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This paper considers an approach for inducing cooperation in prisoner’s
dilemma. The approach is based on players individually committing to pay
self-stipulated penalties for defection. We provide a complete characterization
of self-stipulated penalties that are necessary and sufficient to induce the play-
ers to cooperate in subgame-perfect equilibrium. An alternative interpretation
of the conditions using contract remedies is provided.

Key Words: Penalty for defection; Prisoner’s dilemma; Subgame-perfect equi-
librium.

JEL Classification Numbers: C72, K12.

1. INTRODUCTION

A fundamental characteristic of the prisoner’s dilemma is that each of
two players could capture substantial gains through mutual cooperation,
but is tempted by even greater gains should the player defect while the
other player cooperates. For either player the worst case is to cooperate
while the other defects. The result is that both players defect, even though
mutual defection leaves each player with a payoff less than the player could
have obtained had both players cooperated.

In this paper, we consider an approach to induce cooperation in a pris-
oner’s dilemma game that calls for the players to play an enlarged game
with two stages. In stage one, each player independently commits to pay a
certain binding amount should he defect while the other player cooperates.
For example, a player may leave a good faith deposit with a third-party
and specify that the deposit will be paid to the other player when he de-
fects while the other player cooperates.1 We also consider an alternative

1Some employers require an employee to provide a performance bound, which is an
amount of money that will be given to the employers if the employee fails to complete
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treatment under which each player pays the self-stipulated binding amount
when he defects regardless of what the player does. In stage two, players
play the prisoner’s dilemma game with knowledge of the penalties for de-
fection they each committed to pay.2

We say that a penalty configuration “induces” the players to cooperate
if there is a subgame-perfect equilibrium (SPE) that involves the players
committing to pay penalties prescribed by the penalty configuration in
stage one and subsequently cooperating in stage two conditional on them
committing to pay these penalties for defection.

The necessary and sufficient conditions for self-stipulated penalties to in-
duce the players to cooperate turn out to require that each player i commit
to pay a large enough penalty to deter himself from defecting and, on the
other hand, not so large that player j 6= i would rather have player i defect
in order to capture his penalty payment than have both of them cooper-
ate. The compatibility between these upper and the lower bounds for each
player implies that mutual cooperation is most efficient. Furthermore, as
explained in detail in next section, the upper and lower bounds are analo-
gous to the “expectation” and the “disgorgement remedies”, respectively.3

Since expectation remedies measure actual harms, committing to pay more
than the actual harm does not survive the incentive compatibility called
for by the notion of SPE.4

certain duties. The employee leaves this bond with the employers or a third-party such
as an insurance company before the job begins. See Perloff (2004, pp. 710-712).

2Williamson (1983, pp 537-538) discusses the merit of crafting ex ante incentive struc-
tures for prisoner’s dilemma. The idea of inducing cooperation via self-stipulated penal-
ties follows from an ancient technique. Schelling (1960. p. 44) observes that the exchange
of hostages served incentive purposes in an earlier age, and suggests that the institution
of hostages is an ancient technique that deserves to be studied by game theory (p. 135).
For example, during the later part of the Warring States between 475 and 221 B.C. in
Chinese history, state Chu and state Qin were the strongest of the states. They could
form alliances either with each other or with other weaker states. Doing the former,
they could avoid conflict while doing the latter, they could each have the opportunity
to become stronger than their counterparts. But, the second strategy would also lead
more likely to war. Mutual cooperation could make both Chu and Qin better off than
mutual competition. However, each preferred to becoming stronger irrespective of the
other one’s choice. Realizing the difficulties for achieving mutual cooperation, an advisor
from state Qin suggested that the king of Chu offer his heir as a hostage to Qin and
that the king of Qin do likewise to induce the two states not to attack each other (see
Crump 1996, p. 242-245).

3See Section 3.1 for further discussion.
4Jackson and Wilkie (2005) consider strategy dependent payoff transfers between the

players. Payoff transfers in their paper are not restricted to be achievable through
self-stipulated penalties for defection only. The difference between their paper and the
present one is that while they focus on what feasible payoff allocations can be achieved
in subgame-perfect equilibrium, we focus on what penalty configurations can induce the
players to play a particular strategy profile; namely, mutual cooperation.
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The rest of the paper is organized as follows. Section 2 introduces the
penalty scheme. Section 3 establishes necessary and sufficient conditions
for self-stipulated penalties to induce the players to cooperate and provides
an interpretation of these conditions in terms of contract remedies. Section
4 concludes the paper.

2. THE PENALTY SCHEME

A generic prisoner’s dilemma game has two players each of whom can
either cooperate (action C) or defect (action D) with payoffs as in Figure
1.

Player 2

C D

C (R1, R2) (S1, T2)
Player 1

D (T1, S2) (P1, P2)

FIG. 1. Prisoner’s Dilemma Game with Sk < Pk < Rk < Tk, k = 1, 2.

The pair (D, D) is the only Nash equilibrium which yields player i a payoff
of Pi less than payoff Ri that player i could have obtained had both players
cooperated. We assume payoffs are transferable.

Suppose that before playing a prisoner’s dilemma game, each player inde-
pendently commits to pay as penalty a binding amount to the other player
should he defect while the other player cooperates. Suppose further payoffs
from the play of the prisoner’s dilemma game and penalty payments are
addable, so that a penalty payment from player i implies a payoff transfer
from him to player j conditional on him defecting and j cooperating.

Let Hi be the set of payoff transfers implied by penalties for defection
player i may commit to pay. For simplicity, we assume that the transfer
rate is one-to-one. We do not impose any restriction on how much player
i can commit to pay in order to study issues such as whether committing
to pay more than actual harms one’s unilateral defection inflicts upon the
other player can survive incentive compatibility. A penalty configuration
H changes the prisoner’s dilemma game in Figure 1 into game Γ(H) in
Figure 2, which is the subgame of the enlarged two-stage game that follows
penalty configuration H.
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Player 2

C D

C (R1, R2) (S1 + H2, T2 −H2)
Player 1

D (T1 −H1, S2 + H1) (P1, P2)

FIG. 2. The Subgame Γ(H) Induced by Penalty Configuration H.

The players can condition choices of actions in the prisoner’s dilemma
game on penalty configurations. That is, players’ choices in Γ(H) may de-
pend on H. Denote by Φi a mapping that maps each penalty configuration
H ∈ H1×H2 into a probability distribution Φi(H) = (Πi(C,H),Πi(D,H))
over the action set {C,D}. Such a mapping specifies a plan of contingent
actions in the prisoner’s dilemma game for player i. A strategy for player
i is thus a pair (Hi,Φi) with a penalty Hi he will commit to pay and an
action plan Φi he will subsequently follow. We consider subgame-perfect
equilibrium as the solution concept for our two-stage game.

Definition 2.1. A penalty configuration H∗ = (H∗
1 ,H∗

2 ) induces
the players to cooperate if there are action plans Φ∗

1 and Φ∗
2 such that

(i) the strategy profile ((H∗
1 ,Φ∗

1), (H
∗
2 ,Φ∗

2)) is a SPE; (ii) Φ∗
1(C,H∗) =

Φ∗
2(C,H∗) = 1.

For a penalty configuration to induce cooperation, Definition 2.1 requires
that there exist action plans to be subsequently followed by the players that
are credible, in the sense that conditional on each penalty configuration
H, the action plans specify an action configuration which forms a Nash
equilibrium for the subgame Γ(H). This requirement prevents each player
from using a non-credible action plan to make the other player commit
to pay a penalty more favorable to him. Next, the penalty configuration
must make it incentive compatible for each player to commit to pay the
corresponding penalty for defection, given that the other player commits
to pay his and given that they both subsequently follow their action plans.
Finally, conditional on them committing to pay penalties for defection in
the configuration, the players must subsequently cooperate with probability
1.



INDUCING COOPERATION BY SELF-STIPULATED PENALTIES 389

3. RESULTS

Suppose H∗ ∈ H induces the players to cooperate. From Figure 2,
player 1 receives payoff R1 and player 2 receives payoff R2 in the SPE
with both players cooperating conditional H∗. Player 1’s payoff will be
T1−R1−H∗

1 if he defects in Γ(H∗), given that player 2 cooperates. Thus,
since H∗ induces cooperation, H∗

1 must satisfy H∗
1 ≥ T1 − R1. Next,

consider H2 ∈ H2 with H2 < T2 − R2. It must be Φ∗
1(C, (H∗

1 ,H2)) <
1; otherwise, given player 1’s strategy (H∗

1 ,Φ∗
1), player 2 receives payoff

T2 − H2 > R2 by committing to pay H2 and by subsequently defecting
in Γ(H∗

1 ,H2). Hence, given player 1’s strategy (H∗
1 ,Φ∗

1), by committing
to pay H2 < T2 − R2 and by cooperating in Γ(H∗

1 ,H2), player 2 receives
expected payoff Φ∗

1(C, (H∗
1 ,H2))R2 + [1−Φ∗

1(C,H∗
1 ,H2))][S2 + H∗

1 ]. Since
Φ∗

1(C, (H∗
1 ,H2)) < 1 as argued above, H∗

1 must also satisfy H∗
1 ≤ R2 − S2.

In summary, we have shown T1−R1 ≤ H∗
1 ≤ R2−S2. Similarly, T2−R2 ≤

H∗
2 ≤ R1 − S1.

Lemma 1. Suppose H∗ ∈ H induces the players to cooperate. Then, for
i 6= j, Ti −Ri ≤ H∗

i ≤ Rj − Sj.

When P1−S1 < T2−R2, H∗
1 must also satisfy P2−S2 ≤ H∗

1 ≤ T1−R1.
To see this, consider H2 ∈ H2 with P1 − S1 < H2 < T2 − R2. Then from
Figure 2, H2 > P1−S1 implies that given that player 2 defects, the unique
optimal action for player 1 in Γ(H∗

1 ,H2) is C.
If H∗

1 > T1−R1, then C remains the unique optimal action in Γ(H∗
1 ,H2)

for player 1, given that player 2 cooperates. It follows that H∗
1 > T1 − R1

and H2 > P1−S1 together imply that C is strictly dominant for player 1 in
Γ(H∗

1 ,H2). Since H2 < T2−R2 and since Φ∗(H∗
1 ,H2) is a Nash equilibrium

for Γ(H∗
1 ,H2), we must have Φ∗

1(C, (H∗
1 ,H2)) = 1 and Φ∗

2(C, (H∗
1 ,H2)) = 0.

This shows that by deviating from (H∗
2 ,Φ∗

2) to (H2,Φ∗
2) with P1 − S1 <

H2 < T2−R2, player 2 can guarantee himself a payoff equal to T2−H2 > R2,
while his payoff would be at most R2 were he to commit to pay H∗

2 . This
contradicts the fact that H∗ induces the players to cooperate. We conclude
H∗

1 ≤ T1 −R1 whenever P1 − S1 < T2 −R2.
If H∗

1 < P2−S2, however, then it together with H2 < T2−R2 implies that
action D is strictly dominant for player 2 in Γ(H∗

1 ,H2). In this case, since
H2 > P1−S1 and since Φ∗(H∗

1 ,H2) is a Nash equilibrium for Γ(H∗
1 ,H2), it

must be Φ∗
1(C, (H∗

1 ,H2)) = 1 and Φ∗
2(C, (H∗

1 ,H2)) = 0. It follows that by
deviating from (H∗

2 ,Φ∗
2) to (H2,Φ∗

2) with P1 − S1 < H2 < T2 −R2, player
2 can guarantee himself a payoff equal to T2 −H2 > R2. Thus, it must be
H∗

1 ≥ P2 − S2 whenever P1 − S1 < T2 −R2.
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In summary, the preceding analysis shows P2 − S2 ≤ H∗
1 ≤ T1 − R1

whenever P1 − S1 < T2 − R2. By analogy, P1 − S1 ≤ H∗
2 ≤ T2 − R2

whenever P2 − S2 < T1 −R1. We thus have:

Lemma 2. Suppose H∗ ∈ H induces the players to cooperate. Then,
Pj − Sj ≤ H∗

i ≤ Ti −Ri whenever Pi − Si < Tj −Rj for i 6= j.

Conditions in Lemmas 1 and 2 turn out to be not only necessary but also
sufficient for penalty configuration H∗ to induce the players to cooperate.
This result is summarized in the following theorem.

Theorem 1. A penalty configuration H∗ induces the players to cooper-
ate if and only if

Ti −Ri ≤ H∗
i ≤ Rj − Sj , (1)

and

Pj − Sj ≤ H∗
i ≤ Ti −Ri whenever Pi − Si < Tj −Rj , (2)

for i 6= j.

Proof. See the Appendix.

Notice that when P2 − S2 ≥ T1 − R1 and P1 − S1 ≥ T2 − R2, the set
of penalty configurations inducing the players to cooperate is determined
completely by condition (1). In that case, the set is rectangular.

The lower bound Ti−Ri on H∗
i is needed to deter player i from defecting.

On the other hand, the upper bound Rj − Sj on H∗
i is needed for player i

to deter player j from committing to pay a penalty smaller than Tj − Rj .
Player i’s action to defect conditional on such smaller penalties committed
to pay by player j provide the deterrence. However, such deterrence is not
credible when H∗

i > Rj−Sj , because then player j would rather have player
i defect in which case he receives Sj+H∗

i by subsequently cooperating, than
have both cooperate in which case he receives Rj < Sj + H∗

i .
Notice that the compatibility of the upper and the lower bounds in (1)

imply T1 + S2 ≤ R1 + R2 and T2 + S1 ≤ R1 + R2. Hence, with the
compatibility, mutual cooperation is most efficient, in the sense that the
sum of players’ payoffs is the greatest.

3.1. An Alternative Interpretation of the Lower and Upper
Bounds

In the law of contracts, an “expectation remedy” is a payment that places
the victim of a breached contract in the position he would have been in had
the other party performed (Cooter and Ulen 2000, pp. 226). Assume that
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the prisoner’s dilemma game in Figure 1 arises from a contract between
players 1 and 2. If player i cooperates (performs) and player j defects
(does not perform), player i’s payoff is Si. Player i’s payoff would have
been Ri if player j had cooperated. Thus to place player i in the position
he would have been in had player j cooperated, it would require that player
j pay player i the amount Ri − Si. It follows that the expectation remedy
when j is held liable for is Ri − Si. The upper bounds are thus analogous
to the expectation remedies.

A “disgorgement remedy” is a payment paid to the victim of a breached
contract to eliminate the breacher’s profit from wrong doing (Cooter and
Ulen (2000, pp. 234). From Figure 1, player j gains Tj − Rj units more
from defecting given that player i cooperates. Thus to eliminate this gain
from wrong doing (not performing), it would require that player j pay the
amount Tj − Rj . It follows that the disgorgement damage remedy when
player j is held liable for is Tj −Rj . The lower bounds are thus analogous
to the disgorgement remedies.

3.2. A Variant of the Penalty Scheme
Consider a variant of the preceding penalty scheme under which each

player commits to pay a binding amount whenever he defects. Denote by
Γ′(H) the subgame conditional on penalty configuration H. This subgame
is shown in Figure 3.

Player 2

C D

C (R1, R2) (S1 + H2, T2 −H2)
Player 1

D (T1 −H1, S2 + H1) (P1 −H1 + H2, P2 −H2 + H1)

FIG. 3. The Subgame Γ′(H) Induced by Penalty Configuration H.

Under this variant necessary and sufficient conditions for penalties to
induce the players to cooperate change to:

Theorem 2. A penalty configuration H∗ induces the players to cooper-
ate under the variant of the penalty mechanism if and only if

Ti −Ri ≤ H∗
i ≤ min{Pi − Si, Rj − Pj}, i 6= j. (1′)
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Proof. See the Appendix.

Since S1 < P1 and S2 < P2, (1′) implies T1 − R1 ≤ H∗
1 < R2 − S2 and

T2 −R2 ≤ H∗
2 < R1 − S1. This means that (1′) implies (1). However, (1′)

does not necessarily imply both (1) and (2) nor conversely.

4. CONCLUSION

We considered self-stipulated penalties for defection as inducements to
cooperate. We provided a complete characterization of penalty configura-
tions that are necessary and sufficient to induce the players to cooperate.
When players are motivated by their own material payoffs only, penalty
configurations consistent with our characterization are equally effective in
inducing the players to cooperate. By experimentally testing the effec-
tiveness of these consistent penalty configurations in inducing cooperation,
results in this paper are helpful for testing factors other than own material
payoffs such as equity and fairness that may affect players’ behavior.

Our characterization result establishes a lower and upper bounds on
penalty configurations inducing cooperation in prisoner’s dilemma. These
lower and upper bounds correspond to disgorgement and expectation reme-
dies. In the law of contracts, a liquidated remedy is defined as an amount
predetermined by the parties themselves rather than imposed upon them
by a court as the total compensation to an injured party should the other
party breach (see Cooter and Ulen 2000, pp. 225-237). In In practice,
courts generally will not enforce a liquidated remedy unless it is a reason-
able approximation of the expectation measure of damages. Our lower and
upper bounds on penalty configurations inducing the players to cooperate
are consistent with the enforceability requirement of liquidated remedies.

APPENDIX

Let U1((H1,Φ1), (H2,Φ2)) and U2((H1,Φ1), (H2,Φ2)) denote the payoffs
for player 1 and player 2, respectively, at strategy profile ((H1,Φ1), (H2,Φ2)).
Let Li = Pi − Si and Gi = Ti −Ri for i = 1, 2.

Proof of Theorem 1: The necessity of (1) and (2) follows directly from
Lemma 1 and Lemma 2. Thus, it only remains to prove the sufficiency of
these conditions.

Let H∗ ∈ H be a penalty configuration satisfying conditions (1)-(2). For
H2 ∈ H2, let Φ∗

1(H
∗
1 ,H2) and Φ∗

2(H
∗
1 ,H2) be defined by
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Φ∗
1(C, (H∗

1 ,H2)) =


1 if H2 ≥ G2,
0 if L1 ≤ H2 < G2,
0 if H2 < min{L1, G2}, H∗

1 ≤ L2
H∗

1−L2
G2−H2+H∗

1−L2
if H2 < min{L1, G2}, H∗

1 > L2

(A.1)
and

Φ∗
2(C, (H∗

1 ,H2)) =


1 if H2 ≥ G2,
1 if L1 ≤ H2 < G2,
0 if H2 < min{L1, G2}, H∗

1 ≤ L2
L1−H2

H∗
1−G1+L1−H2

if H2 < min{L1, G2}, H∗
1 > L2.

(A.2)

For H1 ∈ H1, let Φ∗
1(H1,H

∗
2 ) and Φ∗

2(H1,H
∗
2 ) be defined analogously.

Finally, for H ∈ H with H1 6= H∗
1 and H2 6= H∗

2 , let (Φ∗
1(H),Φ∗

2(H))
be any Nash equilibrium for Γ(H).1 By (1), (3), and (4), Φ∗

1(C,H∗) =
Φ∗

2(C,H∗) = 1.
Consider H2 ∈ H2. Suppose first H2 ≥ G2. By (1), H∗

1 ≥ G1. It follows
that (C,C) is a Nash equilibrium for Γ(H∗

1 ,H2). Suppose now L1 ≤ H2 <
G2. In this case, L1 < G2. Hence, by (1) and (2), L2 ≤ H∗

1 and H∗
1 = G1.

Consequently, (D,C) is a Nash equilibrium for Γ(H∗
1 ,H2). Suppose finally

H2 < min{L1, G2}. In this case, if H∗
1 ≤ L2, then P1 − L1 + H2 < P1

and P2 − L2 + H∗
1 ≤ P2, implying that (D,D) is a Nash equilibrium for

Γ(H∗
1 ,H2). If H∗

1 > L2, then (3) and (4) imply that given player 2’s
strategy (H2,Φ∗

2), action C and action D yield the same payoff to player 1
in Γ(H∗

1 ,H2), while given player 1’s strategy (H∗
1 ,Φ∗

1), action C and action
D yield the same payoff to player 2 in Γ(H∗

1 ,H2). Thus, Φ∗(H∗
1 ,H2) as

defined by (3) and (4) is a Nash equilibrium for Γ(H∗
1 ,H2).

In summary, we have shown that for any H2 ∈ H2, Φ∗(H∗
1 ,H2) as in (3)

and (4) is a Nash equilibrium for Γ(H∗
1 ,H2). By analogy, for any H1 ∈ H1,

Φ∗(H1,H
∗
2 ) is a Nash equilibrium for Γ(H1,H

∗
2 ). Thus, to complete the

proof of the sufficiency, it only remains to show that players do not have
any incentive to unilaterally change their penalties in H∗.

1The specifications for Φ∗(H) = (Φ∗
1(H), Φ∗

2(H)) at H ∈ H with H1 6= H∗
1 and

H2 6= H∗
2 are inessential to subgame-perfect equilibrium analysis.
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To this end, consider H2 ∈ H2. By (3), (4), and by Figure 2,

U2((H∗
1 ,Φ∗

1), (H2,Φ∗
2)) =


R2 if H2 ≥ G2,
P2 − L2 + H∗

1 if L1 ≤ H2 < G2,
P2 if H∗

1 ≤ L2, H2 < min{L1, G2},
R′

2 if H∗
1 > L2, H2 < min{L1, G2},

(A.3)
where R′

2 = Φ∗
1(C, (H∗

1 ,H2))R2 +Φ∗
1(D, (H∗

1 ,H2))(S2 +H∗
1 ). By (1), H∗

1 ≤
R2 − S2 which implies R′

2 ≤ R2. Consequently, by (5),

U2((H∗
1 ,Φ∗

1), (H2,Φ∗
2)) ≤ R2.

This shows that player 2 does not have any incentive to change his penalty.
Similarly, player 1 does not have any incentive to change his penalty.

Proof of Theorem 2: Let H∗ be a penalty configuration inducing the
players to cooperate. By Definition 1, there are action plans Φ∗

1 and Φ∗
2 such

that Φ∗
1(C,H∗) = Φ∗

2(C,H∗) = 1 and the strategy profile ((H∗
1 ,Φ∗

1), (H
∗
2 ,Φ∗

2))
is a subgame-perfect equilibrium. From Figure 3, player 1 receives payoff
R1 and player 2 receives payoff R2 in this subgame-perfect equilibrium.
Player 1’s payoff becomes T1−H∗

1 if he defects in Γ′(H∗), given that player
2 cooperates. Thus it must be H∗

1 ≥ G1.
Suppose H∗

1 > L1. Let H2 = 0. From Figure 3, action D is strictly
dominant for player 2 in Γ′(H∗

1 , 0). This together with H∗
1 > L1 implies

that the unique Nash equilibrium for Γ′(H∗
1 , 0) is (C,D). Consequently,

given player 1’s strategy (H∗
1 ,Φ∗

1), player 2 receives payoff T2 > R2 by
deviating from (H∗

2 ,Φ∗
2) to (0,Φ∗

2). This contradicts the fact that H∗ in-
duces the players to cooperate. Hence, H∗

1 ≤ L1 and Φ∗
1(C, (H∗

1 , 0)) < 1.
Now observe that given player 1’s strategy (H∗

1 ,Φ∗
1), by committing to pay

H2 = 0 for defection and by defecting in Γ′(H∗
1 , 0), player 2’s payoff would

be Φ∗
1(C, (H∗

1 , 0))T2+Φ∗
1(D, (H∗

1 , 0))[P2+H∗
1 ]. Since Φ∗

1(C, (H∗
1 , 0)) < 1, it

must be P2+H∗
1 ≤ R2 or equivalently H∗

1 ≤ R2−P2 for Φ∗
1(C, (H∗

1 , 0))T2+
Φ∗

1(D, (H∗
1 , 0))[P2 + H∗

1 ] ≤ R2 to satisfy. In summary, we have shown that
H∗

1 must satisfy G1 ≤ H∗
1 ≤ min{L1, R2 − P2}. By analogy, H∗

2 must
satisfy G2 ≤ H∗

2 ≤ min{L2, R1 − P1}.
Conversely, let H∗ be a penalty configuration satisfying (1′). We show

that H∗ induces the players to cooperate. To this end, for H2 ∈ H2, let
Φ∗

1(H
∗
1 ,H2) and Φ∗

2(H
∗
1 ,H2) be defined by

Φ∗
1(C, (H∗

1 ,H2)) = Φ∗
2(C, (H∗

1 ,H2)) =
{

1 if H2 ≥ G2,
0 if H1 < G2.

(A.4)

For H1 ∈ H1, let Φ∗
1(H1,H

∗
2 ) and Φ∗

2(H1,H
∗
2 ) be defined analogously. Fi-

nally, for H ∈ H with H1 6= H∗
1 and H2 6= H∗

2 , let Φ∗(H) be any Nash equi-
librium for the subgame Γ′(H). Notice that, since H∗

1 ≥ G1 and H∗
2 ≥ G2,
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(6) implies Φ∗
1(C,H∗) = Φ∗

2(C,H∗) = 1. Notice also that the conditions
on H∗ imply G1 ≤ H∗

1 ≤ L1 and G2 ≤ H∗
2 ≤ L2. Thus for H2 ∈ H2,

(C,C) is a Nash equilibrium for Γ′(H∗
1 ,H2) when H2 ≥ G2; (D,D) is a

Nash equilibrium for Γp′(H∗
1 ,H2) when H2 < G2. This shows that the

action pair Φ∗(H∗
1 ,H2) in (6) is a Nash equilibrium for Γ′(H∗

1 ,H2), for all
H2 ∈ H2. By analogy, for all H1 ∈ H1, the action pair Φ∗(H1,H

∗
2 ) is

also a Nash equilibrium for Γ(H1,H
∗
2 ). Thus to show that H∗ induces the

players to cooperate, it only remains to prove that the players do not have
any incentive to unilaterally change penalties that constitute H∗.

Consider H2 ∈ H2. By (6) and Figure 3, player 2’s payoff at
((H∗

1 ,Φ∗
1), (H2,Φ∗

2)) is R2 whenever H2 ≥ G2 and his payoff is P2−H2+H∗
1

whenever H2 < G2. Since H∗
1 ≤ R2 − P2, it follows that player 2 has no

incentive to unilaterally deviate from H∗
2 . By analogy, player 1 has no

incentive to unilaterally deviate from H∗
1 either.
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