

ference between ĝ(·) and g(·) is given by

In =
∫

[ĝ(y|x)− g(y|x)]2m(x) dz

=
∫

[ĝ(y|x)]2m(x) dz − 2
∫

ĝ(y|x)g(y|x)m(x) dz +
∫

[g(y|x)]2m(x) dz

≡ I1n − 2I2n + I3n, (10)
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where I1n =
∫

[ĝ(y|x)]2m(x) dz, I2n =
∫

ĝ(y|x)g(y|x)m(x) dz, and I3n =∫
[g(y|x)]2m(x) dz. The reason for choosing m(x) as the weight function

in (9) will become apparent later. Note that I3n is independent of (h, λ).
Therefore, minimizing In over (h, λ) is equivalent to minimizing I1n−2I2n.

Define

Ĝ(x) =
∫

[f̂(x, y)]2dy = n−2
∑

i

∑

j

KXi,xKXj ,x

∫
KYi,yKYj ,ydy

= n−2
∑

i

∑

j

KXi,xKXj ,xK
(2)
Yi,Yj

, (11)

where K
(2)
Yi,Yj

=
∫

KYi,yKYj ,ydy ≡ ∑
yd

∫
KYi,yKYj ,ydyc is the second order

convolution kernel, KYi,y = WYi,yLYi,y, LYi,y = L(Yi, y, λ), and WYi,y =

h−(q−p)W
(

Yi−y
h

)
are defined by (5) and (6), respectively.

Using (10), we have

I1n =
∫ ∫

[ĝ(y|x)]2m(x) dz =
∫ ∫

[f̂(x, y)]2dy

[m̂(x)]2
m(x) dx

=
∫

Ĝ(x)
[m̂(x)]2

m(x) dx = EX

[
Ĝ(X)

[m̂(X)]2

]
, (12)

where EX(·) denotes the expectation with respect to X only (not with
respect to the random observations {Zi}n

i=1).
Also,

I2n =
∫

ĝ(y|x)g(y|x)m(x) dz =
∫

ĝ(y|x)f(x, y) dxdy

=
∫ [

f̂(x, y)
m̂(x)

]
f(x, y) dx = EZ

[
f̂(Z)
m̂(X)

]
, (13)

where EZ denotes the expectation with respect to Z only (not with respect
to the random observations {Zi}n

i=1).
From (11) and (12) we see that by choosing m(x) as the weighting func-

tion, we can write I1n and I2n in simple forms, enabling us to construct
simple estimators for them.

Therefore, minimizing In is equivalent to minimizing I1n−2I2n given by

I1n − 2I2n = EX

{
Ĝ(X)

[m̂(X)]2

}
− 2EZ

[
f̂(X, Y )
m̂(X)

]
. (14)

Equation (14) suggests that in practice, one can replace the expectations
EX and EZ by their sample analogues. However, some caution is needed.
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Let us consider I2n first. When replacing EZ [f̂(X, Y )/m̂(X)] by its sample
analogue n−1

∑n
l=1 f̂(Xl, Yl)/m̂(Xl), one needs to use the leave-one-out

estimators for f̂(Xl, Yl) and m̂(Xl) given by

f̂−l(Xl, Yl) = n−1
n∑

i=1,i 6=l

KZi,Zl
, (15)

and

m̂−l(Xl) = n−1
n∑

i=1,i 6=l

KXi,Xl
. (16)

This is because, in the definition of EZ [f̂(X, Y )/m̂(X)], the Z variable
must be treated as independent of the observations that are used to esti-
mate f̂(Z) and m̂(X). The leave-one-out estimator insures that Zi and Zl

are independent of each other (since i 6= l).
Similarly, one should also use a leave-one-out estimator for G(Xl) given

by

Ĝ−l(Xl) = n−2
∑

i 6=l

∑

j 6=l

KXi,Xl
KXj ,Xl

K
(2)
Yi,Yj

. (17)

Therefore, replacing EX(·) and EZ(·) by their sample analogues in (14),
we obtain

CV (h, λ)
def
=

1
n

n∑

l=1

Ĝ−l(Xl)
[m̂−l(Xl)]2

− 2
n

n∑

l=1

f̂−l(Xl, Yl)
m̂−l(Xl)

, (18)

where f̂−l(Xl, Yl), m̂−l(Xl), and Ĝ−l(Xl) are the leave-one-out estimators
given in (15), (16), and (17), respectively.

We will choose (λ, h) to minimize CV (h, λ), defined in (18), and we will
use (ĥ, λ̂) to denote this cross-validation choice of (h, λ).

The following assumptions will be used.
(A1) (i) {Zi}n

i=1 = {Xi, Yi}n
i=1 is i.i.d. as Z = (X, Y ). (ii) Let f(z) be

the joint density of Z, and m(x) be the marginal density of X, f(zc, zd)
(or m(xc, xd)) is four times continuously differentiable with respect to its
continuous arguments for all zd ∈ Dz (xd ∈ Dx). (iii) infx∈Sxm(x) ≥ δ > 0
for some positive δ.

(A2) (i) The kernel function w(·) is non-negative, bounded, and sym-
metric around zero; also

∫
w(v) dv = 1,

∫
w(v)v4 dv < ∞. (ii) h̃ lies in a

shrinking set Hn = [h, h̄], where h ≥ Cnδ−q, h̄ ≤ Cn−δ for some C > 0
and δ > 0.

(A3) Define mλ(xc, xd) =
∑p

s=0

∑
xd
1 ,dx,x1=s(1 − λ)1−sλsm(xc, xd

1),
fλ(zc, zd) =

∑q
s=0

∑
zd
1 ,dz,z1=s(1− λ)1−sλsf(zc, zd

1), and
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gλ(y|x) = fλ(x, y)/mλ(x). Then
∫

[gλ(y|x) − g(y|x)]2m(x) dxdy > 0 for
λ 6= 0.

(A1) (iii) rules out the case where X has an unbounded support. This
assumption is not crucial and can be relaxed. When X has an unbounded
support, one needs to introduce a trimming parameter to trim out ob-
servations near the boundary. The proof will be more tedious. Roughly
speaking (A2) (ii) requires h satisfy the usual conditions of h = o(1) and
(nhq)−1 = o(1) (e.g., Härdle and Marron (1985)). (A3) is only used to
prove that λ̂ = op(1). It can be removed by assuming that λ̂ takes values
in a shrinking set, say, Λn = [0, C0/ log(n)] for some C0 > 0.

Letting CV0(h, λ) denote the leading term of CV (h, λ), in Appendix A
we show that

CV0(h, λ) = D1h
4 −D2h

2λ + D3λ
2 + D4(nhq)−1, (19)

where Dj ’s are some constants defined in Appendix A. Letting (ho, λo)
denote the values of (h, λ) that minimize CV0(h, λ), simple calculus shows
that

ho = c1n
−1/(4+q) and λo = c2n

−2/(4+q), (20)

where c1 = {pD4/(4[D1 − D2
2/(4D3)])}1/(4+p) and c2 = D2c

2
1/(2D3). We

interpret ho and λo as non-stochastic optimal smoothing parameters.
Theorem 1 below establishes the rate of convergence of (ĥ, λ̂) to (ho, λo).

Theorem 1. Under assumptions (A1) to (A3), we have

(ĥ− ho)/ho = Op(n−α/(4+q)) and λ̂− λo = Op(n−β),

where α = min{2, q/2} and β = min{1/2, 4/(4 + q)}.
The proof of Theorem 1 is given in Appendix A. By the result of Theorem

1, it is easy to show that

Theorem 2.

Under assumptions (A1) to (A3), we have

√
nĥp(ĝ(y|x)− g(y|x)− ĥ2B1(z)− λ̂B2(z)) → N(0,Ω(z)) in distribution,

where

B1(z) = (1/2)(1/m(z))tr[∇2f(z)][
∫

w(v)v2dv],

B2(z) = (1/m(z))
∑

z̃d,dz,z̃=1

[f(zc, z̃d)− f(zc, zd)],
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and Ω(z) = [f(z)/m2(x)][
∫

W 2(v)dv] (∇2 is with respect to zc).

Up to now we have assumed that the discrete variable zd is a multivariate
binary variable. It is straightforward to generalize our results to the more
general case to which we now turn.
The General Categorical Data Case

Assume that Zd
t,i takes ct ≥ 2 different values, i.e., Zd

t,i ∈ {0, 1, ..., ct−1},
t = 1, ..., k. We use Dz =

∏k
t=1{0, 1, ..., ct−1} to denote the range assumed

by Zd
i . For Zd

i , Zd
j ∈ Dz. Following Aitchison and Aitken (1976) we use

a univariate kernel function: l(Zd
t,i, Z

d
t,j , λ) = 1 − λ if Zd

t,i = Zd
t,j , and

l(Zd
t,i, Z

d
t,j , λ) = λ/(ct − 1) if Zd

t,i 6= Zd
t,j . Define an indicator function

1(Zd
t,i 6= Zd

t,j), which takes value 1 if Zd
t,i 6= Zd

t,j , and 0 otherwise. Also, de-
fine dzi,zj

=
∑k

t=1 1(Zd
t,i 6= Zd

t,j), which equals the number of disagreement
components between Zd

i and Zd
j . Then the product kernel for the discrete

variables is defined by

L(Zd
i , Zd

j , λ) =
k∏

t=1

l(Zd
t,i, Z

d
t,j , λ) = c0(1− λ)k−dzi,zj λdzi,zj , (21)

where c0 =
∏k

l=1 1(Zd
t,i 6= Zd

t,j)/(ct−1). The product kernels L(Xd
i , Xd

j , λ)
and L(Y d

i , Y d
j , λ) are similarly defined. One can show that the results

of Theorem 1 and Theorem 2 remain unchanged with the above product
kernels, and the above definition of dzi,zj

.
In the above we have assumed that the discrete variables do not have a

natural ordering, examples of which would include different regions, eth-
nicity, and so on. In practice, discrete variables may have some natural
orderings, examples of which would include preference orderings (like, in-
difference, dislike), health (excellent, good, poor), and so forth. In this case
Aitchison and Aitken (1976, p.29) suggest using the kernel weight function:
l(Zd

t,i, Z
d
t,j , λ) = c(ct, s)λs(1− λ)ct−s when |Zd

t,i − Zd
t,j | = s ( 0 ≤ s ≤ ct ),

where (c(ct, s) = ct!/[s!(ct− s)!]. The results of Theorem 1 and Theorem 2
can also be easily extended to cover the case for which some of the discrete
variables have natural orderings while others do not.

3. SIMULATIONS

We now consider the finite-sample performance of the proposed method
under a variety of scenarios. Though the theory we present is an extension
of Hall at al. (forthcoming) to multivariate conditioned sets, we restrict
attention in the following simulations to a univariate conditioned set for
ease of interpretation. While Hall et al. (forthcoming) consider simulations
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involving continuous Y , here we consider those involving discrete Y , a
popular setting in economic applications. We assume that interest lies
in predicting Pr[Y = y|Xi1, . . . ], and in estimating how this probability
responds to changes in the conditioning variables. The kernel estimator
ĝ(Y |x) is given in (9) and the gradient estimator is given by

∇xĝ(y|x) =
m̂(x)∇xf̂(x, y)− f̂(x, y)∇xm̂(x)

[m̂(x)]2
. (22)

We begin with a simple example in which X1 and X2 are both U [−4, 4].
Y is a binary variate ∈ {0, 1} and is conditionally determined by

DGP1 : Y =
{

1 if X1 + X2 + ε > 0
0 otherwise , (23)

where ε is a white noise N(0, σ2
ε ) error term with σε = 1.

The median predicted conditional probability and that for the Probit
model for a sample size of n = 100 are plotted in Figure 1, while Table
1 computes the average confusion matrices and classification rates for two
sample sizes, n = 100 and n = 1, 000, allowing us to assess the cost of not
knowing the parametric form of the underlying DGP.

We begin with a simple example in which X1 and X2 are both U [−4,4]. Y is a binary variate

∈ {0,1} and is conditionally determined by

DGP1 : Y =

{

1 if X1 +X2 + ε > 0
0 otherwise , (2.23)

where ε is a white noise N(0,σ2
ε) error term with σε = 1.

The median predicted conditional probability and that for the Probit model for a sample size

of n = 100 are plotted in Figure 1, while Table 1 computes the average confusion matrices and

classification rates for two sample sizes, n = 100 and n = 1,000, allowing us to assess the cost of

not knowing the parametric form of the underlying DGP.
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Figure 1: Median kernel and Probit estimates of the conditional probability that Y = 1. The Probit
estimate is the figure on the right. The contour line on the horizontal plane represents the boundary
between the estimated conditional probability that Y = 0 and Y = 1 for a sample size of n = 100
based on 5,000 Monte Carlo replications.

This situation is often modeled with a Probit specification. We are interested in how well the

proposed method performs relative to a parametric model. As expected from Table 1, we observe

that the parametric methods perform better than the nonparametric approach. Table 1 considers

how this efficiency loss behaves as the sample size increases from n = 100 to n = 1,000, and

we witness the consistent nature of the nonparametric approach being revealed as the sample size

increases.

8

FIG. 1. Median kernel and Probit estimates of the conditional probability that
Y = 1. The Probit estimate is the figure on the right. The contour line on the horizontal
plane represents the boundary between the estimated conditional probability that Y = 0
and Y = 1 for a sample size of n = 100 based on 5, 000 Monte Carlo replications.

This situation is often modeled with a Probit specification. We are inter-
ested in how well the proposed method performs relative to a parametric
model. As expected from Table 1, we observe that the parametric meth-
ods perform better than the nonparametric approach. Table 1 considers
how this efficiency loss behaves as the sample size increases from n = 100
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TABLE 1.

Confusion matrix and classification rates for the proposed method and
that from a Probit model. The upper table is that for n = 100

while the lower is for n = 1, 000.

Kernel Probit

A/P 0 1 A/P 0 1

0 481.0 63.5 0 492.9 51.5

1 63.4 481.2 1 51.7 492.8

%Correct 88.4% %Correct 90.5%

%CCR(0) 88.3% %CCR(0) 90.5%

%CCR(1) 88.4% %CCR(1) 90.5%

Kernel Probit

A/P 0 1 A/P 0 1

0 493.5 51.1 0 495.4 49.1

1 51.2 493.2 1 49.1 495.4

%Correct 90.6% %Correct 91.0%

%CCR(0) 90.6% %CCR(0) 91.0%

%CCR(1) 90.6% %CCR(1) 91.0%

to n = 1, 000, and we witness the consistent nature of the nonparametric
approach being revealed as the sample size increases.

Next we consider a situation in which X1 and X2 are both U [−4, 4]. Y
is a binary variate ∈ {0, 1} and is conditionally determined by

DGP2 : Y =
{

1 if − 2 < X1 + ε1 < 2 and − 2 < X2 + ε2 < 2
0 otherwise ,

(24)
where ε1 and ε2 are white noise N(0, σ2

ε ) error terms with σε = 0.1. Note
that the Probit model is misspecified for DGP2 because it uses a mis-
specified index function β1X1 + β2X2. The median predicted conditional
probability along with the gradient with respect to X1 are plotted in Figure
2.

This is a case in which the Probit model completely breaks down, as
can be seen from an examination of Table 2. The Probit specification uses
none of the conditioning information contained in X1 and X2 and simply
predicts all zeros. The gradients from the Probit model are therefore zero
everywhere and again none of the estimated parameters in the Probit model
is significant except for the constant.

More interesting cases arise when considering conditional prediction of
multinomial categorical data. These situations are frequently encountered
in practice. Using a multinomial Probit approach, for example, raises a
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Figure 2: Median kernel estimate of the conditional probability that Y = 1 and the gradient with
respect to X1. The contour line on the horizontal plane represents the boundary between the esti-
mated conditional probability that Y = 0 and Y = 1 for a sample size of n = 1,000 based on 5,000
Monte Carlo replications.

Table 2: Confusion matrix and classification rates for the proposed method and that from a Probit
model.

Kernel Probit
A/P 0 1 A/P 0 1
0 799.2 33.8 0 830.5 2.5
1 36.9 219.1 1 256.0 0.0
%Correct 93.5% %Correct 76.3%
%CCR(0) 95.9% %CCR(0) 99.7%
%CCR(1) 85.6% %CCR(1) 0.0%

we consider a multinomial categorical data case.

DGP3 : Y =







1 if X1 + ε1 > 0 and X2 + ε2 > 0
2 if X1 + ε1 < 0 and X2 + ε2 < 0
0 otherwise

, (2.25)

where ε1 and ε2 represent white noise N(0,σ2
ε) with σε = 0.1. For DGP3 a standard multinomial

10

FIG. 2. Median kernel estimate of the conditional probability that Y = 1 and the
gradient with respect to X1. The contour line on the horizontal plane represents the
boundary between the estimated conditional probability that Y = 0 and Y = 1 for a
sample size of n = 1, 000 based on 5, 000 Monte Carlo replications.

TABLE 2.

Confusion matrix and classification rates for the proposed method and
that from a Probit model.

Kernel Probit

A/P 0 1 A/P 0 1

0 799.2 33.8 0 830.5 2.5

1 36.9 219.1 1 256.0 0.0

%Correct 93.5% %Correct 76.3%

%CCR(0) 95.9% %CCR(0) 99.7%

%CCR(1) 85.6% %CCR(1) 0.0%

number of issues such as normalization, identification, and specification of
multiple indices. The proposed method does not suffer from any of these
issues. Below we consider a multinomial categorical data case.

DGP3 : Y =





1 if X1 + ε1 > 0 and X2 + ε2 > 0
2 if X1 + ε1 < 0 and X2 + ε2 < 0
0 otherwise

, (25)

where ε1 and ε2 represent white noise N(0, σ2
ε ) with σε = 0.1. For DGP3 a

standard multinomial Probit model is misspecified because (25) does not
have the conventional index functional form.

Both the median kernel and Probit estimators of Pr[Y = 0|X1, X2] are
plotted in Figure 3 below, while the confusion matrices and classification
rates appear in Table 3. As can be seen, the multinomial Probit model
cannot consistently model this situation and the gradients in particular
from the Probit approach will be totally misleading.

The proposed estimator can readily model nonlinear conditional pre-
diction of binary and multinomial categorical data without requiring the
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Figure 3: Median kernel and Probit estimates of the conditional probability that Y = 0 for a sample
size of n = 100 based on 5,000 Monte Carlo replications. The Probit results are presented in the
rightmost figure.

The proposed estimator can readily model nonlinear conditional prediction of binary and multi-

nomial categorical data without requiring the researcher to specify functional forms for indices and

distributions of the errors. The method only has a slight finite-sample efficiency loss compared to

parametric estimators based on correctly specified models, while it completely dominates paramet-

ric estimators when the parametric model is misspecified.

4 Conclusion

This paper presents a nonparametric approach to the estimation of a multivariate conditional prob-

ability density function when faced with mixed categorical and continuous data and multivariate
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FIG. 3. Median kernel and Probit estimates of the conditional probability that
Y = 0 for a sample size of n = 100 based on 5, 000 Monte Carlo replications. The Probit
results are presented in the rightmost figure.

TABLE 3.

Confusion matrix and classification rates for the proposed method and
that from a Probit model.

Kernel Probit

A/P 0 1 2 A/P 0 1 2

0 252.6 19.4 0.3 0 223.5 48.8 0.0

1 19.0 506.6 18.9 1 49.6 446.4 48.6

2 0.3 19.7 252.3 2 1.2 48.5 222.6

%Correct 92.9% %Correct 82.0%

%CCR(0) 92.8% %CCR(0) 82.1%

%CCR(1) 93.0% %CCR(1) 82.0%

%CCR(2) 92.7% %CCR(2) 81.8%

researcher to specify functional forms for indices and distributions of the
errors. The method only has a slight finite-sample efficiency loss com-
pared to parametric estimators based on correctly specified models, while
it completely dominates parametric estimators when the parametric model
is misspecified.

4. CONCLUSION

This paper presents a nonparametric approach to the estimation of a mul-
tivariate conditional probability density function when faced with mixed
categorical and continuous data and multivariate conditioned and condi-
tioning variable sets. The approach can be useful in a wide variety of
situations, and does not place the burden of correct specification on the
researcher. The simulations presented in this paper highlight both the
consistency and the flexibility of the proposed approach for a variety of
situations.
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APPENDIX A

Proof of Theorem 1.

In Appendix A we will use (s.o.) to denote terms of smaller orders, or
terms independent of (h, λ). For example, for An = An(h, λ) and Bn =
Bn(h, λ), if we write An = Bn +(s.o.), then (s.o.) contains terms of smaller
orders than Bn and the terms that are independent of (h, λ).

In order to save space, we will not distinguish between n−1 and (n−1)−1,
etc., since these will not change the conclusions in the proofs below. Also,
we will write m̂(Xl) to denote m̂−l(Xl), etc.

The random denominator m̂ in CV (h, λ) is difficult to handle from a
theoretical point of view. This is dealt with by using the following identity:

1
m̂(Xl)

=
1

m(Xl)
+

m̂(Xl)−m(Xl)
m(Xl)m̂(Xl)

. (A.1)

By the uniform consistency of m̂ to m and given that m is bounded below
in its support (see Lemma A.1), the second term is negligible compared to
the first. Using CV1(h, λ) to denote CV (h, λ) when m̂ is replaced by m,
from (18) we have

CV1(h, λ) = n−1
∑

l

Ĝ(Xl)
[m(Xl)]2

− 2n−1
∑

l

f̂(Xl, Yl)
m(Xl)

. (A.2)

Using (17), we have

E

{
Ĝ(Xl)

[m(Xl)]2

}
= E


n−2

∑
i 6=l

∑
j 6=l K

(2)
Yi,Yj

KXi,Xl
KXj ,Xl

m2(Xl)




= n−1E

[
K

(2)
Yi,Yi

(KXi,Xl
)2

m2(Xl)

]

+ E


K

(2)
Yi,Yj

KXi,Xl
KXj ,Xl

m2(Xl)


 , (A.3)

where the first term corresponds to i = j and the second term corresponds
to i 6= j. In the above we ignore the difference between n, and (n−1) since
they will not change the order of the quantities we analyze.
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Defining Jn = E[CV1(h, λ)], then, by (A.2) and (A.2), we have

Jn
def
= E(CV1)

= n−1E

[
K

(2)
Yi,Yi

(KXi,Xl
)2

m2(Xl)

]
+ E


K

(2)
Yi,Yj

KXi,XKXj ,Xl

m2(Xl)




−2E

[
KZi,Zl

m(Xl)

]

= Jn,1 + Jn,2 − 2Jn,3, (A.4)

where the definition of Jn,j (j = 1, 2, 3) should be apparent.
From Lemma 2 and Lemma 3, we know that

Jn = Jn,1+Jn,2−2Jn,3 = D1h
4−D2h

2λ+D3λ
2+D4(nhq)−1+(s.o.), (A.5)

where (s.o.) denote terms of smaller orders, or terms independent of (h, λ).
Lemma 4 shows that

CV1 ≡ Ĵn,1 + Ĵn,2 − 2Ĵn,3

= Jn,1 + Jn,2 − 2Jn,3

+ Op

(
(h2 + λ)3 + n−1/2(h2 + λ) + (nhq/2)−1

)
. (A.6)

Define CV2 = CV −CV1. Using (A.1) and Lemma 1, one can easily show
that

CV2 = Op(h2 + λ)Op(CV1) = Op

(
(h2 + λ)3

)
. (A.7)

(A.5) and (A.7) give us

CV (h, λ) = CV1 + CV2

= CV0 + Op((h2 + λ)3 + n−1/2
(
h2 + λ + (nhq)−1/2)

)
, (A.8)

where CV0 = Jn,1 + Jn,2 + Jn,3.
From (A.7) one can show that (ĥ−ho)/ho = Op(n−α/(4+q)) and λ̂−λo =

Op(n−β), where α and β are defined as in Theorem 1. We briefly discuss
how this is done.

From (A.7) we know that ĥ − ho = op(ho) and λ̂ − λo = op(λo). Note
that when q ≤ 3, (ĥ2 + λ̂)3 = op

(
n−1/2(h2 + λ + (nhq/2)−1

)
. Therefore,

we have

CV (h, λ) = CV0 + Op

(
n−1/2(h2 + λ + (nhq)−1/2)

)
+ (s.o.). (A.9)
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Define h1 = ĥ − ho and λ1 = λ̂ − λo, and note that h1 (λ1) has an
order smaller than ho (λo). Since (ĥ, λ̂) minimizes (A.9), we must have
(ĥ)4−h4

o = (ho +h1)4−h4
o = 4h3

oh1 +(s.o.) = O
(
n−1/2ĥ2) = O(n−1/2h2

o

)
,

which gives h1ho = Op(n−1/2), or h1/ho ≡ (ĥ− ho)/ho = Op(n−1/[2(4+q)]).

Similarly, we have λ̂2−λ2
o = 2λ̂λo +(s.o.) = Op

(
n−1/2λ̂

)
= Op

(
n−1/2λo

)
,

which gives λ1 ≡ λ̂ − λo = Op(n−1/2). Summarizing the above we have,
for q ≤ 3,

(ĥ− ho)/ho = Op

(
n−1/[2(4+q)]

)
and λ̂− λo = Op

(
n−1/2

)
. (A.10)

When q ≥ 4, we have

CV (h, λ) = CV0 + Op

(
(h2 + λ)3

)
+ (s.o.). (A.11)

From (A.11) it is easy to see that (ĥ)4 − h4
o = 4h3

oh1 + (s.o.) = O(ĥ6) =
O(h6

o), which leads to h1 = Op(h3
o), or h1/ho = Op(h3). Also, λ̂2 − λ2

o =
2λ̂λo + (s.o.) = Op(λ̂3) = Op(λ3

o), which gives λ1 ≡ λ̂ − λo = Op(λ2
o) =

Op(h4
o) (because λo = O(h2

o)). Thus we have for q ≥ 4,

(ĥ− ho)/ho = Op

(
n−2/(4+q)

)
and λ̂− λo = Op

(
n−4/(4+q)

)
. (A.12)

(A.10) and (A.12) prove Theorem 1.

Proof of Theorem 2

Define f̃(z) and m̃(x) the same way as f̂(z) and m̂(z) but with (ĥ, λ̂)
being replaced by (ho, λo). Then it is easy to show that

E[f̃(z)]− f(z) = h2
oB1(z) + λoB2(z) + O((h2

o + λ)2), (A.13)

V ar(f̃(z)) = (nhq)−1[Ω(z) + O(h2 + λo)], (A.14)

and

m̃(x)−m(x) = Op(h2
o + λo). (A.15)

(A.13), (A.14), and (A.15) imply that (using Lyapunov’s CLT)
√

nhq[g̃(z)− g(z)− (h2
oB1(z) + λoB2(z))m(z)]

→ N(0,Ω(z)) in distribution, (A.16)

where g̃(y|x) = f̃(z)/m̃(x), and where B1(z) and B2(z) are defined as in
Theorem 2.
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Using Theorem 1, (A.15), and a Taylor expansion argument, one can
easily show that

√
nĥq(ĝ(z)− g(z)− ĥ2B1(z)− λ̂B2(z))

→ N(0,Ω(z)) in distribution. (A.17)

This completes the proof of Theorem 2.

APPENDIX B

Lemma 1. (i) supx∈Dx
|m̂(x)−m(x)| = O(h) a.s.

(ii) supz∈Dz
|ĝ(y|x)− g(y|x)| = O(h) a.s.

Proof: First note that ĥ = o(1) by Assumption (A2), and using Assump-
tion (A3), one can show that λ̂ = op(1). The remaining steps are similar
to the proof of Lemma 1 of Härdle and Marron (1985), and are therefore
omitted here.

Lemma 2. Jn,1 = D4(nhq)−1 + O((nhq)−1(h2 + λ)),
where D4 is constant defined in the proof below.

Proof: Define

Gh(zd, zd
1) = h−2q

∫
W 2

(
zc
1 − zc

h

)
f(zc

1, z
d
1)m−1(xc, xd) dzc dzc

1. (B.1)

From Jn,1 = n−1E
[
K

(2)
Yi,Yi

(KXi,Xl
)2/m2(Xl)

]
, and K

(2)
Yi,Yi

=
∫

[KYi,y]2dy,
we have

nJn,1

=E
[
K

(2)
Yi,Yi

(KXi,Xl
)2/m2(Xl)

]
=

∫
E

{
[Ky,Y1 ]

2[KX1,X2 ]
2/m2(X2)

}
dy

=
∫ [

K2
y,y1

K2
x1,x/m(x)

]
f(z1) dz1dy dx =

∫ [
K2

z,z1
/m(x)

]
f(z1) dz1 dz

=
∑

zd

∑

zd
1

L2
zd,zd

1
h−2q

∫
W 2((zc

1 − zc)/h)f(zc, zd)m−1(xzc
1, x

d
1) dzc dzc

1

=
∑

zd

∑

zd
1

L2
zd,zd

1
Gh(zd, zd

1)

=(1− λ)2q
∑

zd

Gh(zd, zd) + λ(1− λ)2q−1
∑

zd

∑

zd
1 ,dz1,z=1

Gh(zd, zd
1) + O(λ2)
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=(1− 2qλ)
∑

zd

Gh(zd, zd) + λ
∑

zd

∑

zd
1 ,dz1,z=1

Gh(zd, zd
1) + O(λ2)

=(1− 2qλ)T0,h + λT1,h + O(λ2)

=T0,h + λ(T1,h − 2qT0,h) + O(λ2), (B.2)

where

T0,h =
∑

zd

Gh(zd, zd)

T1,h =
∑

zd

∑

zd
1 ,dz1,z=1

Gh(zd, zd
1). (B.3)

Applying change-of-variables to (B.1), we have

Gh(zd, zd
1) = h−2q

∫
W 2

(
zc
1 − zc

h

)
f(zc

1, z
d
1)m−1(xc, xd) dzc dzc

1

= h−q

∫
W 2(v)f(zc + hv, zd

1)m−1(xc, xd) dzc dv

= h−q
[
G0(zd, zd

1) + O(h2)
]
, (B.4)

where

G0(zd, zd
1) =

[∫
f(zc, zd

1)m−1(xc, xd) dzc

] [∫
W 2(v) dv

]
. (B.5)

Substituting (B.3) into (B.2), we get

T0,h = h−q
∑

zd

G0(zd, zd) + O(h2−q) ≡ h−qT0,0 + O(h2−q)

T1,h = h−q
∑

zd

∑

zd
1 ,dz1,z=1

G0(zd, zd
1) + O(h2−q)

≡ h−qT1,0 + O(h2−q), (B.6)

where T0,0 =
∑

zd G0(zd, zd), T1,0 =
∑

zd

∑
zd
1 ,dz1,z=1 G0(zd, zd

1) with
G0(zd, zd

1) given in (B.5).

Substituting (B.5) into (B.2), we have

Jn,1 = n−1
[
T0,h + λ(T1,h − 2qT0,h) + O(λ2)

]

= (nhq)−1
[
T0,0 + λ(T1,0 − 2qT0,0) + O(h2) + O(λ2)

]

= D4(nhq)−1 + O((nhq)−1(λ + h2)), (B.7)
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where D4 = T0,0 (D4 > 0).

Lemma 3. Jn,2 − 2Jn,3 = D0 + D1h
4 −D2λh2 + D3λ

2 + O((h2 + λ)2),
where Dj’s (j = 0, 1, ..., 4) are some constants defined in the proof below.

Proof: We first consider Jn,3. Define

Mh(zd, zd
1) =

∫ [
W (zc, zc

1)/m(xc, xd)
]
f(zc

1, z
d
1)f(zc, zd) dzc dzc

1. (B.8)

We have

Jn,3 = E [KZi,Zl/m(Xl)] = E
[
LZd

i ,Zd
l
WZc

i ,Zc
l
/m(Xl)

]

=
∑

zd
1

∑

zd

Lzd
1 ,zd

∫ [
W (zc, zc

1)/m(xc, xd)
]
f(zc

1, z
d
1)f(zc, zd) dzc dzc

1

≡
∑

zd
1

∑

zd

Lzd
1 ,zdMh(zd, zd

1)

= (1− λ)q
∑

zd

Mh(zd, zd) + λ(1− λ)q−1
∑

zd

∑

zd
1 ,dz1,z=1

Mh(zd, zd
1)

+λ2(1− λ)q−2
∑

zd

∑

zd
1 ,dz1,z=2

Mh(zd, zd
1) + O(λ3)

= (1− qλ + q(q − 1)λ2/2)
∑

zd

Mh(zd, zd)

+λ(1− (q − 1)λ)
∑

zd

∑

zd
1 ,dz1,z=1

Mh(zd, zd
1)

+λ2
∑

zd

∑

zd
1 ,dz1,z=2

Mh(zd, zd
1) + (s.o.)

= (1− qλ + q(q − 1)λ2/2)A0,h + λ(1− (q − 1)λ)A1,h + λ2A2,h + (s.o.)

= A0,h + λ(A1,h − qA0,h)

+ λ2 {A2,h − (q − 1)A1,h + [q(q − 1)/2] A0,h}+ (s.o.), (B.9)

where

A0,h =
∑

zd

Mh(zd, zd),

A1,h =
∑

zd

∑

zd
1 ,dz1,z=1

Mh(zd, zd
1)

A2,h =
∑

zd

∑

zd
1 ,dz1,z=2

Mh(zd, zd
1). (B.10)
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Applying change-of-variables to (B.8), we get

Mh(zd, zd
1) = h−q

∫ [
W

(
zc − zc

1

h

)
/m(xc, xd)

]
f(zc

1, z
d
1)f(zc, zd) dzc dzc

1

=
∫

W (v)
[
m(xc, xd)

]−1
f(zc + hv, zd

1)f(zc, zd) dzc dv

= M0(zd, zd
1) + h2M2(zd, zd

1) + h4M4(zd, zd
1) + o(h4), (B.11)

where

M0(z
d, zd

1) =

∫
[m(xc, xd)]−1f(zc, zd

1)f(zc, zd) dzc,

M2(z
d, zd

1) = (1/2)

∫
[m(xc, xd)]−1W (v)v′∇2f(zc, zd

1)vf(zc, zd) dzc dv,

M4(z
d, zd

1) =

∫
[m(xc, xd)]−1W (v)v(4)∇4f(zc, zd

1)vf(zc, zd) dzc dv, (B.12)

where

v(4)∇4f(zc, zd) = (1/4!)
∑

k1+k2+k3+k4=4

∏k
s=1(vs)ks∂4f(zc, zd)∏k

s=1 ∂(zc
s)ks

denotes the fourth order Taylor expansion (vs and zc
s are the sth compo-

nents of v and zc, respectively).
Next we consider Jn,2. Define

Qh(zd, zd
1 , zd

2) =
∫

Wzc
1,zcWzc

2,zc [m(xc, xd)]−1f(zc
1, z

d
1)f(zc

2, z
d
2)dzc

1dzc
2 dzc.

(B.13)
We have

Jn,2

=E
[
K

(2)
Yi,Yj

KXi,Xl
KXj ,Xl

/m2(Xl)
]

=
∫

E
[
KYi,yKYj ,yKXi,Xl

KXj ,Xl
/m2(Xl)

]
dy

=
∫

[Ky1,yKy2,yKx1,xKx2,x/m(x)] f(z1)f(z2) dz1 dz2 dxdy

=
∫

[Kz1,zKz2,z/m(x)]f(z1)f(z2) dz1 dz2 dz

=
∑

zd

∑

zd
1

∑

zd
2

Lzd,zd
1
Lzd,zd

2

∫
[W (zc

1, z
c
1)W (zc, zc

2)/m(x)]f(z1)f(z2) dzc
1 dzc

2 dzc
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=
∑

zd

∑

zd
1

∑

zd
2

Lzd,zd
1
Lzd,zd

2
Qh(zd, zd

1 , zd
2)

=(1− λ)2q
∑

zd

Qh(zd, zd, zd)

+λ(1− λ)2q−1





∑

zd

∑

zd
1 ,dz,z1=1

Qh(zd, zd
1 , zd) +

∑

zd

∑

zd
2 ,dz,z2=1

Qh(zd, zd, zd
2)





+λ2(1− λ)2q−2





∑

zd

∑

zd
1 ,dz,z1=2

Qh(zd, zd
1 , zd) +

∑

zd

∑

zd
2 ,dz,z2=2

Qh(zd, zd, zd
2)

+
∑

zd

∑

zd
1 ,dz1,z=1

∑

zd
2 ,dz2,z=1

Qh(zd, zd
1 , zd

2)



 + O(λ3)

=(1− 2qλ + q(2q − 1)λ2)
∑

zd

Qh(zd, zd, zd)

+λ(1− (2q − 1)λ)
∑

zd

∑

zd
1 ,dz,z1=1

2Qh(zd, zd
1 , zd)

+λ2





∑

zd

∑

zd
1 ,dz,z1=2

2Qh(zd, zd
1 , zd) +

∑

zd

∑

zd
1 ,dz,z1=1

∑

zd
2 ,dz,z2=1

Qh(zd, zd
1 , zd

2)





+ O(λ3)

=(1− 2qλ + q(2q − 1)λ2)B0,h + λ(1− (2q − 1)λ)B1,h + λ2B2,h

+ O(λ3)
=B0,h + λ[B1,h − 2qB0,h]

+ λ2[B2,h − (2q − 1)B1,h + q(2q − 1)B0,h] + O(λ3), (B.14)

where

B0,h =
∑

zd

Qh(zd, zd, zd),

B1,h = 2
∑

zd

∑

zd
1 ,dz,z1=1

Qh(zd, zd
1 , zd)

B2,h = 2
∑

zd

∑

zd
1 ,dz,z1=2

Qh(zd, zd
1 , zd)

+
∑

zd

∑

zd
1 ,dz,z1=1

∑

zd
2 ,dz,z2=1

Qh(zd, zd
1 , zd

2). (B.15)
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Applying change-of-variables to (B.13), it is easy to see that Qh(zd, zd
1 , zd

2)
has the following expansion:

Qh(zd, zd
1 , zd

2) =Q0(zd, zd
1 , zd

2) + h2Q2(zd, zd
1 , zd

2)

+h4Q4(zd, zd
1 , zd

2) + o(h4), (B.16)

where

Q0(zd, zd
1 , zd

2) =
∫

[m(xc, xd)]−1f(zc, zd
1)f(zc, zd

2) dzc,

Q2(zd, zd
1 , zd

2) = (1/2)
∫

[m(xc, xd)]−1W (v)[v′∇2f(zc, zd
1)vf(zc, zd

2)

+ f(zc, zd
1)v′∇2f(zc, zd

2)v] dv dzc,

Q4(zd, zd
1 , zd

2) =
∫

m−1(xc, xd)W (v)W (u)[v′∇2f(xc, zd
1)vu′∇2f(xc, zd

2)u

+ f(zc, zd
1)u(4)∇4f(zc, zd

2)
+ v(4)∇4f(zc, zd

1)f(zc, zd
2)] du dv dzc, (B.17)

where v(4)∇4f(zc, zd
1) is defined below (B.11), and u(4)∇4f(zc, zd

2) is sim-
ilarly defined.

From (B.11), (B.16), and (B.17), we immediately obtain the following:

Q0(zd, zd
1 , zd) = M0(zd, zd

1),
Q2(zd, zd, zd) = 2M2(zd, zd),
Q4(zd, zd, zd) > 2M4(zd, zd),∑

zd

∑

zd
1 ,dz,z1=1

Q2(zd, zd
1 , zd) = 2

∑

zd

∑

zd
1 ,dz,z1=1

M2(zd, zd
1). (B.18)

From (B.8) and (B.14), we get

Jn,2 − 2Jn,3 = C0,h + λC1,h + λ2C2,h + O(λ3), (B.19)

where C0,h = B0,h − 2A0,h, C1,h = (B1,h − 2qB0,h)− 2(A1,h − qA0,h), and
C2,h = [B2,h− (2q− 1)B1,h + q(2q− 1)B0,h]− 2{A2,h− (q− 1)A1,h + q(q−
1)/2]A0,h}.
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Using (B.9), (B.14) and (B.17), we have

C0,h = B0,h − 2A0,h =
∑

zd

[Qh(zd, zd, zd)− 2Mh(zd, zd)]

=
∑

zd

[Q0(zd, zd, zd)− 2M0(zd, zd)]

+h2
∑

zd

[Q2(zd, zd, zd)− 2M2(zd, zd)]

+h4
∑

zd

[Q4(zd, zd, zd)− 2M4(zd, zd)] + o(h4)

= −
∑

zd

M0(zd, zd) + h2(0) + h4
∑

zd

[Q4(zd, zd)− 2M4(zd, zd)] + o(h4)

≡ D0 + D1h
4, (B.20)

where D0 = −∑
zd Q0(zd, zd) and D1 =

∑
zd [Q4(zd, zd) − 2M4(zd, zd)].

D1 > 0 by (B.17).
By (B.9), (B.14) and (B.17), we have

C1,h = 2q(A0,h −B0,h) + (B1,h − 2A1,h)

= 2q
∑

zd

[Mh(zd, zd)−Qh(zd, zd, zd)]

+
∑

zd

∑

zd
1 ,dz1,z=1

[Qh(zd, zd
1 , zd)− 2Mh(zd, zd

1)]

= 2q
∑

zd

{0 + h2[M2(zd, zd)−Q2(zd, zd
1 , zd)] + O(h4)}

+
∑

zd

∑

zd
1 ,dz1,z=1

{0 + h2[Q2(zd, zd
1 , zd)−M2(zd, zd

1)] + O(h4)}

−h2(2q)





∑

zd

M2(zd, zd)−
∑

zd

∑

zd
1 ,dz1,z=1

M2(zd, zd
1)



 + O(h4)

= −h2D2 + O(h4), (B.21)

where D2 = 2q{∑zd M2(zd, zd)−∑
zd

∑
zd
1 ,dz1,z=1 M2(zd, zd

1)}.
Define Aj,0 the same way as Aj,h except that Qh(·) in Aj,h is replaced

by Q0(·) (Q0(·) defined in (B.16)). Also define Bj,0 the same way as Bj,h

except that Mh(·) in Bj,h is replaced by M0(·) (M0(·) defined in (B.11))
(j = 1, 2, 3). Then we have

Aj,h = Aj,0 + O(h2),
Bj,h = Bj,0 + O(h2). (B.22)
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Using (B.9), (B.14) and (B.21), we get

C2,h = [B2,h − 2A2,h] + [2(q − 1)A1,h − (2q − 1)B1,h]
+ q[(2q − 1)B0,h − (q − 1)A0,h/2
= [B2,0 − 2A2,0] + [2(q − 1)A1,0 − (2q − 1)B1,0]
+ q[(2q − 1)B0,0 − (q − 1)A0,0/2 + O(h2)
≡ D3 + O(h2), (B.23)

where we define D3 = [B2,0−2A2,0]+[2(q−1)A1,0−(2q−1)B1,0]+q[(2q−
1)B0,0 − (q − 1)A0,0/2.

Summarizing (B.19) through (B.22) we have shown that

Jn,2 − 2Jn,3 = C0,h + λC1,h + λ2C2,h + O(λ3)
= D0 + D1h

4 −D2h
2λ + D3λ

2 + O((h2 + λ)3).(B.24)

This completes the proof of Lemma 3.

Lemma 4. CV1 = Jn,1 + Jn,2 − 2Jn,3 + Op((h2 + λ)3) + Op(n−1/2(h2 +
λ + (nhq)−1/2) + (s.o.).

Proof: Lemmas 2 and 3 have shown that

E(CVL) =D0 + D1h
4 −D2h

2λ + D3λ
2

+D4(nhq)−1 + O((h2 + λ)3 + (nhq)−1(h2 + λ)).

It is easy to see that ĥ needs to balance terms of order h4 and (nhq)−1.
Therefore, h2 has an order larger than n−1/2, or n−1/2 = o(h2). Below we
will show that CV1 − E(CV1) = Op(n−1/2(λ + h2)) + Op(nhq/2).

Substituting (17) and (15) into (19),

CV1 = n−3
∑

l

∑

i 6=l

∑

j 6=l


K

(2)
Yi,Yj

KXi,Xl
KXj ,Xl

m2(Xl)


− 2n−3

∑

l

∑

i 6=l

[
KZi,Zl

m(Xl)

]

= n−1


n−2

∑

l

∑

i 6=l

K
(2)
Yi,Yi

K2
Xi,Xl

m2(Xl)




+ n−3
∑

l

∑

i 6=l

∑

j 6=l,j 6=i

K
(2)
Yi,Yj

KXi,XKXj ,Xl

m2(Xl)
− 2n−3

∑

l

∑

i 6=l

[
KZi,Zl

m(Xl)

]

≡ Ĵn,1 + Ĵn,2 − 2Ĵn,3, (B.25)
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where the definitions of Ĵn,s (s = 1, 2, 3) should be apparent. Ĵn,1 and
Ĵn,3 can be written as second-order U-statistics, and Ĵn,2 as a third order
U-statistic. Below we work on Ĵn,3 first. Note that we can write Ĵn,3 as
(ignoring the difference between n and (n− 1))

Ĵn,3 =
2

n(n− 1)

∑

i

∑

j>i

Hn(Zi, Zj), (B.26)

where Hn(Zi, Zj) = (1/2)KZi,Zj [m
−2(Xi) + m−2(Xj)]. Letting

θ = E[Hn(Zi, Zj)], by the H-decomposition of U-statistics, we know that

Ĵn,3 = θ +
2

n

∑
i

[Hn,1(Zi)− θ]

+
2

n(n− 1)

∑
i

∑
j>i

[Hn(Zi, Zj)−Hn,1(Zi)−Hn,1(Zj) + θ]. (B.27)

By the proof of Lemma A.3, we know that θ = E[Hn(Zi, Zj)] = α1λ +
α2h

2+(s.o.) for some constants αj ’s (j = 1, 2; recall that (s.o.) also includes
terms that are independent of (h, λ)). By similar arguments, it is easy to
see that Hn,1(Zi) = β1iλ + β2ih

2 + (s.o.) for some functions βj,i = βj(Zi)
(j = 1, 2). Therefore,

n−1
∑

i

[Hn,1(Zi)− θ] = n−1/2[Op(λ + h2)] + (s.o.).

Also, the last term in the H-decomposition is a degenerate U-statistic
and it is easy to show that it has an order of Op((nhq/2)−1). By noting
that Jn,3 = E[Ĵn,3] = θ, we have shown that

Ĵn,3 = Jn,3 + Op(n−1/2(h2 + λ) + Op((nhq/2)−1)) + (s.o.). (B.28)

By exactly the same arguments, one can show that

Ĵn,2 = Jn,2 + Op(n−1/2(h2 + λ) + Op((nhq/2)−1) + (s.o.). (B.29)

For Ĵn,1, we know from Lemma 2 that Jn1 = E(Ĵn,1) = O((nhq)−1).
Hence, by H-decomposition, it is easy to show that

Ĵn,1 = E(Ĵn,1) + n−1/2O((nhq)−1)) = Jn,1 + Op(n−1/2(nhq)−1). (B.30)

(B.28) through (B.30) therefore give us the result

CV1 ≡ Ĵn,1 + Ĵn,2 − 2Ĵn,3

= Jn,1 + Jn,2 − 2Jn,3

+ Op

(
(h2 + λ)3 + n−1/2(h2 + λ) + (nhq/2)−1

)
. (B.31)
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