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1. MOTIVATION

The theory of bargaining as formulated by Nash (1950, 1953) has de-
veloped along two routes. One is axiomatic (e.g., Nash 1950; Kalai and
Smorodinsky 1975; Roemer 1988). Here, the negotiation process underly-
ing the bargaining is only implicit. The idea is to try to characterize the
negotiated outcome (the solution) through a set of axioms without formally
modeling the process.

The advantages of the axiomatic route are clear enough. A fruitful so-
lution concept will be applicable to a wide class of negotiation procedures.
Partly for this reason the axiomatic approach has been adopted not only
in the classical bargaining problem but more generally in cooperative game
theory, where axiomatizations have been devised for such solution concepts
as the Shapley value and the nucleolus.

The second route formulates the problem of bargaining in strategic terms.
Here, the negotiation procedure is described explicitly as a noncooperative
game, and its equilibrium points are studied (see, e.g., Nash 1953). This
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approach has become increasingly popular in recent years. But it has lim-
itations. Because the negotiation procedure is modeled explicitly, one may
not always be sure which properties of equilibrium are sensitive to par-
ticular (and perhaps arbitrary) features of the game, and which are not.
Accordingly, Nash (1950, 1953) regarded the two avenues as complemen-
tary. In this view, modeling the negotiation process explicitly is a way
of testing a solution concept. This two-sided perspective on cooperative
games is sometimes referred to as the Nash program.1

The focal point of the bargaining theory literature continues to be Nash’s
own solution. However, the perspective has shifted. For years, Nash’s
strategic (1953) formulation was largely ignored. In that model bargainers
simultaneously make utility demands. They obtain these utilities if the
demands are jointly feasible and otherwise remain at the status quo (threat
point). Nash showed that any noncooperative equilibrium of a smooth
approximation of this game approximates the utilities of his bargaining
solution. But, until recently, the profession concentrated almost entirely
on his (1950) axiomatic approach, perhaps in part because of the Luce-
Raiffa (1957) interpretation of Nash’s axioms as normative properties of
an arbitration scheme (an interpretation that Nash himself did not put
forward).

The strategic approach to bargaining was revived in the early 1980’s (see,
e.g., Fudenberg-Tirole 1983, Rubinstein 1982, and Sobel-Takahashi 1983).
In particular, Rubinstein considered bargaining without time limit over a
“cake.” Players make alternating proposals about the cake’s division until
some proposal is accepted.2 Rubinstein showed that, if there is a finite
time between offers and players discount the future, such a game has a
unique subgame perfect equilibrium. In fact, if one reinterprets the cake
as a feasible set of utility pairs, the equilibrium outcome approximates
the Nash bargaining solution if the time between successive proposals is
small and the players have nearly the same discount rate (see Binmore
1987). Rubinstein’s game is therefore another negotiation procedure that
(approximately) yields the Nash bargaining solution as an equilibrium out-
come.

In Nash’s and Rubinstein’s models, as well as in other strategic bargain-
ing work that we know of, a bargainer exercises power over the other party
only by the threat that a deal will not occur. Even in Nash’s variable-threat
version (1953) of his model, the threat is carried out only if a bargain is
never struck. The emphasis on delay and recalcitrance as a bargainer’s

1For extensive discussion of these complementary approaches to cooperative game
theory in general and to the theory of bargaining in particular, see the essays in Binmore
and Dasgupta, ed. (1987).

2Stahl (1972) analyzed the same model but with a finite time horizon.
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only instruments ignores the common possibility that he might take active
steps to affect the bargain by destroying part of the feasible set.

In practice, bargaining frequently entails destruction in this sense and
sometimes even violence: A terrorist threatens to kill one of his hostages if
his demands are not met, and then does so when the deadline has passed;
the United States calls for Japan to surrender and then bombs Hiroshima
and Nagasaki before Japan concedes. Indeed, war, in general, can be viewed
as the exercise of destructive power within a framework of political bargain-
ing.

In this paper we explore the effect of such power on bargaining. In Sec-
tion 2 we provide an example of negotiation between a firm (management)
and its (unionized) workers in which each party is capable of inflicting some
damage on the other party’s interest during bargaining: the workers, by
neglecting to maintain capital and equipment; the management, by replac-
ing the existing production technology by ones that are less advantageous
to the union. The example is designed to illustrate that in many situa-
tions each party has the ability to direct its destructive power toward the
other party; that is, in damaging the other party it need not hurt itself.
In Section 3 we present the strategic form of a negotiation process that
idealizes the destructive abilities in this example. We show that if the
parties have equal power to delete portions of the feasible set outcomes,
the negotiation process, although otherwise similar to that of Rubinstein
(1982) results in a unique subgame perfect equilibrium quite different from
the Nash bargaining solution. In Section 4 we propose a set of axioms for
the classical bargaining problem that yield the equilibrium outcome of our
negotiation process as the unique solution. In brief, while retaining Nash’s
other axioms, we replace his “independence of irrelevant alternatives” (or
the Kalai-Smorodinsky 1975 “monotonicity” axiom) by a “deletion” axiom
that formalizes the idea that parties have the power to affect the size and
shape of the ‘cake’ being bargained over. Finally, in Section 5 we discuss
the robustness of our solution concept to alterations in the negotiation pro-
cess, extend the analysis of Section 3 to cases where the parties differ in
their potential to destroy, and briefly examine how introducing imperfect
information would change the results.

2. UNION-MANAGEMENT NEGOTIATION: AN EXAMPLE

Consider negotiation between a firm (or its management) and its union
workers. The negotiation is over hours of work (L) and the wage bill (W ).
Assume that the (von Neumann-Morgenstern) utility function of the union,
U , is

U = W
1
2 (1− L)

1
2 , where 0 ≤ L ≤ 1 and W ≥ 0, (1)
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and that of the management, V , is

V = π −W, (2)

where π is the firm’s revenue. The firm’s revenue (output) is determined
by labor hours and installed capital (K) such that

π =
{

L, if L ≤ K
K, if L > K

(3)

where K is given initially. Let us assume that K ≥ 1. Then, the set of
efficient (u, v) pairs is given by the straight line

v = 1− 2u. (4)

Let the status-quo point be the origin, i.e., the firm earns zero profit and
the union zero utility if a bargain is not struck. It follows that negotiation
between management and union is aimed at agreeing on a point (u, v) such
that 2u + v ≤ 1, u ≥ 0, and v ≥ 0. It is also simple to check that, at any
point on the efficient frontier,

L = 1− u. (5)

Therefore, as we move along the efficient frontier toward higher union wel-
fare, the number of hours the union works falls.

We wish to consider situations where both parties can affect the set
of feasible utility pairs (u, v) during negotiation. To see how the union
might affect the set of feasible set, suppose that the capital equipment
requires maintenance. Then, during negotiation the union could refrain
from keeping it properly maintained. This can be modeled by allowing the
value of (K) to fall through time. When K < 1 the efficient set is no longer
given by (4), but rather by the equation

V =

{
K − u2

1−K
, u ≤ u∗

1− 2u, u > u∗,

where K − (u∗)2

1−K
= 1− 2u∗.

By not maintaining equipment, therefore, the union deletes a portion of
the utility set most favorable to management.

What of the power that management can exercise? Let us assume that
management can slowly modify the technology of production—say, by grad-
ually trading its existing technology for a different one. Suppose that it
does so in such a way that (3) continues to hold, except that π is now zero
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for L less than some minimum labor requirement L ≥ 1
2 . Equation (5)

shows that such a modification is tantamount to deleting an area from the
utility set most favorable to the union, so that the efficient frontier becomes

V =

{
1− L− u2

1−L , u ≥ u∗∗

1− 2u, u < u∗∗,

where 1− L− (u∗∗)2

1−L = 1− 2u∗∗.
This sort of example, where each party has the power to destroy a part

of the feasible set most favored by the other side, provides the motivation
for the negotiation game of the next section.

3. NEGOTIATION IN STRATEGIC FORM

The negotiation is between two parties (i = 1, 2), and a negotiated out-
come is a pair of utilities (u, v). Let R0 denote the set of utility pairs that
are feasible before negotiation begins. Among the points in R0 is the sta-
tus quo.3 We assume that is convex4 and compact. Each party’s utility
function is a representation of preferences satisfying the von Neumann-
Morgenstern axioms. Without loss of generality we translate the players’
utilities so that the status quo point is the origin. It will be convenient to
assume that R0 lies in the “north-east” quadrant (i.e., if (u, v) ∈ R0, then
u ≥ 0 and v ≥ 0) and that it is comprehensive (i.e., if (u, v) belongs to R0

then so do (u−α, v) and (u, v− β), where 0 ≤ α ≤ u and 0 ≤ β ≤ v). Out
results can easily be modified in the absence of these last two assumptions
about R0, but the argument is then more complicated.

The players move alternately. Let Rt be the feasible set of utility pairs
before move t (t = 0, 1, 2, . . .). A move consists of deleting5 a portion of Rt

of any size or shape up to a maximum area δ (where δ is understood to be
small relative to R0), and simultaneously proposing a point in the set of
utility pairs that remains. The proposal is either accepted or rejected by
the other party. If accepted, it is implemented and negotiation ends. If it

3By the status quo point we mean the utility pair that would result if a deal were
never struck. We assume that this point is unaffected by any threats carried out during
negotiation. This assumption is, in a sense, the opposite of that made in Nash’s (1953)
variable-threat model, where threats affect only the status-quo.

4If the set failed to be convex, the parties could convexify it by randomization.
5The deletion must be such that the remaining set, Rt+1, is compact, convex (since

randomization is possible) and comprehensive. We allow bargainers to remove areas
from any part of Rt. However, as we shall see, player 1 always finds it advantageous to
delete from player 2’s favorite corner of the feasible set (and vice versa). Hence, we are
capturing in idealized form the kind of deletion the parties in the example of section 2
could undertake. Because δ is the same for both bargainers we are assuming that they
have equal bargaining power (see Section 5 where this assumption is relaxed).
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is rejected, negotiation continues, with the other party now moving. And
so forth.

We shall suppose that parties discount the future in the following weak
sense: Given a choice between the same utility level at an earlier or later
time a bargainer strictly prefers the former. We shall examine the role
of this assumption in Section 5. Finally, we assume that all the above is
common knowledge to the players.

Our central result is:

Theorem 1. A subgame perfect equilibrium of the negotiation process
outlined above exists. Moreover, if δ is small, any equilibrium pair of utili-
ties approximately equals the intersection of the Pareto frontier of R0 and
the ray from the origin that bisects R0, i.e., divides R0 into subsets of equal
area. In equilibrium, negotiation is concluded in the first round (t = 0).

Proof. As is standard, we argue backwards from the end. Suppose
without loss of generality that it is player 1’s turn to move. Assume first
that the remaining feasible set RT (where T is an even number because it
is 1’s move) is the rectangle (0, 0), (u∗, 0), (0, v∗) and (u∗, v∗). (Call (R)T

the class of all such rectangles.) We claim that is is optimal for 1 to delete
nothing and propose the “north-east” corner (u∗, v∗) of RT . This proposal
will be accepted by player 2 from our weak discounting assumption, since
he can never obtain more than v∗. Thus, since there is no way that 1 can
obtain more than u∗, he might as well act as we have asserted.6 We con-
clude that negotiation ends when the remaining feasible set is a rectangle.
The proposal will be accepted by 2, from our weak discounting assumption,
since he cannot gain from delay.

Suppose next that it is player 2’s move and that the feasible set RT−1

belongs to the class of all (convex, compact, comprehensive) sets that can
be reduced to a rectangle with a single deletion of area not exceeding δ
from the lower right-hand corner. Call this class RT−1. Confronted with
RT−1, player 2 can do no better than to make the minimal deletion γ1

that reduces the feasible set to a rectangle and to propose the north-east
corner (u∗, v∗) of that rectangle. To see this, note that, from the argument
of the previous paragraph and weak discounting, player 1 will accept the

6Player 1’s optimal move is not unique. He could, alternatively, delete a rectangular
horizontal strip of area δ (with 0 ≤ δ ≤ δ) from the top of the feasible set and offer 2
the north-east corner of the remaining rectangle. This would be accepted by 2 because
he cannot feasibly do better. Player 1 is indifferent among these strategies because
they all guarantee him u∗. As we will see below, this multiplicity does not affect the
characterization of the equilibrium payoffs.
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proposal. Moreover, player 2 can never obtain more than v∗, and so cannot
do better with a different move.7

Next, suppose that player 1 is to move and that the feasible set RT−2

belongs to the class of sets that can be reduced to the class RT−1 with
a single deletion γ2 of area δ from the upper left hand corner (i.e., RT−2

can be reduced to a rectangle with two deletions). Call this class RT−2.
We claim that player 1’s unique best move is to delete γ2 and propose
the northeast corner (u∗, v∗) of the ultimate rectangle. Notice that if he
does so, player 2 will accept the proposal (from weak discounting and the
argument of the previous paragraph), and thus player 1 obtains utility u∗.
But if 1 deletes less than γ2 (or deletes an area from some other part of
RT−2), player 2 can delete more than γ1 (this assumes that the area of γ1

is less than δ)8 and thereby get a payoff higher than v∗ (implying that 1’s
payoff is less than v∗ for 2), player 2 will reject the proposal since, from
previous argument, he can guarantee himself at least v∗. Hence player 1’s
unique best move is as specified.

Continuing inductively, let us suppose that it is player 2’s turn and that
the feasible set RT−t (where t is odd; the argument is very similar if t is
even) belongs to the class RT−t of sets that can be reduced to the class
RT−t+1 with a single deletion γt of area δ from the lower right-hand corner.
Let (u∗, v∗) be the north-east corner of the ultimate rectangle when RT−t

is reduced successively to elements of RT−t+1,RT−t+2, . . . ,RT . It lies on
the efficient frontier of RT−t. From above argument, player 2’s unique best
move is to delete γt and propose (u∗, v∗), and if he does so the proposal
will be accepted.

Hence, a subgame-perfect equilibrium exists, and in any such equilib-
rium negotiation ceases in the first round. Moreover, in the reduction of
RT−t to the class of rectangle RT , player 1 makes t − 1/2 deletions of
area δ and one of area no greater than δ from the lower right-hand part.
(Once a rectangle is reached, player 1 might delete a further area of no
more than δ, see footnote 6. However, when δ is small this multiplicity of
optimal actions does not invalidate the following sentence.) Hence, when
δ is small, the total areas deleted by each are nearly the same, and so the
equilibrium payoffs (u∗, v∗) lie near the ray from the origin bisecting R0.

7Again, the move we described is not uniquely best for 2 if the area of γ1 is less than δ.
He could equally well delete more than γ1 since he will still wind up with v∗. However,
he must not delete less than γ1, since otherwise player 1 will make a deletion that forces
him below v∗.

8In the (nongeneric) case where the area of γ1 equals δ, player 1’s best move is not
unique.
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4. AXIOMATICS

We now turn to an axiomatic development. Suppose that the two bar-
gainers’ preferences satisfy the von Neumann-Morgenstern axioms. Util-
ities are therefore unique up to positive affine transformations. Given a
utility representation for each party let (u0, v0) be the status quo point and
R the set of feasible utility paris. As before, we assume that R lies in the
north-east quadrant relative to (u0, v0), and is convex, compact and com-
prehensive. A bargaining game can therefore be denoted as [R, (u0, v0)].
A solution concept is a function, F , that operates on [R, (u0, v0)] to give a
point (u, v) in R, i.e., F [R, (u0, v0)] = (u, v). The following three axioms
have often been required of solution concepts (see e.g., Nash 1950; Kalai
and Smorodinsky 1975).
(A1) Invariance: Let [R, (u0, v0)] and [R′, (u′0, v

′
0)] be two versions of the

same bargaining game; that is, they differ only in the units and origins of
the utility function. Then F [R, (u0, v0)] and F [R′, (u′0, v

′
0)] are related by

the same two utility transformations.
(A2) Weak Pareto Efficiency: There is no (u, v) ∈ R such that u > u and
v > v.
(A3) Symmetry: Suppose that [R, (u0, v0)] satisfies the properties:

i) u0 = v0

ii) (u, v) ∈ R if and only if (v, u) ∈ R.
Then u = v.

The Nash bargaining solution satisfies (A1)-(A3). Nash (1950) also im-
posed the more the controversial axiom, “independence of irrelevant alter-
natives.” Kalai and Smordinsky (1975) replaced IIA with a monotonicity
axiom. In what follows we will refer to a horizontal strip as that part of R
above a horizontal line and to a vertical strip as that part of R to the right
of a vertical line. We can now state
(A4) Deletion: Let [R, (0, 0)] be a bargaining game. If R is what remains of
R when horizontal and vertical strips of equal area have been deleted, then
neither component of F [R, (0, 0)] exceeds the corresponding component of
F [R, (0, 0)].9

We may now state and prove:

Theorem 2. A solution concept F satisfies (A1)-(A4) if and only if it
selects the Pareto efficient point on the ray from the origin that bisects R.

Proof. We have already used (A1) once to translate the status quo
point to the origin. Bisect R with a ray through the origin. Next, use
(A1) again to rescale utilities so that the intersection of the Pareto efficient
frontier and the ray bisecting R is transformed to the point (1, 1). Call the

9We comment on (A4) in section 5.
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transformed bargaining region R′, and let the points (0, 0), (0, 1), (1, 0), and
(1, 1) be O, A,B, and C, respectively. Notice that the horizontal strip above
AC has the same area as the vertical strip to the right of CB. If the unit
square OACB were the bargaining region, (A2) and (A3) would imply that
C is the solution of this game. We claim that C is the solution of the game
[R′, (0, 0)]. To see this, note that by (A2) the solution of [R′, (0, 0)] is on the
Pareto frontier of R′. Any point on this frontier other than C is better for
one of the players. So, if the solution of [R′, (0, 0)] were any point other than
C, (A4) would be violated. To establish the converse is a straightforward
verification.

5. COMMENTARY

The theory of economic externalities provides a natural framework for the
analysis of individual and group power. In their well-known contributions,
Shapley and Shubik (1969) and Starrett (1973) explored the existence of
core allocations in an environment where individuals and coalitions have the
power to inflict damage on the rest of society in the form of “external disec-
onomies” (in their example, the power to dump their garbage on the rest).
Another formulation of power is that which derives from “self-destruction.”
Aumann and Kurz (1977) studied the structure of redistributive taxation
associated with the Shapley value of an economy in which taxes and sub-
sidies are chosen by majority rule and where individuals and groups can
destroy their own endowments to prevent majority tyranny.

Each of these studies examined the implications of the power to destroy
for a specific cooperative solution concept. In this paper we have set our-
selves a somewhat different task. Rather than taking the solution concept
as given, we have instead derived it, first from an explicit negotiation pro-
cess (Theorem 1), and second from a set of axioms (Theorem 2).

In fact, Theorem 2 can be viewed as a generalization of Theorem 1. The
negotiation process of section 3 is clearly invariant to positive affine trans-
formations of the utility functions and results in Pareto optima. Moreover,
when δ is small, it is nearly symmetric. As for the deletion axiom (A4),
notice that it stipulates that if horizontal and vertical strips of equal area
are deleted from the feasible set, then neither bargainer should be better
off than before. But this property is certainly satisfied by our negotiation
process; as we have seen, if the bargainers each delete a portion of area δ,
the equilibrium outcome remains the same as before.

There is a degree of symmetry embodied in the deletion axiom, but
this is not enough to establish Theorem 2 in the absence of (A3). For
example, a dictatorship by bargainer 1, in which the solution is always the
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intersection of Pareto boundary of the feasible set with the horizontal axis
satisfies axioms (A1), (A2) and (A4).

Theorem 2 suggests that there should be many negotiation processes
that lead to the bargaining outcome of Theorem 1. Indeed, we can vary
the details of the section 3 negotiation process quite a bit without affecting
the nature equilibrium. In particular, just as that process was analogous
(in its move structure) to Rubinstein’s bargaining game, we could work
instead with the counterpart to Nash’s (1953) game.

In practice, parties differ according to the power they wield. But in the
strategic game of Section 3 we assumed that the players possess equal power
to damage the other party; specifically, each player can delete an area of
maximum size δ. Suppose instead that at each move, player i, i = 1, 2, can
delete at most an area of size δi. We then have:

Theorem 3. Let δ1/δ2 → α as δ1, δ2 → 0. Then, the limit of the
equilibrium utilities corresponds to the intersection of the Pareto frontier
and the ray from the origin that divides R0 into sets for which the ratio of
the upper to lower areas is α.

Proof. Simple adaptation of the proof of Theorem 1.

Theorem 3 captures the sense in which the relative power that players
have to damage the interests of their rivals influences the outcome of ne-
gotiation. As α varies from 0 to infinity, the equilibrium outcome sweeps
across the entire Pareto-efficient frontier.

In the games of Theorems 1 and 3, negotiation ends immediately in
equilibrium, so that destructive power is never exercised. This unrealistic
feature depends, however, on our perfect information assumption. If par-
ties knew each other’s destructive capabilities only imperfectly, negotiation
would not ordinarily cease in the first period and some destruction would
occur. In fact such a model of imperfect information may help resolve
a theoretical puzzle. Models where delay is the only threat can explain a
negotiation period of more than zero length if there is asymmetric informa-
tion (c.f. Grossman-Perry (1986)). However as Gul-Sonnenschein-Wilson
(1986) point out, such models do not readily predict delays of significant
length, if, as often seems plausible, proposals and counterproposals can be
made very quickly. By contrast, destruction often takes some time, and so
perhaps we can interpret strikes and other breakdowns in negotiation as, in
part, vehicles by which parties can learn their fellow bargainers’ destructive
capabilities.
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