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1. INTRODUCTION

Since Laibson’s (1994, 1997a,b) path-breaking work, economists have
probed deeply into the implications of dynamically inconsistent preferences
[see Ainslie and Haslam (1992), Barro (1999), Bernheim, Ray, and Yeltekin
(2000), Gul and Pesendorfer (2001), Harris and Laibson (2001a, b; 2003),
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Krusell and Smith (2001) to mention just a few important papers]1 Re-
cently, one branch of the literature has focused on how dynamically incon-
sistent preferences affect consumption and portfolio behavior under con-
ditions of uncertainty [Harris and Laibson (2001b), Luttmer and Mariotti
(2003)]. In particular, Palacios-Huerta (2003) has adapted Merton’s (1969,
1971) classic model of consumption and portfolio choice to incorporate hy-
perbolic discounting. This is a particularly appealing framework because
it permits a clear picture of how hyperbolic discounting alters consumer
behavior under uncertainty.

In Gong, Smith, and Zou (2006) we have employed Palacios-Huerta’s
model to explore the comparative statics of risk under hyperbolic dis-
counting. With exponential discounting and constant-relative-risk-aversion
(CRRA) utility consumption is a linear function of risk. With hyperbolic
discounting, however, the rate of time preference becomes endogenous, so
that risk affects consumption in a non-linear way. In particular, hyperbolic
discounting amplifies the marginal effect of risk on consumption, relative
to the exponential case. This means that it is not true — as often asserted
— that hyperbolic discounting and exponential discounting are observa-
tionally equivalent. It is true that the level of consumption predicted by a
hyperbolic model can be matched by imputing a higher rate if time pref-
erence to an exponential model. However, the two models offer radically
different comparative static predictions.

In this paper we expand the model to investigate the implications of
hyperbolic discounting for asset prices and rates of return. We incorporate
the Palacios-Huerta model of consumption with hyperbolic discounting into
a equilibrium asset-pricing model á la Lucas (1978). Hyperbolic discounting
makes people less patient. This depresses savings and reduces the demand
for stocks, so that stock prices fall and interest rates increase. Furthermore,
hyperbolic discounting dampens the marginal effect of risk on stock prices,
relative to the exponential case.

Two other papers have studied consumption behavior in continuous-time
with risky assets and hyperbolic discounting. Harris and Laibson (2001b)
work in continuous-time in order to avoid the “pathologies” that crop up
indiscrete-time models of with hyperbolic discounting.2 They establish gen-
eral existence results and prove that consumption is continuous and mono-
tonic in wealth. Luttmer and Mariotti (2003) consider the continuous-time
approximation of a discrete-time consumption/portfolio model with hyper-
bolic discounting. Like Palacios-Huerta (2002), they show that hyperbolic

1Gul and Pesendorfer (2002) develop a model with dynamically consistent preferences.
2In discrete time, consumption may be discontinuous and non-monotonic in wealth

and there may be multiple equilibria. See Laibson (1997b), Morris and Postlewaite
(1997), O’Donoghue and Rabin (1999), Harris and Laibson (2001b), and Krusell and
Smith (2000).
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discounting affects consumption and the risk-free rate, but does not alter
portfolio demands or excess returns. They do not investigate the compar-
ative statics of consumption or of asset prices.

2. CONSUMPTION AND PORTFOLIO POLICIES

Following Palacios-Huerta (2002), imagine a consumer who has an infi-
nite planning horizon and maximizes expected lifetime utility. He exhibits
quasi-hyperbolic discounting, so that his discount function is

e−θs, t ≤ s ≤ t + h,
δe−θs, t + h ≤ s < ∞.

(1)

Beginning at time t the discount function decays exponentially at the
constant rate θ until time t + h. At time t + h it drops discontinuously
by a fraction δ ∈ (0, 1]; thereafter it continues to decay at the rate δ.
This subsumes two important, special cases: If δ = 1 we recover Merton’s
(1969, 1971) exponential discounting, while if h → 0 there is “instantaneous
gratification,” proposed by Harris and Laibson (2001b).

The consumer has time-separable utility with constant relative risk aver-
sion (CRRA). Expected lifetime utility is thus

EtUt = Et

∫ t+h

t

e−θs C1−γ
s

1− γ
ds + δ

∫ ∞

t+h

e−θs C1−γ
s

1− γ
ds, (2)

where γ > 0 is the coefficient of relative risk aversion. Intuitively, Equation
(2) says that the “current self” makes decisions from time t to time t + h,
whereupon the “next self” starts to make the decisions.

There are two assets. A riskless asset pays a constant rate of return r.
A risky asset has a price Pt that follows a geometric Brownian motion,

dPt

Pt
= µdt + σdZt, (3)

where Zt is a Wiener process. Define λt as the share of wealth Wt invested
in the risky asset. The budget constraint is

dWt = {[(1− λt)r + λtµ]Wt − ct}dt + σλtWtdZt. (4)

The consumer’s problem is to choose policies λt and Ct to maximize
Equation (2) subject to Equation (4), given initial wealth W0. Palacios-
Huerta (2003) shows that the optimal policies for this problem are

λ∗t =
µ− r

γσ2
, (5)

C∗t = cHWt, (6)
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where the marginal propensity to consume (MPC) cH is determined im-
plicitly by the equation

cH =
bθ + (1− δ)cHe−θhE0(Wh/W0)1−γc − (1− γ)bµw − γσ2

w/2c
γ

, (7)

and µw = (1 − λ∗)r + λ∗µ and σ2
w = λ∗

2
σ2 are the optimal mean and

variance of the rate of return to the portfolio. The subscript “H” denotes
“hyperbolic”.

The portfolio demand in Equation (5) is exactly the same as in Merton
(1969, 1971). Therefore, as Palacios-Huerta (2002) emphasizes, hyperbolic
discounting has no effect on portfolio demands.

To understand the consumption function in Equations (6) and (7) it
is useful to consider the MPC for the exponential benchmark in Merton
(1969, 1971):

cM =
θ − (1− γ)bµw − γσ2

w/2c
γ

. (8)

The subscript “M” stands for “Merton”. The term in braces in Equation
(8) is the certainty-equivalent rate of return to the portfolio. An increase
in risk lowers the certainty-equivalent rate of return, which then increases
or decreases consumption depending upon whether relative risk aversion γ,
is less than or greater than one.3 The essential thing to note is that, in
the presence of exponential discounting, consumption is a linear function
of the constant rate of time preference and the certainty-equivalent rate of
return.

Now compare Equations (7) and (8). It is clear on inspection that that
hyperbolic discounting (δ < 1) has the effect of increasing the rate of time
preference from θ to θ + (1 − δ)cHe−θbE0(Wh/W0)1−γ . Intuitively, the
“current self” anticipates that the “next self” will consume too much and
so attaches less value at the margin to future consumption. [Harris and
Laibson (2001a)].4 Hyperbolic discounting raises consumption, relative to
the exponential benchmark, by making people less patient.

3Since Weil (1989) we have known that it is really intertemporal substitution, rather
than risk aversion, that governs the sign of the effect of risk on consumption. It would
be straightforward to develop a version of this model with Generalized Isoelastic (GIE)
preferences [Epstein (1987), Epstein and Zin (1989, 1991), Duffie and Epstein (1993a, b),
Svensson (1989), Weil (1989)] in order to disentangle risk aversion from intertemporal
substitution. However, doing so would not add much to the point here, and would
distract attention from the time-separable benchmark used by Palacios-Huerta (2002).
The reader should feel free to interpret the coefficient attached to the certainty-equivalent
rate of return in Equations (8) and (9) as 1−1/ε, where ε is the intertemporal elasticity
of substitution for riskless consumption paths.

4Our effective rate of time preference corresponds to the effective discount factor in
Harris and Laibson (2001a).
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At first glance this would seem to suggest that hyperbolic discounting
is observationally equivalent to exponential discounting: it is always possi-
ble to match the level of consumption predicted in a hyperbolic model by
calibrating an exponential model to have a higher discount rate. Indeed,
Palacios-Huerta (2003) asserts for this reason that the canonical model of
consumption and portfolio choice remains “intact” after the introduction of
hyperbolic discounting. This mirrors Barro’s (1999) argument that the neo-
classical growth model remains “intact” after introducing a non-constant
rate of time preference.

Gong, Smith, and Zou (2006) rebut this argument. Even if the two mod-
els can be calibrated to generate the same level of consumption, they still
may make very different comparative static predictions. Notice that the
rate of time preference with hyperbolic discounting [in Equation (7)] de-
pends upon the expected growth in wealth between period 0 and period h.
This is a manifestation of the general result of Harris and Laibson (2001b):
the value function for a consumer with dynamically inconsistent, hyper-
bolic preferences is the same as to the value function for a consumer with
dynamically consistent, exponential preferences and a wealth-dependent
utility function. In other words, hyperbolic discounting induces an “indi-
rect” form (i.e., through the value function) of the “spirit of capitalism” —
the old notion [Weber (1958)] that people may derive utility from wealth
itself, in addition to consumption — that has recently been used to ex-
plain asset prices [Bakshi and Chen (1996), Smith (2001),Gong and Zou
(2002a)].5 In this literature, the level of wealth (or some other measure
of status) yields utility. With hyperbolic discounting it is the growth of
wealth that matters, rather than the level. This is similar in spirit to
an idea originally espoused by Marshall (1979), and recently explored by
Gootzeit, Schneider, and Smith (2002), that people derive utility from the
act of saving, from the accumulation of wealth rather than the level of
wealth.

Using the fact that wealth is log-normal, it is straightforward to calculate

E0(Wh/W0)1−γ = e(1−γ)[µw−cH−γσ2
w/2]h. (9)

Changes in the mean and the variance of the rate of return, as well as
changes in the MPC itself, alter the effective rate of time preference expo-
nentially. In other words, the rate of time preference is endogenous. This
will have profound implications for the comparative statics of the model.

Following Gong, Smith, and Zou (2006), consider how does uncertainty
affects consumption in the presence of hyperbolic discounting. To simplify
exposition, and to set the stage for the next section, we will assume that

5The spirit of capitalism has also been used to explain saving [Zou (1995)] and growth
[Zou (1994), Smith (1999), Gong and Zou (2002a,b)].
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λ∗ = 1.6 In this case, the marginal propensity to consume is determined
implicitly by

cH =
bθ + (1− δ)cHe−θh+(1−γ)[µ−cH−γσ2/2]hc − (1− γ)bµ− γσ2/2c

γ
.

(10)
Given the transversality condition, there is a unique value of cH that solves
this equation.7 Note that the rate of time preference in Equation (10) is
an increasing function of the MPC. This is similar to Harris and Laibson
(2001a), where the current discount factor is a decreasing function of the
future MPC. The MPC in Equation (10) is the fixed-point that captures
the dependence of the current MPC on the future MPC.

Now consider how risk affects consumption. In the benchmark case with
exponential discounting we have seen that consumption will increase or
decrease linearly with σ2 depending upon whether relative risk aversion is
less than or greater than one,

∂cM/∂σ2 = (1− γ)/2. (11)

In the general case with hyperbolic discounting we find

∂cH

∂σ2
= (1− γ)

γ

2
1− (1− δ)hcHe−θhE0(Wh/W0)1−γ

γ + [(1− γ)cHh− 1](1− δ)e−θhE0(Wh/W0)1−γ
. (12)

The direction of the effect of risk on consumption still depends upon the
magnitude of relative risk aversion. However, with hyperbolic discounting
risk no longer has a simple linear effect of risk on consumption.

In Gong, Smith, and Zou (2006) we demonstrate

Proposition 1. The absolute value of the marginal effect of risk on
consumption is greater under hyperbolic discounting than under exponen-
tial discounting: |∂cH/∂σ2| > |∂cM/∂σ2|. Furthermore, if h is sufficiently
small and b > 1 − δ, consumption is a concave function of risk when dis-
counting is hyperbolic: ∂2cH/∂σ22

< 0.8

Intuitively, consumption still increases or decreases with risk depending
upon the magnitude of relative risk aversion. However, hyperbolic discount-
ing amplifies the effect of risk on consumption, relative to the exponential

6In an equilibrium where the riskless asset is in zero net supply λt = 1.
7Write the right-hand side of Equation (8) as RHS(cH). The TVC implies RHS(0) >

0. Furthermore, since γ + [(1− γ)cHh− 1](1− δ)E0(Wh/W0)1−γ > 0, it can be shown
that 0 < d RHS/d cH < 1. Therefore, RHScrosses the 45◦ line once.

8Although is concave for small, nonzero it is not when there is instantaneous gratifi-
cation, It is plausible to think that consumers usually are able to commit to decisions
over short periods.
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FIG. 1.

benchmark. Moreover, the effect is no longer linear: consumption increases
(or decreases, depending upon γ) at a decreasing rate, as risk increases.

In Figures I and II we show consumption as a function of risk for the
cases where γ is less than or greater than unity, respectively. The linear
functions depict the exponential benchmarks.

Consider the case when γ < 1, in Figure I. If discounting is hyper-
bolic, then consumption is an increasing, concave function of risk, while
if discounting is exponential consumption is an increasing linear function
of risk.. The hyperbolic consumption function is always steeper than the
exponential consumption function. This means that the marginal effect of
risk on consumption is greater under hyperbolic discounting than under
exponential discounting. However, because the hyperbolic consumption
function is concave, the marginal impact of risk on consumption decreases
as risk increases. Why, intuitively, is this happening? Under exponen-
tial discounting the rate of time preference is just θ; since the rate if time
preference is exogenous the MPC increases linearly with risk. Under hy-
perbolic discounting, however, the “effective” rate of time preferences is
θ + (1 − δ)cHe−θbE0(Wh/W0)1−γ . Because the rate of time preference is
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FIG. 2.

endogenous, the increase in the MPC feeds back to raise the effective rate
of time preference. This magnifies the increase in consumption caused by
the increase in risk. However, the increase in risk also has a direct effect
on the effective rate of time preference: for a given cH an increase in risk
lowers the rate of time preference when γ < 1 [see Equation (9)]. This ex-
erts a countervailing effect on the MPC, the magnitude of which increases
as risk increases.

Conversely, consider the case where γ > 1, in Figure II. Now consumption
decreases with in risk: the relationship is again linear in with exponential
discounting and concave with hyperbolic discounting. The slope of the
function is always more negative in the hyperbolic than in the exponential
case. Hence, hyperbolic discounting amplifies the decline in consumption
associated with an increase in risk.

3. IMPLICATIONS FOR ASSET PRICES

To develop the implications of hyperbolic discounting for asset pricing,
consider the following Lucas (1978) “tree” model. A tree yields “fruit” Dt
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(dividends) according to the geometric Brownian motion:

dDt

Dt
= νdt + σDdZt. (13)

Investors can buy shares in the tree (a stock) at the price (ex-dividend)
Pt. The supply of shares is inelastic and normalized in size to one. Using
the notation in Equation (3), the cum dividend rate of return is then

dPt

Pt
+

Dt

Pt
= µdt + σDdZt, (14)

where µ = π+Dt/Pt and π is expected capital gains. In equilibrium Dt/Pt

will be constant, so that the expected rate of return will also be a constant.
An equilibrium consists of a pricing function Pt = f(Dt) and a risk-free

interest rate r such that for t ∈ [0,∞)

(1) the representative consumer obeys the optimal policies in Equations
(5), (6), and (7),

(2) all dividends are consumed, so that Ct = Dt and
(3) the riskless asset is in zero net supply, λt = 1.

In Appendix B we show

Proposition 2. The equilibrium price function and interest rate are

Pt = AHDt, (15)
r = ν + 1/AH − γσ2

D, (16)

where

AH =
1− (1− δ)e−θh+(1−γ)(ν−γ

σ2
D
2 )

θ − (1− γ)(ν − γ
σ2

D

2 )
(17)

The subscript “H” again denotes “hyperbolic”. Notice that the stock
price is proportional to dividends, so that capital gains is equal to the
growth rate of dividends; that is, dPt/Pt = dDt/Dt, so that π = ν and
σ2 = σ2

D.9

Sketch of Proof:

9We assume that the denominator in Equation (17) is positive. This is a necessary
and sufficient condition for the TVC to be satisfied in the exponential version of the
model, discussed below.
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In the appendix we demonstrate that the pricing function must satisfy
the following, non-linear, second-order differential equation:

1− (1− δ)e
−thetah+(1−γ)([

f′(Dt)Dt
f(Dt)

+
f′′(Dt)Dt

f(Dt)
]ν−γ[

f′(Dt)Dt
f(Dt)

]2
σ2

D
2 )h

= f

"
θ − (1− γ)

 »
f ′(Dt)Dt

f(Dt)
+

f ′′(Dt)Dt

f(Dt)

–
ν − γ

»
f ′(Dt)Dt

f(Dt)

–2
σ2

D

2

!#
(18)

The solution to this equation is given by equations (15) and (17). The
equilibrium interest rate in Equation (16) then follows from the proportion-
ality of the asset price to dividends and the fact that λt = 1 in equilibrium.

How does hyperbolic discounting affect asset prices and rates of return?
Notice first that in equilibrium all wealth is invested in the stock, so that
λt = 1 Using the portfolio demand in Equation (5) and the fact that
σ2 = σ2

D it follows that

µ− r = γσ2
D, (19)

where µ = ν + 1/AH . This implies

Proposition 3. Hyperbolic discounting has no effect on the equity pre-
mium.

Hyperbolic discounting is of no use to explaining the equity premium
paradox, for the simple reason that it does influence portfolio demands.

However, hyperbolic discounting does affect the levels of stock prices
and interest rates. To see this, it is useful to consider the exponential
benchmark as a special case. When h = 0 the equilibrium stock price in
equations (15) and (17) reduces to Pt = AMDt, where

AM =
1

θ − (1− γ)(ν − γ
σ2

D

2 )
(20)

This is the equilibrium stock price that would emerge if the consump-
tion/portfolio model in Merton (1969, 1971) were embedded in a Lucas
(1978) equilibrium model, so “M” is again a mnemonic for “Merton”. Com-
paring this to the consumption in Equation (8), it is evident that the stock
price is inversely proportional to the MPC.

Now compare Equation (17) and (19). As suggested by Palacios-Huerta
(2003), hyperbolic discounting will lower the level of the stock price by rais-
ing the discount rate. From Equation (16) this also increases the interest
rate, by increasing the dividend/price ratio. Thus.

Proposition 4. Hyperbolic discounting lowers stock prices and raises
the risk-free rate.
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FIG. 3.
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Now consider how risk affects the stock price. In the exponential model
[Equation (19)] it is immediate that

∂AM

∂σ2
D

= −(1− γ)
γ

2
1[

θ − (1− γ)
(
ν − γ

σ2
D

2

)]2 , (21)

∂2AM

∂σ2
D

= (1− γ)2
γ2

2
1[

θ − (1− γ)
(
ν − γ

σ2
D

2

)]3 > 0. (22)

In the canonical model an increase in uncertainty about dividend growth
will lower the stock price if γ < 1, and raise it if γ > 1. Furthermore,
from Equation (17), the stock price will be convex in risk. The intuition is
straightforward. Suppose that γ > 1. An increase in risk will then lower
the MPC. Since people save more, the demand for the stock increases and
its price rises. The stock price increases at an increasing rate because it is
inversely proportional to the MPC.

What happens when there is exponential discounting? In Appendix C
we prove

Proposition 5. The absolute value of the marginal effect of risk on the
price of the risky asset is greater under hyperbolic discounting than under
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exponential discounting: |∂AH/∂σ2
D| < |∂AM/∂σ2

D|. Furthermore, if h is
sufficiently small then the asset price is a convex function of risk when
discounting is hyperbolic: ∂2AH/∂σ2

D
2

> 0.

In other words, hyperbolic discounting dampens the marginal effect of
risk on stock prices, relative to the effect predicted by the exponential
model. Why does this happen? Consider again the empirically plausible
case where γ > 1. This is depicted in Figure III. In the exponential model
an increase in risk lowers consumption [Equation (11)]. Since people are
saving more, the demand for the risky asset increases, and with it the price
of the risky asset [Equation (20)]. This effect also occurs in the hyperbolic
model. However, in the hyperbolic model the increase in risk also raises
the rate of time preference by changing the expected growth of wealth.
Since people are less patient, savings falls by more than in the exponential
model, causing the price of the asset to decrease relative to the increase in
the exponential model.

4. CONCLUSION

By endogenizing the rate of time preference, hyperbolic discounting in-
troduces a non-linearity into the consumption/portfolio decision. We have
shown [Gong, Smith, and Zou (2006)] that this causes the comparative
static predictions of the hyperbolic model to differ radically from the ex-
ponential model. Hyperbolic discounting amplifies the effect of changes in
risk on consumption.

In this paper we have explored the implications of this non-linearity for
asset prices and rates of return. Hyperbolic discounting does not affect
the equity premium. However, it does alter the way in which the level of
stock prices and interest rates are affected by risk. Hyperbolic discount-
ing induces people to save less than in the exponential case, lowering the
demand for stocks. This lowers stock prices and raises the risk-free rate.
In addition, hyperbolic discounting reduces the marginal effect of risk on
stock prices, relative to the exponential case.

The non-linear comparative statics induced by hyperbolic discounting
should also have interesting implications for macroeconomic policy. Gong,
Smith, Turnovsky, and Zou (2006) incorporate hyperbolic discounting into
a model of fiscal policy in a stochastic growing economy. In the presence of
hyperbolic discounting taxes on the stochastic components of capital and
wage income have magnified effects on growth rates and welfare, relative
to the benchmark exponential model.
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APPENDIX A
Derivation of Proposition 1.

The transversality condition is

lim
t→∞

Ebe−βtW 1−γ
t = 0. (A.1)

As in Merton (1969, 1971) feasibility cH > 0 is necessary and sufficient for
the TVC to be satisfied. If the TVC is satisfied then

e−βhE0(Wh/W0)1−γ < 1. (A.2)

Therefore, since δ ≤ 1, it must also be true that

1− (1− δ)hcHe−βhE0(Wh/W0)1−γ > 0 (A.3)

Inequalities (A.2) and (A.3) will be important in the ensuing comparative
statics.

For small h, hcH < 1. Equation (7) in the text implies that for small h
it must also be true that γ > 1− δ in order for cH > 0. Given γ > 1− δ it
then follows that, γ + [(1− γ)cHh− 1](1− δ)e−βhE0(Wh/W0)1−γ > 0 for
sufficiently small h.

The first statement follows from comparing Equations (11) and (12) and
using the fact that 1 > cHh.

The second statement follows from differentiating Equation (12):

∂2cH

∂σ22 = (1− γ)γ
(1− δ)he−βh

2
Ω, (A.4)

where

Ω =

[(1− δ)e−βhE0(Wh/W0)
1−γ − 1]E0(Wh/W0)

1−γh ∂cH
∂σ2 − (1− γ)(1− hcH)[ ∂cH

∂σ2 + γ
2
]

{γ + [(1− γ)cHh− 1](1− δ)e−βhE0(Wh/W0)1−γ}2
.

(A.5)

Again, 1 > hcH for small h. We have seen that the transversality condi-
tion implies that the first term in braces is negative.

Consider the two cases mentioned in the proposition. On the one hand,
if γ < 1 then ∂cH/∂σ2 > 0, so Ω < 0. Therefore ∂2cH/∂σ22

< 0. On
the other hand, if γ > 1 then ∂cH/∂σ2 < 0. If the last term in braces is
positive then Ω > 0. It can be shown that this expression is positive if and
only if 1 > hcH . Thus if γ < 1 then ∂2cH/∂σ22

< 0.
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APPENDIX B
Derivation of Proposition 2

The derivation is similar to that in Smith (2001). First, since all div-
idends are consumed, it follows that Dt = c∗HWt, where c∗H denotes the
equilibrium value of the MPC. However Wt = Pt because there is one
share of stock and the riskless asset is in zero net supply. Therefore

Dt = c∗HPt. (B.1)

Now evaluate the MPC in Equation (7) at λt = 1. This yields Equation
(10), which we report here for convenience

c∗H =
|θ + (1− δ)c∗He−θh+(1−γ)[µ−c∗H−γσ2/2]h| − (1− γ)|µ− γσ2/2|

γ
.

(B.2)
Apply Ito’s lemma to the function f(Dt):

dPt

Pt
=

[
f ′(Dt)
f(Dt)

+
f ′′(Dt)
f(Dt)

]
νDtdt +

f ′(Dt)
f(Dt)

σDDtdZt. (B.3)

This implies that the mean and variance of capital gains are

π =
[
f ′(Dt)Dt

f(Dt)
+

f ′′(Dt)Dt

f(Dt)

]
ν (B.4)

σ2 =
[
f ′(Dt)Dt

f(Dt)

]2

σ2
D. (B.5)

Consider the term µ−c∗H in the exponential function in Equation (B.2): By
definition µ = π +Dt/Pt. In equilibrium, however, Dt/Pt = c∗H . Therefore
µ− c∗H = π. Using this fact along with Equations (B.4) and (B.5) yields

1− (1− δ)e
−θh+(1−γ)([

f′(Dt)Dt
f(Dt)

+
f′′(Dt)Dt

f(Dt)
]ν−γ[

f′(Dt)Dt
f(Dt)

]2
σ2

D
2 )h

=f

"
θ − (1− γ)

 »
f ′(Dt)Dt

f(Dt)
+

f ′′(Dt)Dt

f(Dt)

–
ν − γ

»
f ′(Dt)Dt

f(Dt)

–2
σ2

D

2

!#
(B.6)

This is equation (15) in the text.
Conjecture that the equilibrium price is proportional to dividends:10

Pt = AHDt. (B.7)

10We ignore bubble solutions.
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It follows that π = ν and σ2 = σ2
D. Equation (B.6) then reduces to

1− (1− δ)e−θh+(1−γ)(ν−γσ2
D)h = AH

[
θ − (1− γ)

(
ν − γ

σ2
D

2

)]
(B.8)

Solving for yields

AH =
1− (1− δ)e−θh+(1−γ)(ν−γσ2

D)h

θ − (1− γ)
(
ν − γ

σ2
D

2

) . (B.9)

This determines the equilibrium pricing function. To find the equilibrium
interest rate, note that since λt = 1 in equilibrium, then µ − r = γσ2.
However, we have seen that µ = π+Dt/Pt, π = ν, and σ2 = σ2

D. Therefore
r = ν + 1/AH − γσ2

D.

APPENDIX C
Derivation of Proposition 4

To simplify notation, define x = θ−(1−γ)(ν−σ2
D/2). The price-dividend

ratio in Equation (B.9), or in Equation (17) in the text, can then be written
as

AH =
1− (1− δ)e−xh

x
. (C.1)

Similarly, the price-dividend ratio for the exponential model [Equation (19)
in the text] is simply

AM =
1
x

. (C.2)

Equations (20) and (21) can now be expressed as ∂Am/∂σ2
D = −xσ2

x2 and
∂A2

m/∂σ2
D

2 = x2
σ2/x3, where xσ2 = ∂x/∂σ2

D = γ(1− γ)/2.
Now consider the marginal effect of risk on the asset price:

∂AH

∂σ2
D

=
∂AM

∂σ2
D

[1− (1− δ)e−xh(1 + xh)] (C.3)

To sign this expression, substitute AH in Equation (B.9) into inequality
(A.3). This implies that the expression in brackets in Equation (C.3) is
unambiguously positive. Therefore, ∂AH/∂σ2

D >=< 0 as γ >=< 1. Equa-

tion (C.3) also implies that
∣∣∣∂AH

∂σ2
D

∣∣∣ <
∣∣∣∂AM

∂σ2
D

∣∣∣.
With a bit of tedious algebra it can be shown that

∂A2
H

∂σ2
D

2 =
∂A2

M

∂σ2
D

2

[
1− 1

2
(1− δ)e−xh(1 + xh + x2h2)

]
. (C.4)
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To sign this expression, recall that 1 > (1− δ)e−xh(1 + xh). Now consider
the quadratic expression in Equation (C.4). It is straightforward to show
that11

1 + xh >
1 + xh + x2h2

2
. (C.5)

It follows that the expression in brackets is positive for small h. Since the
exponential price function is convex in risk, the hyperbolic price function
must also. That is, ∂A2

H

∂σ2
D

2 > 0.
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