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A new class of foreign equity option pricing model is suggested that not
only allows for the volatility but also for the correlation coefficient to vary
stochastically over time. A modified Jacobi process is proposed to evaluate
risk premium of the stochastic correlation, and a partial differential equation to
price the correlation risk for the foreign equity has been set up, whose solution
has been compared with the one with constant correlation. Since taking into
account the stochastic volatility gives rise to more dimensions that produce
more difficulty in numerical implementation of partial differential equation
and Monte carlo, we figure out a series solution for pricing options under the
correlation risk.
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1. INTRODUCTION

Option pricing model has traditionally employed the pioneer approach
of Black and Scholes (1973) to determine the risk premium. Over the
past few years, many people have been looking for pricing models which
incorporate random volatility since empirical evidence, i.e., a variety of fi-
nancial time series support the hypothesis of stochastic volatility. On the
other hand, implied volatilities calculated using the Black-Scholes formula
seem to change randomly over time. The fact we often see the smile of
term structure of the implied volatility is due to the use of inappropriate
measure for analysis, which can be accounted for by stochastic volatility
approaches. Subsequently, many efforts have been devoted to solve the
hard problem of finding the correct variable by quantitatively analyzing
the impact of random motions of the volatility of assets (e.g., Hull and
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White, 1987, 1988; Heston, 1993; Ball and Roma, 1994). Generally, the
problem is eliminated and the stochastic volatility model elucidates the
deviations from constant implied volatility since the amount of persistence
in the smile incorporates long-term memory in stochastic volatility. On
the other hand, in the vast majority of financial and economic literature
for multi-asset options, the correlation coefficient between any correlated
variables has traditionally been assumed to be constant (e.g., see Balck and
Scholes, 1973; Margrable, 1978; Garman, 1992). However, taking the long-
term estimates of constant correlation may be misleading and would over-
estimate or underestimate the current correlation, consequently, it might
cause serious problem in risk-taking, pricing, or hedging. In fact, a histori-
cal correlation should be used very carefully since generally the correlation
might be more unstable than volatility. Moreover, another approach is to
back out an implied correlation from the quoted price of the market instru-
ment. The spirit behind this method is the same as with implied volatility,
which might indicate us an estimation of the concept of stochastic correla-
tion from market information. Therefore, to price multi-asset options, e.g.,
rainbow option, the foreign equity option, besides the stochastic volatili-
ties, another random factor, i.e., stochastic correlation should be included
as well. Recently, the market data analysis reveals the implied correlation
deviates from the realized correlation, and figures out the non-zero corre-
lation risk premium (see Buraschi, Porchia, and Trojani, 2006; Driessen,
Maenhout, and Vilkov, 2006). Therefore, the evidence gives us confidence
to investigate the model with structures of random correlation. On the
other hand, although the large and rapidly growing literature deals with
various types of exotic options (e.g., Taleb, 1997; Briys, Bellalah, Mai, and
de Varenne, 1998; Kwok, 1998; Zhang, 1998; Baz and Chacko, 2004), the
issue of the effect of stochastic correlation on the valuation of such options
has not been expanded.

Currently, the equity-based derivative markets have become globalized.
For example, Nikkei stock index options and futures are traded in Singa-
pore, and, many foreign stocks are traded in the New York Stock Exchange.
Trading of foreign equity derivatives always involves exchange rate uncer-
tainty, but, sometimes, the trader could use the quanto options to avoid
such a kind of risk. Quanto is mostly designed in currency-based markets
with the price of one underlying foreign asset converted to domestic cur-
rency. We could not utilize the extended Black-Scholes formula to price
quanto options since the exchange rate is generally correlated to the stock
price. As pointed out in the above paragraph, the correlation is not fixed
in actual world, and correlation risk exists not only in equity market but
also in interest rate product market (see Buraschi, Cieslak and Trojani,
2007). Therefore, the correlation risk must be priced and the stochastic
correlation should be included in the model for foreign equity options.
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In Sec.2, the Jacobi process is utilized to describe the random motion
of correlation coefficients and a partial differential equation for quanto op-
tions is derived. The numerical price for stochastic correlation is compared
with the one for constant correlation. Sec.3 is devoted to the option with
stochastic correlation coefficient and volatility. In Sec.4, taking a correla-
tion option as the example, we analytically figured out a series solution of
pricing model. In Sec.5, some discussions are made.

2. RISK-NEUTRAL PRICING OF OPTIONS WITH
STOCHASTIC CORRELATION COEFFICIENT

Consider a more complex case for which the securities and their correla-
tion coefficient are stochastic. To simplify the problem, in this section, we
take the volatilities of security as constants. It is known that correlation
may be connected to industrial production, to T-bill rates, to unanticipated
inflation, namely, it seems that a varying correlation is just a business cycle
indicator. But, in fact, after removing all business cycle effects carefully, the
correlation risk still remains (see Driessen, Maenhout, and Vilkov, 2006).
However, the correlation coefficient between two assets is not traded in the
capital market, therefore, it is still necessary to figure out the portfolio to
hedge the correlation risk by the Merton-Garman algorithm (see Merton,
1973).

To describe the stochastic correlation coefficient, we have two choices,
i.e., one is the generalized autoregressive conditional heteroskedastic (GARCH)-
type model (e.g. Engle, 1982; Scott, 1986; Golsten, Jagannathan, and
Runkle, 1993) and the other is the continuous time approach. But since
GARCH process has a nonlinear structure, the time aggregation properties
of the GARCH models are not very convenient. Therefore, recently, an-
other useful approach, i.e., Wishart autoregressive process (see Bru, 1991),
is introduced to describe the changing correlation (see Gourieroux, Jasiak,
and Sufana, 2004; Gourieroux and Sufana, 2004a, Gourieroux and Sufana,
2004b), which guarantees the variance-covariance matrix always is positive
definite and might be useful for evaluating some options (see Fonseca, Gras-
selli and Tebaldi, 2005; Fonseca, Grasselli, and Tebaldi 2006). Furthermore,
another suggested strategy would be to develop pricing models for prod-
ucts with the continuous-time version of stochastic correlation coefficient
approach, and one could estimate their parameters with the discrete-time
approximations and tests the specification on the discrete GARCH model.

To build the continuous time model for pricing the foreign equity options,
we introduce two Geometric Brownian motions to describe the movement
of the exchange rate Sd and the one of underlying foreign asset Sf in the
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real world as follows

dSd = µdSddt+ σ1SddW1

dSf = µfSfdt+ σ2SfdW2, (1)

with a correlation coefficient between them

dW1dW2 = ρdt. (2)

To simplify the problem, the volatilities of the two assets, σ1 and σ2 are
both taken as constants, however, we assume the correlation coefficient of
real world does a random walk, which could be written as

dρ = (ρ̄− βρ)dt+ σ3

√
(h− ρ)(ρ− f)dW3, (3)

where, ρ̄−βρ is a drift term, σ3 is its volatility, 1 ≥ h ≥ f ≥ −1 and h > ρ̄ >
f . Here, we need to select the parameters such as (ρ̄−βf) > σ2

3(h−f)/2 and
(βh−ρ̄) > σ2

3(h−f)/2 to make sure ρ never cross over the bounds. It should
be noted that the bound for correlation is h ≥ ρ ≥ f . Furthermore, we
assume nonzero relationships between the price and correlation coefficient
process, which read

dW1dW3 = ρ1dt

dW2dW3 = ρ2dt. (4)

h and f are the maximum and minimum value of ρ, which also should make
the correlation matrix (elements: ρ, ρ1, ρ2, 1) for dW1, dW2, dW3 positive
definite.

Using Ito’s Lemma, we obtain a three-dimensional stochastic differential
equation for price of quanto option denoted by C

dC = [
∂C

∂t
+

1
2
σ2

1S
2
d

∂2C

∂S2
d

+
1
2
σ2

2S
2
f

∂2C

∂S2
f

+ ρσ1σ2SdSf
∂2C

∂Sd∂Sf

+ σ1σ3ρ1Sd

√
(h− ρ)(ρ− f)

∂2C

∂ρ∂Sd

+ σ2σ3ρ2Sf

√
(h− ρ)(ρ− f)

∂2C

∂ρ∂Sf
+

1
2
σ2

3(h− ρ)(ρ− f)
∂2C

∂ρ2
]dt

+
∂C

∂Sd
dSd +

∂C

∂Sf
dSf +

∂C

∂ρ
dρ. (5)

To obtain the price of the option, following the Black-Scholes analysis, we
consider two different options, C1(Sd, Sf ,K1, T1) and C2(Sd, Sf ,K2, T2) on
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the same underlying assets with different strike prices or maturities given
by K1, K2, T1 and T2 respectively. In quanto option, we may use the
portfolio

Π = C − ΓdSd − ΓfSdSf , (6)

to hedge the risks from the exchange rate and the foreign underlying asset,
and another portfolio Π1 + Γ1Π2 to hedge the correlation risk. Using the
Eq.(5), we get a series of equation to hedge the risks, which yields

Γ1 = −∂C1/∂ρ

∂C2/∂ρ

Γd =
∂C

∂Sd
− Sf

Sd

∂C

∂Sf

Γf =
1
Sd

∂C

∂Sf
. (7)

Using the above portfolio, the correlation risk could be eliminated, and
the drift term of correlation process becomes ρ̄− βρ+ λ̄(ρ, t) where λ̄(ρ, t)
is a risk premium and could be defined as λ̄ρ. Rewriting the drift term as
ρ̄− gρ, we take the risk-neutral process of correlation as the Jacobi process

dρ = (ρ̄− gρ)dt+ σ3

√
(h− ρ)(ρ− f)dW3 (8)

where ρ̄ is related to the equilibrium value of correlation coefficient, i.e., ρ̄
g ,

g is a positive parameter. Meanwhile, the risk-neutral asset prices become
dSd

Sd
= (rd−rf )dt+σ1dW1,

dSf

Sf
= rfdt+σ2dW2, where rd, rf are domestic

and foreign interest rate respectively. If measuring the foreign asset in
domestic currency, the expected return in risk-neutral world is rd − (rd −
rf ) − ρσ1σ2 = rf − ρσ1σ2. Now, the constrained condition to make h ≥
ρ ≥ f is changed as (ρ̄ − gf) > σ2

3(h − f)/2 and (gh − ρ̄) > σ2
3(h − f)/2,

which could be realized easily since λ̄ is not very large. Consequently, ρ in
the risk-neutral process can not cross over the either border. It should be

emphasized the correlation matrix

 1 ρ ρ1

ρ 1 ρ2

ρ1 ρ2 1

must be positive definite,

whose determinant is zero or positive, i.e., (1− ρ2
2− ρ2

1 + 2ρρ1ρ2− ρ2) ≥ 0.
Then its solution is as follows

ρ1ρ2 −
√

(1− ρ2
1)(1− ρ2

2) ≤ f ≤ ρ ≤ h ≤ ρ1ρ2 +
√

(1− ρ2
1)(1− ρ2

2). (9)
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Fixing all parameters, the risk-neutral pricing of a quanto option becomes

∂C

∂t
+ (rd − rf )Sd

∂C

∂Sd
+ (rf − ρσ1σ2)Sf

∂C

∂Sf
+ (ρ̄− gρ)

∂C

∂ρ

+
1
2
σ2

1S
2
d

∂2C

∂S2
d

+
1
2
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2S
2
f

∂2C

∂S2
f

+ ρσ1σ2SdSf
∂2C

∂Sd∂Sf

+ σ1σ3ρ1Sd

√
(h− ρ)(ρ− f)

∂2C

∂ρ∂Sd
+ σ2σ3ρ2Sf

√
(h− ρ)(ρ− f)

∂2C

∂ρ∂Sf

+
1
2
σ2

3(h− ρ)(ρ− f)
∂2C

∂ρ2
− rdC = 0. (10)

This equation is valid for any foreign equity option with underlying mea-
sured in foreign currency but paid in domestic one. Since we only need Sd

to hedge, a solution independent of the exchange rate could be figured out.
Rewriting the solution C(Sd, Sf , t) = V (Sf , t), we get

∂V

∂t
+ (rf − ρσ1σ2)Sf

∂V

∂Sf
+ (ρ̄− gρ)

∂V

∂ρ
+

1
2
σ2

2S
2
f

∂2V

∂S2
f

+ σ2σ3ρ2Sf

√
(h− ρ)(ρ− f)

∂2V

∂ρ∂Sf

+
1
2
σ2

3(h− ρ)(ρ− f)
∂2V

∂ρ2
− rdV = 0. (11)

Then, using the payoff at expiration time C(Sf , T ) = S̄d max[Sf (T ) −
Kf , 0] where S̄d and Kf are a fixed exchange rate and the strike price
respectively, the stochastic dynamics could give the price of quanto op-
tion. Certainly, stochastic equations could be solved by the Monte-Carlo
method, whose accuracy and convergence unfortunately might be poor.
Thus, we lay the Monte Carlo method aside temporarily and just use it as
a supplementary tool in Sec. 4 only. Since we reduced a three-dimensional
stochastic differential equation, i.e., Eqs.(1-3) to a two dimensional partial
differential equation, the price of quanto option could be quickly solved as
well as its Greeks are stably accessible. Subsequently, we solve Eq.(11) by
finite difference method in this section, whose solution is analyzed by a se-
ries pricing formula derived in the next section. The Crank-Nicolson finite
difference method is extremely popular for numerical solution of partial
differential equation, whose main merits are its second order accuracy and
stability. Discretizing Eq.(11), one could select the central difference in the
Crank-Nicol method to increase the accuracy and stability of the solution.
Then combining the terminal payoff function, i.e., S̄d max[Sf (T ) −Kf , 0]
we solve the price of the quanto option to avoid the correlation risk. The
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closed form solution for quanto option with a constant correlation yields

C = S̄dSfe
(rf−rd−ρσ1σ2)τN(d1)− S̄dKfe

−rdτN(d2), (12)

where N is cumulative function, τ = T − t, and

d1 =
ln Sf

Kf
+ (rf − ρσ1σ2 + σ2

2
2 )τ

σ2
√
τ

, d2 = d1 − σ2

√
τ . (13)

The prices C
′
for stochastic correlation model and C for constant correla-

tion could be computed respectively, and the difference (C
′
(ρ0)−C(ρ0))/Kf

is plotted in Fig.1 where S̄d = 1, rf = 0.1 σ1 = 1.0, σ2 = 1.0, T − t = 0.15,
ρ̄ = −0.01, ρ1 = −ρ2 = 0.01, g = 2.0, σ3 = 1.0 and h = 0.9, f = −0.9, ρ0

is the initial correlation at time t = 0. It could be found the difference is
small since the diffusion at T = 0.15 results in a weak deviation of ρ from
the initial value ρ0. Taking parameters same as in Fig.1 except T = 0.30,
we compare the results with the price for constant coefficient in Fig.2, and
could find larger price difference than in Fig. 1. But we should note that
(C

′
(ρ0)−C(ρ0))/Kf for this option is large only around ρ ∼ ±0.9 in Figs.

1 and 2. We note that the larger Sf (t = 0), the bigger difference between
C

′
(ρ0)−C(ρ0), which is exactly why we choose fixed exchange rate foreign

equity call as example. In fact, other kinds of foreign equity option such as
foreign equity call struck in foreign currency, and foreign call in domestic
currency do not display such a phenomenon. In other words, their price
difference due to correlation risk is almost zero and independent of ρ0 as
Sf (t) >> Kf or Sf (t) << Kf . We will elucidate why in the next section.

3. THE STANDARD JACOBI DIFFERENTIAL EQUATION

It is known that the stochastic volatility is important as well as the cor-
relation risk and they might have same source. For example, a firm’s value
can be decomposed as the net present value of all its forthcoming income
with its asset minus its debt. Their components have different volatilities
which cause the leverage related skew of the implied volatility. On the other
hand, economic effects, e.g., anticipated central bank action, give rise to an
interest rate skew of volatility, which is elucidated by the stochastic volatil-
ity. Then the same question arises for correlation coefficients. It is obvious
that the correlation coefficients between those pairs of component in a firm’s
value must differ each other, which attributes to the stochastic correlation.
The only difference between two cases is: to calibrate the market data of
the skew or smile, we need to set up a comparatively strong correlation
between the stochastic process of volatility and the one of equity. But,
the correlation process could be independent or weakly connected to the
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FIG. 1. The price difference
C
′
(ρ0)−C(ρ0)

Kf
for T = 0.15. C

′
(ρ0) stands for the price

of quanto option with the stochastic correlation coefficient, and C(ρ0) is the one with

constant correlation coefficient, and Kf is the strike price. The parameters for C
′

are
taken as S̄d = 1, rf = 0.1 σ1 = 1.0, σ2 = 1.0, T = 0.15, ρ̄ = −0.01, ρ1 = −ρ2 = 0.01,
g = 2.0, σ3 = 1.0 and h = 0.9, f = −0.9. All parameters are same except the constant
correlation is taken as ρ0 for C where ρ0 is the correlation of the initial time.

one of equity. Since generally, the empirical evidence shows that random
correlation could move from 1 to -0.5 or even to -1 which suppresses ρ1 and
ρ2 to make the correlation matrix positive definite, i.e., ρ1 ≈ 0 and ρ2 ≈ 0
(see Eq.(9)), we could use the pricing formula derived in this section for
ρ1 = ρ2 = 0 with confidence.

Notice that we have not even introduced so far what stochastic volatility
could be incorporated in this model. Certainly, we could generalize the
model in Sec.2 to include the effect of stochastic volatilities of securities as
well. Heston has considered the following process to describe the random
walk of volatility (see Heston, 1993) dPk = (ek − akPk)dt + γkP

αk

k dVk

where Pk = σ2
k, ek and ak are two positive parameters, γk represents the

amplitude of change of volatility, αk stands for a positive parameter less
than 1, and dVk is a standard Weiner process. Furthermore, we could use
dρj = (ρ̄j − gjρj)dt−

√
(hj − ρj)(ρj − fj)dWj to describe correlations in a

set of underlying asset Sk where 1 ≤ k ≤ N , and 1 ≤ j ≤ N(N−1)/2. Then
each pair of processes contributes a correlation coefficient as an element of
the correlation matrix. It is very difficult to figure out a formula like
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FIG. 2. The price difference
C
′
(ρ0)−C(ρ0)

Kf
for T = 0.30. All parameters are same

as in the figure 1 except T = 0.30.

Eq.(9) to guarantee this correlation matrix is positive definite. But a non-
zero measure must exist for such a set of process since at least we could
set each process as independent one even if highlighting the stochastic
volatilities. Then, we could use the Heston process and the modified or
standard Jacobi process to describe the random walks of volatility and
correlation in N -dimensional assets, which could make the pricing model
more sophisticated.

Generally, we should look for a closed form solution because of its con-
venience in practice. Regardless of that the closed form solution for this
kind of stochastic process is currently unavailable, when choosing some
special parameters, an approximate formula still could be derived. In last
section, we recommend the Jacobi processes to describe the risk-neutral
motion of correlation, i.e., dρ = (ρ̄− gρ)dt + σ3

√
(h− ρ)(ρ− f)dW3. To

simplify the problem, we select ρ1 = ρ2 = 0 to keep the correlation matrix
definite positive. Now, the motion of correlation and the one of asset price
are independent, then, using the Kolmogorov forward equation, we could
solve the probability kernel for the correlation process easily. Therefore,
the problem is how to determine the eigenvalue λn and eigenfunction ψn(ρ)
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of the Markov generator of the process, which is

H =
σ2

3

2
(h− ρ)(ρ− g)

d2

dρ2
+ (ρ̄− gρ)

d

dρ
. (14)

The eigenfunctions of operator H solve the equation

Hψn(ρ) = λnψn(ρ), (15)

which could be solved by variable separation method as follows

σ2
3

2
(h− ρ)(ρ− f)

d2ψn(ρ)
dρ2

+ (ρ̄− gρ)
dψn(ρ)
dρ

+ λnψn(ρ) = 0. (16)

Introducing a transformation like ρ = h−f
2 ρ

′
+ h+f

2 , we rewrite the Eq.(16)
as

σ2
3

2
(1−ρ

′2
)
d2ψn(ρ

′
)

dρ′
2 +(

2ρ̄
h− f

−gh+ f

h− f
−gρ

′
)
dψn(ρ

′
)

dρ′
+λnψn(ρ

′
) = 0. (17)

Then multiplying 2
σ2
3

in both sides, we get a standard Jacobi differential
equation (see Szego, 1975)

(1−ρ
′2

)
d2ψn(ρ

′
)

dρ′
2 +

[
2
σ2

3

(
2ρ̄− hg − fg

h− f
)− 2

σ2
3

gρ
′
]
dψn(ρ

′
)

dρ′
+

2
σ2

3

λnψn(ρ
′
) = 0,

(18)
whose solutions yield

λn = −σ
2
3

2
n(n+

2g
σ2

3

− 1) (19)

and

ψn(ρ
′
) =

 (2n+ 2g
σ2
3
− 1)Γ(n+ 2g

σ2
3
− 1)n!

2
2g

σ2
3
−1

Γ(n+ 2gh−2ρ̄
σ2
3(h−f)

)Γ(n+ 2ρ̄−2gf
σ2
3(h−f)

)


1/2

P
( 2gh−2ρ̄

σ2
3(h−f)

−1, 2ρ̄−2gf

σ2
3(h−f)

−1)

n (ρ
′
).

(20)
The Jacobi polynomials are as the following

P
( 2gh−2ρ̄

σ2
3(h−f)

−1, 2ρ̄−2gf

σ2
3(h−f)

−1)

n (ρ
′
)

=
( 2gh−2ρ̄

σ2
3(h−f)

)n

n! 2F1

(
−n, n+

2g
σ2

3

− 1;
2gh− 2ρ̄
σ2

3(h− f)
;
1− 2ρ

h−f + h+f
h−f

2

)
,(21)
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where ( 2gh−2ρ̄
σ2
3(h−f)

)n = ( 2gh−2ρ̄
σ2
3(h−f)

)( 2gh−2ρ̄
σ2
3(h−f)

+ 1)( 2gh−2ρ̄
σ2
3(h−f)

+ 2) · · · ( 2gh−2ρ̄
σ2
3(h−f)

+ n)
and 2F1 is the hypergeometric polynomials. Basing on (gh− ρ̄) > σ2

3(h−
f)/2 and 0 < h − f ≤ 2, we know (2gh−2ρ̄)

σ2
3(h−f)

> 0. Then the probability
kernel for the Jacobi process, P (ρ0, ρ; t, T ) could be written as

P (ρ0, ρ; 0, τ) = (22)
∞X

n=0

eλnτ (1 +
h+ f

h− f
−

2ρ

h− f
)

2gh−2ρ̄

σ2
3(h−f)

−1
(1 −

h+ f

h− f
+

2ρ

h− f
)

2ρ̄−2gf

σ2
3(h−f)

−1
ψn(ρ0)ψn(ρ),

where τ = T − t.
The probability kernel of whole system might be impossibly available,

which raises difficulty to get the closed form solution. However, we still
could derive a solution of a Taylor series expansion. First, we know the price
of the option with two assets S1 and S2 at maturity T is determined by the
terminal distribution of its payoff, which is denoted as PO[S1(T ), S2(T )].
Then the option price at t yields

C(S1(t), S2(t), ρt, t) =

e−r(T−t)

Z ∞
0

Z ∞
0

PO[S1(T ), S2(T )]ω[S1(T ), S2(T )|S1(t), S2(t), ρt]dS1(T )dS2(T ),

(23)

where ω[S1(T ), S2(T )|S1(t), S2(t), ρt] is the conditional probability density
function of S1(T ), S2(T ) in the risk-neutral world given S1(t), S2(t) and ρt.
Second, since the option price is determined by the terminal distribution
of price process of the underlying asset instantaneously uncorrelated with
the Jacobi process, we could define another independent variable, i.e., the
averaged correlation coefficient during the life of the option,

ρ̂ =
1
τ

∫ τ

0

ρtdt, (24)

to solve the conditional probability density function in Eq.(23). Always,
we could equally divide a ρ̂ path into k pieces from 0 to τ , and each
time piece is ∆t. Consequently, it could be defined that Si

1, S
i
2 are as-

set price at the end of the ith period and their correlation is ρi−1. Then
[ln(Si

1/S
i−1
1 ), ln(Si

2/S
i−1
2 )] yield a multi-variate normal distribution. It is

known that S1, S2 are instantaneously uncorrelated with the correlation
process, which means the probability distribution of [ln(Si

1/S
i−1
1 ), ln(Si

2/S
i−1
2 )]

is conditioned on ρi−1. Basing on the Cholesky decomposition, we use
σ1∆W i

1 and σ2(ρi∆W i
1+
√

1− ρ2
i ∆W2) to describe [ln(Si+1

1 /Si
1), ln(Si+1

2 /Si
2)].

It could be justified that covariance between ln(Si+1
1 /Si

1)+ln(Si
1/S

i−1
1 ) and

ln(Si+1
2 /Si

2) + ln(Si
2/S

i−1
2 ) is σ1σ2(ρi + ρi−1)∆t, the variance of asset one

is 2σ2
1∆t, and the one of asset two is σ2

2(ρ2
i +1− ρ2

i + ρ2
i−1 +1− ρ2

i−1)∆t =
2σ2

2∆t, which indicate the distribution of [ln(Si+1
1 /Si−1

1 ), ln(Si+1
2 /Si−1

2 )] is
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normal with the correlation ρi+ρi−1
2 . Hence, the probability distribution

of [ln(Sk
1 /S

0
1), ln(Sk

2 /S
0
2)] conditioned on the path follow by ρ is normal

with a correlation ρ̂, which depends on ρ̂ only. On the other hand, if the
stochastic dynamic generates an infinite number of paths that give the same
averaged correlation ρ̂, they must generate a same terminal distribution of
asset price. Thus, using the formula for the conditional density function
with several random variables, the conditional probability density function
of terminal asset prices could be rewritten as

ω[S1(T ), S2(T )|S1(t), S2(t), ρt)]

=
∫ h

f

Λ[S1(T ), S2(T )|S1(t), S2(t), ρ̂]ε[ρ̂|S1(t), S2(t), ρt]dρ̂, (25)

where Λ[S1(T ), S2(T )|S1(t), S2(t), ρ̂] means the class of path of S1, S2 con-
ditional upon ρ̂. Substituting the above equation into Eq.(23), the option
prices turns to be

C(S1(t), S2(t), ρt, t)

= e−r(T−t)

∫ ∞
0

∫ ∞
0

∫ h

f

PO[S1(T ), S2(T )]Λ[S1(T ), S2(T )|S1(t), S2(t), ρ̂]

× ε[ρ̂|S1(t), S2(t), ρt]dρ̂dS1(T )dS2(T )

=
∫ h

f

{e−r(T−t)

∫ ∞
0

∫ ∞
0

PO[S1(T ), S2(T )]Λ(S1(T ), S2(T )|S1(t), S2(t), ρ̂)

× dS1(T )dS2(T )}ε[ρ̂|S1(t), S2(t), ρt]dρ̂. (26)

As mentioned before, the prices of the underlying asset follow geometric
Brownian motions, which guarantees the class of path of S1, S2 conditional
upon ρ̂, i.e., Λ[S1(T ), S2(T )|S1(t), S2(t), ρ̂], generates a standard lognormal
distribution. Then in above equation, the inner integral produces nothing
but the Black-Scholes formula with a varying correlation coefficient: the
constant correlation coefficient is replaced by ρ̂. Finally, the option value
yields

C(S1, S2, ρt) =
∫ h

f

CBS(ρ̂)ε(ρ̂)dρ̂, (27)

where CBS stands for the Black-Scholes pricing formula with correlation ρ̂.
Although it is difficult to derive ε(ρ̂), remembering the kernel of the Jacobi
process is available, nevertheless, we could obtain the moments of ρ̂ and
substitute them to expand the above formula. Consequently, the option
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pricing formula could be written in its Taylor series as follows

C(S1(t), S2(t), ρt)

= CBS(ρ̂) +
1

2

∂2CBS

∂ρ2
|ρ̂Var(ρ̂) +

1

6

∂3CBS

∂ρ3
|ρ̂Skew(ρ̂) + · · ·

= CBS(ρ̂) +
1

2

∂2CBS

∂ρ2
|ρ̂(ρ̂2 − (ρ̂)2) +

1

6

∂3CBS

∂ρ3
|ρ̂(ρ̂3 − 3ρ̂2 · ρ̂ + 2(ρ̂)3) + · · · .

(28)

Now, the unsolved problem is to evaluate ρ̂, ρ̂2, ρ̂3, and so on. Using the
evolution kernel of the risk-neutral Jacobi process P (ρ0, ρ; 0, t) to derive
the expectation of ρ̂, i.e., EQ( 1

τ

∫ τ

0
ρtdt), it is easy to get ρ̂, which reads

ρ̂ =
1
τ

∫ h

f

∫ τ

0

ρP (ρ0, ρ; 0, t)dtdρ

=
1
τ

∫ h

f

∫ τ

0

[ρ
∞∑

n=0

e
−σ2

3
2 n(n+ 2g

σ2
3
−1)τ

(1 +
h+ f

h− f
− 2ρ
h− f

)
2gh−2ρ̄

σ2
3(h−f)

−1

×(1− h+ f

h− f
+

2ρ
h− f

)
2ρ̄−2gf

σ2
3(h−f)

−1
ψn(ρ0)ψn(ρ)]dtdρ

=
∞∑

n=0

1− e
−σ2

3
2 n(n+ 2g

σ2
3
−1)τ

σ2
3
2 n(n+ 2g

σ2
3
− 1)τ

ψn(ρ0)
∫ h

f

dρ[ρ(1 +
h+ f

h− f
− 2ρ
h− f

)
2gh−2ρ̄

σ2
3(h−f)

−1

×(1− h+ f

h− f
+

2ρ
h− f

)
2ρ̄−2gf

σ2
3(h−f)

−1
ψn(ρ)]. (29)

It is a little tricky to derive ρ̂2. First, we rewrite the expectation of ρ̂2 as
1
τ2E

Q[(
∫ τ

0
ρt1dt1)(

∫ τ

0
ρt2dt2)] = 1

τ2E
Q[
∫ τ

0

∫ τ

0
ρt1ρt2dt1dt2], and divide the

integrating domain into two parts, i.e., part t1 > t2 and the other t2 > t1,
whose contributions to the final value are same. Second, selecting one part,
and substituting

EQ[

Z τ

0

Z τ

0
ρt1ρt2dt1dt2]

=
2

τ2

Z τ

0
dt1

Z h

f
dρxρxP (ρ0, ρx; 0, t1)

Z τ−t1

0
dt2

Z h

f
dρyρyP (ρx, ρy ; 0, t2), (30)
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we get

ρ̂2 =
2

τ2

Z h

f
{

Z τ

0
[ρxP (ρ0, ρx; 0, t1)

Z h

f
ρy

Z τ−t1

0
P (ρx, ρy ; 0, t2)dt2dρy ]dt1}dρx

=
2

τ2

∞X
n,m=0

[
1 − e

−
σ2
3
2 n(n+ 2g

σ2
3
−1)τ

σ4
3
4
m(m+ 2g

σ2
3
− 1)n(n+ 2g

σ2
3
− 1)

−
e
−

σ2
3
2 m(m+ 2g

σ2
3
−1)τ

− e
−

σ2
3
2 n(n+ 2g

σ2
3
−1)τ

σ4
3
4
m(m+ 2g

σ2
3
− 1)(n(n+ 2g

σ2
3
− 1) −m(m+ 2g

σ2
3
− 1))

]

× ψn(ρ0)

Z h

f

Z h

f
dρxdρy [ρx(1 +

h+ f

h− f
−

2ρx

h− f
)

2gh−2ρ̄

σ2
3(h−f)

−1

× (1 −
h+ f

h− f
+

2ρx

h− f
)

2ρ̄−2gf

σ2
3(h−f)

−1
ψn(ρx)ψm(ρx)ρy(1 +

h+ f

h− f
−

2ρy

h− f
)

2gh−2ρ̄

σ2
3(h−f)

−1

× (1 −
h+ f

h− f
+

2ρy

h− f
)

2ρ̄−2gf

σ2
3(h−f)

−1
ψm(ρy)]. (31)

At last, following the same algorithms, we rewrite the expectation of ρ̂3 as
1
τ3E

Q[
∫ τ

0

∫ τ

0

∫ τ

0
ρt1ρt2ρt3dt1dt2dt3] and divide the integrating domain into

six parts, i.e., t3 > t2 > t1, t3 > t1 > t2, t2 > t1 > t3, t2 > t3 > t1,
t1 > t3 > t2, t1 > t2 > t3, whose contributions to total value are same.
Then, performing the following integration

EQ[
∫ τ

0

∫ τ

0

∫ τ

0

ρt1ρt2ρt3dt1dt2dt3]

=
6
τ3

∫ h

f

dρx

∫ τ

0

dt1ρxP (ρ0, ρx; 0, t1)
∫ h

f

dρy

∫ τ−t1

0

dt2ρyP (ρx, ρy; 0, t2)

×
∫ h

f

dρz

∫ τ−t2−t1

0

dt3ρzP (ρy, ρz; 0, t3), (32)
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and substituting it, we get

ρ̂3

=
6

τ3

∞X
n=0

m=0,l=0

[
e
−

σ2
3
2 m(m+ 2g

σ2
3
−1)τ

− e
−

σ2
3
2 n(n+ 2g

σ2
3
−1)τ

σ6
3
8
l(l + 2g

σ2
3
− 1)(m(m+ 2g

σ2
3
− 1) − l(l + 2g

σ2
3
− 1))(n(n+ 2g

σ2
3
− 1) −m(m+ 2g

σ2
3
− 1))

−
e
−

σ2
3
2 l(l+ 2g

σ2
3
−1)τ

− e
−

σ2
3
2 n(n+ 2g

σ2
3
−1)τ

σ6
3
8
l(l + 2g

σ2
3
− 1)(m(m+ 2g

σ2
3
− 1) − l(l + 2g

σ2
3
− 1))(n(n+ 2g

σ2
3
− 1) − l(l + 2g

σ2
3
− 1))

−
e
−

σ2
3
2 m(m+ 2g

σ2
3
−1)τ

− e
−

σ2
3
2 n(n+ 2g

σ2
3
−1)τ

σ6
3
8
l(l + 2g

σ2
3
− 1)m(m+ 2g

σ2
3
− 1)(n(n+ 2g

σ2
3
− 1) −m(m+ 2g

σ2
3
− 1))

+
1 − e

−
σ2
3
2 n(n+ 2g

σ2
3
−1)τ

σ6
3
8
l(l + 2g

σ2
3
− 1)m(m+ 2g

σ2
3
− 1)n(n+ 2g

σ2
3
− 1)

]ψn(ρ0)

×
Z h

f

Z h

f

Z h

f
dρxdρydρz [ρx(1 +

h+ f

h− f
−

2ρx

h− f
)

2gh−2ρ̄

σ2
3(h−f)

−1

× (1 −
h+ f

h− f
+

2ρx

h− f
)

2ρ̄−2gf

σ2
3(h−f)

−1
ψn(ρx)ψm(ρx)

× ρy(1 +
h+ f

h− f
−

2ρy

h− f
)

2gh−2ρ̄

σ2
3(h−f)

−1
(1 −

h+ f

h− f
+

2ρy

h− f
)

2ρ̄−2gf

σ2
3(h−f)

−1
ψm(ρy)ψl(ρy)

× ρz(1 +
h+ f

h− f
−

2ρz

h− f
)

2gh−2ρ̄

σ2
3(h−f)

−1
(1 −

h+ f

h− f
+

2ρz

h− f
)

2ρ̄−2gf

σ2
3(h−f)

−1
ψl(ρz)]. (33)

Basing on the fact that the kurtosis of ρ̂ is generally much less than
0.001 because of |ρt| ≤ 1, absolute value of the fourth term in Eq.(28)
is basically much less than one basis point. Thus, it is not necessary to
derive ρ̂4 and even higher order terms. We testify Eqs.(29,31,33) and com-
pare the computation result with the one from the Monte Carlo method
in Tables 1 and 2. Remembering that this Monte Carlo simulation is just
one-dimensional and should have high accuracy, it is not surprising to ob-
serve that the numerical outcomes from two methods in Tables 1 and 2 are
almost same. We need to point out that in Eqs.(29,31,33), the first couple
of eigenvalue and eigenfunctions generally could guarantee very good accu-
racy since the eigenvalue λn ∼ −n2 and the exponentially decaying factor
eλnτ suppresses most of terms in Eqs.(29,31,33). Moreover, the first inner
integration in Eqs.(29,31,33) could be performed analytically, which makes
these equations more efficient.

An important subject is to analyze the numerical option price within
the framework of Eq.(28). Substituting Black-Scholes solution of quanto
option into Eq.(28), immediately, we could understand what happens in
Figs. (1) and (2). Since at ρ0 ∼ −0.9, ρ̂ must be larger than the initial
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TABLE 1.

ρ̂, ρ̂2 and ρ̂3 for h = −f = 0.8, ρ̄ = 0.5, g = 1.7, σ3 = 1.0, T − t = 5.0, ρ0 = 0.6

Method ρ̂ ρ̂2 ρ̂3

Eqs (29,31,33) 0.3298124 0.1320751 0.0571973

Monte Carlo 0.3296324 0.1318939 0.0572296

TABLE 2.

ρ̂, ρ̂2 and ρ̂3 for h = −f = 0.8, ρ̄ = −0.5, g = 1.7, σ3 = 1.0, T − t = 5.0, ρ0 = 0.6

Method ρ̂ ρ̂2 ρ̂3

Eqs (29,31,33) -0.1887623 0.0611409 -0.0198942

Monte Carlo -0.1896188 0.0614482 -0.0199905

correlation coefficient due to the almost zero equilibrium value of correla-
tion, and at ρ0 ∼ 0.9, ρ̂ must be smaller than the initial one, we could know
that from Eq.(28), the factor e(rf−rd−ρ̂σ1σ2)τ in the zeroth order term deter-
mines that the price with stochastic correlation is larger than the price with
constant one at ρ0 ∼ 0.9 or vice versus at ρ0 ∼ −0.9. On the other hand,
Sfe

(rf−rd−ρ̂σ1σ2)τN(d1) in Eq.(12) implies that even Kf << Sf (t = 0), the
price difference never vanishes and should be proportional to Sf (t = 0) as
we could find exactly in Figs.(1) and (2). In fact, in other kinds of foreign
currency option, the correlation risk is not so important as the spot price of
underlying assets is very larger than the strike price. Taking foreign equity
call struck in domestic currency as an example, whose terminal pay off is
Max(SdSf −Kd, 0), its Black-Scholes solution with constant correlation ρ
between underlying asset and the exchange rate reads

C(Sf , τ) = SdSfN(d1)−Kde
−rdτN(d2), (34)

where Kd is Kd units of domestic currency for one unit of strike price of
the underlying asset, and

d1 =
ln Sf

Kd
+ [−rd + 0.5(σ2

1 + σ2
2 − 2ρσ1σ2)τ ]√

(σ2
1 + σ2

2 − 2ρσ1σ2)τ
,

d2 = d1 −
√

(σ2
1 + σ2

2 − 2ρσ1σ2)τ . (35)

Then, we could immediately find a ρ-independent price C ≈ SdSf for
Sf >> Kd, which implies no ρ sensitivity in Eqs.(28,34) for the option
deep in the money. Following the same approach, we could justify as well
no ρ sensitivity for foreign equity call struck in domestic currency when
Sf << Kd, which indicates that the correlation risk is important only in
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Sf ∼ Kd region. Then one could understand why we choose quanto option
as an example to illustrate the price difference which is proportional to the
value of underlying asset.

Another interesting issue is the pricing formula for the number of un-
derlying assets N >> 1. For example, the problem is how to derive the
correlation risk premium of a option involved in many underlying assets,
such as index or basket option involved in three or more underlying as-
sets. We take N = 3 as an example to present the general solution. First,
we define three geometric Brownian motions to describe the price motion
of three underlying assets. In three geometric Brownian motions, the dif-
fusion terms, i.e., dW1, dW2 and dW3 have the correlation relationships
dW1dW2 = ρ12dt, dW1dW3 = ρ13dt, and dW2dW3 = ρ23dt respectively.
Second, we assume those correlation coefficients vary over time and follow
three independent Jacobi processes. Then, defining ρ̂12, ρ̂13 and ρ̂23 like in
Eq.(24), and figuring out their moments, we could expand the option price
in its Taylor series as follows

C(S1(t), S2(t), S3(t), ρ12(t), ρ13(t), ρ23(t)) (36)

=
∞∑

j=0

{ 1
j!
EQ[(ρ̂12 − ρ̂12)

∂

∂ρ12
+ (ρ̂13 − ρ̂13)

∂

∂ρ13
+ (ρ̂23 − ρ̂23)

∂

∂ρ23
]j

× CBS(S1(t), S2(t), S3(t), ρ12(t), ρ13(t), ρ23(t))|ρ12=ρ̂12,ρ13=ρ̂13,ρ23=ρ̂23
}

This formula could be easily generalized to the option with more than
three underlying assets.

4. OPTIONS WITH STOCHASTIC VOLATILITY AND
CORRELATION

As pointed out in the proceeding sections, the stochastic volatility has
an important impact on the option price. If wanting to understand the
market evolution completely, e.g., the volatility smile, we have to take
into account the stochastic volatility. But the stochastic volatility sets up
more difficulties for us to get an explicit pricing formula. To simplify the
problem, we select a correlation option as an example.

In an European call on a single asset, what the trader could utilize is just
one spread between the terminal price of asset and the strike. If wanting
to utilize two spreads simultaneously, the trade might need to use a tool
looking like a two-spread analog of an European call or put option. Besides
the product option giving traders a right to buy or sell the product of two
underlying assets for the strike, one could design another option to allow
traders to capture an opportunity to trade two spreads in assets jointly,
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whose payoff is Max[S1(T )−K1, 0]×Max[S2(T )−K2, 0] (see Bakishi and
Madan, 2000).

Selecting this kind of option as an example, we could investigate an im-
portant issue, i.e., pricing option with stochastic volatility and correlation.
First, we suppose the trader could use the correlation option to bet the
spreads in the foreign exchange rate or asset. Second, no foreign exchange
rate or asset keeps constant volatility, and all stochastic volatilities share
one random source. Consequently, the dynamics with stochastic volatility
could be selected as follows (see Jegadeesh and Tuckman, 2000; Bakishi
and Madan, 2000)

dS1

S1
= (rd − rf )dt+ σ1

√
QdW1,

dS2

S2
= (rd − rf )dt+ σ2

√
QdW2,

dQ = (θq − kqQ)dt+ σq

√
QdWq, (37)

where Q represents a volatility factor, rd, rf are domestic and foreign
interest rate respectively, we specify dW1dW2 = ρdt, dW1dWq = ρ̄1dt, and
dW2dWq = ρ̄2dt. This ρ-constant dynamics values the correlation option
C(S1, S2, Q0, τ) as

C(S1, S2, Q0, τ) = (38)

e−ζ1 ln K1−ζ2 ln K2

(2π)2

Z ∞
−∞

Z ∞
−∞

Re[
e−i(φ1 ln K1+φ2 ln K2)−rdτG(τ ;χ1, χ2)

(ζ1 + iφ1)(ζ1 + 1 + iφ1)(ζ2 + iφ2)(ζ2 + 1 + iφ2)
]dφ2dφ1,

where Q0 is initial volatility, ζ1 and ζ2 are chosen as two real numbers
to define χ1 = φ1 − (1 + ζ1)i, χ2 = φ2 − (1 + ζ2)i, and the characteristic
function is

G(τ ;χ1, χ2) = exp[iχ1 lnS1(0) + iχ2 lnS2(0) + i(χ1 + χ2)(rd − rf )τ

+
2η(1− e−θτ )

2θ − (θ − ϕ)(1− e−θτ )
Q0

− 2θq

σ2
q

ln(1− (θ − ϕ)(1− e−θτ )
2θ

)− θq

σ2
q

(θ − ϕ)τ ], (39)

with

ϕ = kq − i(ρ̄1σ1χ1 + ρ̄2σ2χ2)σq

θ =
√
ϕ2 − 2σ2

qη

η = −0.5(σ2
1χ

2
1 + σ2

2χ
2
2 + 2ρσ1σ2χ1χ2)− 0.5i(σ2

1χ1 + σ2
2χ2). (40)
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Having defined an independent Jacobi process to describe the random
motion of correlation ρ, we could use Eq.(28) to derive the price of the op-
tion with stochastic volatility and correlation. Furthermore, the sensitivity
of option price versus the correlation is

∂G

∂ρ
= (−2

θqX2

σ2
qX1

+
θqτX0

θ
+Q0

X4

X2
3

)G (41)

with

X0 = −σ1σ2χ1χ2

y0 = −σ2
qX0(1− e−θτ )/θ − (θ − ϕ)τσ2

qX0e
−θτ/θ

X1 = 1− (θ − ϕ)(1− e−θτ )
2θ

X2 = −0.5
σ2

qX0(θ − ϕ)(1− e−θτ )
θ3

− 0.5
y0
θ

X3 = 2θ − (θ − ϕ)(1− e−θτ )
X4 = 2X0(1− e−θτ )X3 − 2ητσ2

qX0X3e
−θτ/θ

+ 2η(1− e−θτ )(2σ2
qX0/θ + y0). (42)

The second order is

∂2G

∂ρ2
= [−2θq(X5X1 −X2

2 )/(σ2
qX

2
1 ) + θqσ

2
qτX

2
0/θ

3 +X6Q0/X
2
3

+ 4σ2
qX0X4Q0/(X3

3θ) + 2X4y0Q0/X
3
3 ]G

+ (−2θqX2/(σ2
qX1) + θqτX0/θ +X4Q0/X

2
3 )
∂G

∂ρ
(43)

with

X5 = −σ2
qX0y0/θ

3 − 0.5y1/θ −
3
2
σ4

qX
2
0 (θ − ϕ)(1− e−θτ )/θ5

X6 = −2X2
0X3τσ

2
qe
−θτ/θ − 2X0(1− e−θτ )(2σ2

qX0/θ + y0)

− 2τσ2
qX

2
0X3e

−θτ/θ + 2ητσ2
qX0e

−θτ (2σ2
qX0/θ + y0)/θ

− 2ητ2σ4
qX

2
0X3e

−θτ/θ2 − 2ητσ4
qX

2
0X3e

−θτ/θ3

+ 2X0(1− e−θτ )(2σ2
qX0/θ + y0) + 2ηX7

X7 = −2τσ4
qX

2
0e
−θτ/θ2 − τσ2

qX0y0e
−θ1τ/θ + (1− e−θτ )(2σ4

qX
2
0/θ

3 + y1)

y1 = τσ4
qX

2
0e
−θτ/θ2 − σ4

qX
2
0 (1− e−θτ )/θ3 + τσ4

qX
2
0e
−θτ/θ2

− (θ − ϕ)τ2σ4
qX

2
0e
−θτ/θ2 − (θ − ϕ)τσ4

qX
2
0e
−θτ/θ3. (44)
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The third order is

∂3G

∂ρ3
= [−2θqX8/(σ2

qX1) + 2θqX5X2/(σ2
qX

2
1 ) + 4θqX2X5/(σ2

qX
2
1 )

− 4θqX
3
2/(σ

2
qX

3
1 ) + 3θqτσ

4
qX

3
0/θ

5

+ X9Q0/X
2
3 + 2X6(2σ2

qX0/θ + y0)Q0/X
3
3 + 4σ2

qX0X6Q0/(X2
3θ)

+ 12σ2
qX0X4(2σ2

qX0/θ + y0)Q0/(X4
3θ) + 4σ4

qX
2
0X4Q0/(X3

3θ
3)

+ 2X6y0Q0/X
3
3 + 2X4y1Q0/X

3
3 + 6X4y0(2σ2

qX0/θ + y0)Q0/X
4
3 ]G

+ 2[−2θqX5/(σ2
qX1) + 2θqX

2
2/(σ

2
qX

2
1 ) + θqτσ

2
qX

2
0/θ

3

+ X6Q0/X
2
3 + 4σ2

qX0X4Q0/(X3
3θ) + 2X4y0Q0/X

3
3 ]
∂G

∂ρ

+ [−2θqX2/(σ2
qX1) + θqτX0/θ +X4Q0/X

2
3 ]
∂2G

∂ρ2
(45)

with

X8 = −y1σ2
qX0/θ

3 − 9
2
y0σ

4
qX

2
0/θ

5 − 1
2
y2/θ −

1
2
σ2

qX0y1/θ
3

− 15
2
σ6

qX
3
0 (θ − ϕ)(1− e−θτ )/θ7

X9 = 6τσ2
qX

2
0 (2σ2

qX0/θ + y0)e−θτ/θ − 6τ2σ4
qX

3
0X3e

−θτ/θ2

− 6τσ4
qX

3
0X3e

−θτ/θ3 + 4ητ2σ4
qX

2
0e
−θτ (2σ2

qX0/θ + y0)/θ2

+ 2ητσ2
qX0e

−θτ (2σ4
qX

2
0/θ

3 + y1)/θ + 4ητσ4
qX

2
0e
−θτ (2σ2

qX0/θ + y0)/θ3

− 2ητ3σ6
qX

3
0e
−θτ/θ3 − 6ητ2σ6

qX
3
0e
−θτX3/θ

4

− 6ητσ6
qX

3
0e
−θτX3/θ

5 + 2x0X7 + 2ηX10

X10 = −2τ2σ6
qX

3
0e
−θτ/θ3 − 4τσ6

qX
3
0e
−θτ/θ4 − τσ2

qX0y1e
−θτ/θ

− τ2σ4
qX

2
0y0e

−θτ/θ2 − τσ4
qX

2
0y0e

−θτ/θ3

− τσ2
qX0(2σ4

qX
2
0/θ

3 + y1)e−θτ/θ + (1− e−θτ )(6σ6
qX

3
0/θ

5 + y2)

y2 = 3τ2σ6
qX

3
0e
−θτ/θ3 + 6τσ6

qX
3
0e
−θτ/θ4

− 3σ6
qX

3
0 (1− e−θτ )/θ5 − (θ − ϕ)τ3σ6

qX
3
0e
−θτ/θ3

− 3(θ − ϕ)τ2σ6
qX

3
0e
−θτ/θ4 − 3(θ − ϕ)τσ6

qX
3
0e
−θτ/θ5. (46)

Substituting ∂G
∂ρ ,

∂2G
∂ρ2 , and ∂3G

∂ρ3 , and utilizing the algorithm introduced in
Sec. 3 and Eqs.(29,31,33) for ρ̂, ρ̂2, ρ̂3, we could arrive at the final formula
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for pricing the option with stochastic volatility and correlation
C(S1, S2, Q0, ρ0)

=
e−ζ1 ln K1−ζ2 ln K2

(2π)2

Z ∞
−∞

Z ∞
−∞

Re[
e−i(φ1 ln K1+φ2 ln K2−irdτ)G(τ ;χ1, χ2)

(ζ1 + iφ1)(ζ1 + 1 + iφ1)(ζ2 + iφ2)(ζ2 + 1 + iφ2)
]dφ2dφ1

+
1

2

e−ζ1 ln K1−ζ2 ln K2

(2π)2

Z ∞
−∞

Z ∞
−∞

Re[
e−i(φ1 ln K1+φ2 ln K2−irdτ) ∂2G(τ ;χ1,χ2)

∂ρ2 |ρ̂
(ζ1 + iφ1)(ζ1 + 1 + iφ1)(ζ2 + iφ2)(ζ2 + 1 + iφ2)

]dφ2dφ1

× (ρ̂2 − (ρ̂)2)

+
1

6

e−ζ1 ln K1−ζ2 ln K2

(2π)2

Z ∞
−∞

Z ∞
−∞

Re[
e−i(φ1 ln K1+φ2 ln K2−irdτ) ∂3G(τ ;χ1,χ2)

∂ρ3 |ρ̂
(ζ1 + iφ1)(ζ1 + 1 + iφ1)(ζ2 + iφ2)(ζ2 + 1 + iφ2)

]dφ2dφ1

× (ρ̂3 − 3ρ̂2 · ρ̂+ 2(ρ̂)3) + · · · . (47)

Although the above formula is just for two-asset option, in fact, substi-
tuting a stochastic volatility pricing formula of index or basket option into
Eq.(36), we could get the volatility and correlation risk pricing formula
involving three or more underlying assets.

Before testifying the numerical method, in Eq.(37) model, we always can
normalize the terminal payoff of the correlation as K1K2Max[S1(T )

K1
− 1]×

Max[S2(T )
K2

− 1]. Then taking K1 = K2 = 1 is convenient, which does not
lose any generality at all. We use the Monte Carlo method and Eq.(38)
to compute the price of Eq.(37) model with constant ρ. In Sec. 3, we
find the numerical outcome from one-dimensional Monte Carlo matches
Eqs.(29,31,33) well. But to compute Eq.(37) with constant ρ, the Monte
Carlo must be multi-dimensional, which unfortunately lessens its accuracy.
In lines (1) and (2) of Fig.3, taking K1 = K2 = 1, S1(0) = 1.1, S2(0) = 1.2
τ = 5, rd = 0.1, rf = 0.05, ρ = 0.6, ρ̄1 = ρ̄2 = −0.2, Q0 = 0.8 σ1 = 0.5,
σ2 = 0.6, θq = 0.5, κq = 1.0, and σq = 0.5, the semi-closed form solution,
Eq.(38) for constant ρ = 0.6 gives the price 0.905, but the asymptotic price
for constant ρ = 0.6 from the Monte Carlo method is 0.899. Taking same
parameters of lines (1) and (2) except ρ, we also computed the price for
constant ρ = −0.6, and found the comparatively large fluctuation in the
Monte Carlo method. Finally, we take 0.455 as the asymptotic price for
ρ = −0.6 and get the price 0.468 from Eq.(38), which are not plotted in
Fig.3. The averaged error for constant ρ is about 0.004. But in negative
correlation region, since the true option price is comparatively small, the
error of the Monte carlo method looks like a little large. Furthermore, we
compute the option price with stochastic correlation. Since the procedure
of proving the series solution Eq.(47) is rigorous and the absolute value of
its fourth term is generally less that one basis point, Eq.(47) highlighting
the first three terms could be treated as a benchmark for other numerical
approaches. As has been expected, one more dimension, i.e., the Jacobi pro-
cess, involved in the Monte carlo method, magnifies computational error.
The price from the first three terms of Eq.(47) for ρ0 = 0.6, ρ̄ = 0.5 plotted
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in line (3) is 0.586, but the asymptotic price from the Monte Carlo method
plotted in line (4) is 0.580. Another little bigger difference takes places
in ρ0 = 0.6, ρ̄ = −0.5 case, where line (5) for Eq.(47) gives price 0.188.
But in line (6), the Mont Carlo method always presents a comparatively
large fluctuation, which raise the difficulty to determine the asymptotic
price. Finally, we take 0.196 as its asymptotic value for ρ0 = 0.6, ρ̄ = −0.5,
whose relatively large error is due to the negative correlation induced by
the negative equilibrium value during most of the life of the option. In the
stochastic correlation cases, it seems that the averaged error of the Monte
carlo method is about 0.007, which is almost double of the one in constant
correlation case. It could be concluded that, using fast Fourier transforma-
tion, Eq.(47) is more reliable, efficient and accurate than the Monte carlo
method.

FIG. 3. Lines 1 and 2 give a comparison between the correlation option price of
Eq.(37) Model from Eq.(38) with constant correlation and the one from the Monte
Carlo method. Lines (1) for Eq.(38) and (2) for the Monte Carlo method share same
parameters, K1 = K2 = 1, S1(0) = 1.1, S2(0) = 1.2, τ = 5, rd = 0.1, rf = 0.05,
ρ = 0.6, ρ̄1 = ρ̄2 = −0.2, Q0 = 0.8, σ1 = 0.5, σ2 = 0.6, θq = 0.5, κq = 1.0, and
σq = 0.5. Lines (3) and (4) are from Eq.(47) with random correlation and the Monte
Carlo method, which share same parameters as in lines (1) and (2) except ρ̄ = 0.5,
ρ0 = 0.6, h = −f = 0.8, g = 1.7, σ3 = 1.0. Lines (5) and (6) are from Eq.(47) with
random correlation and the Monte Carlo method, which share same parameters as in
lines (3) and (4) except ρ̄ = −0.5. In this Figure, horizontal coordinate, M , is the
number of the simulated path, and vertical one is the price of correlation option, C.
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5. CONCLUSION

Correlation risk in general sense is generally defined as the difference
between implied and realized correlation for a given maturity, which can
be frequently found in the market. To derive the pricing formula analyti-
cally, we assume the correlation risk premium is linearly proportional to the
current level of correlation, which is used to introduce a kind of stochastic
process, i.e., dρ = (ρ̄−gρ)dt+σ

√
(h− ρ)(ρ− f)dW to describe the random

walk of correlation coefficients. In our scheme, the correlation coefficient
wanders around the mean value within the region from the upper bound
h ≤ 1 to the lower one f ≥ −1. Of course, there are many other ways
to define correlation risk premium, and, thus, other risk neutral correla-
tion processes are also possible, e.g., dρ = [ρ̄ + g ln

√
(h− ρ)(ρ− f)]dt +

σ
√

(h− ρ)(ρ− f)dW , which could guarantee the correlation coefficient
never hits the bounds. The pricing equation for stochastic correlation coef-
ficient is derived. The obvious difference is numerically found as the quick
diffusion happens in motions of correlation coefficients, which indicates that
we have to use this model to eliminate correlation risk. At last, we tried to
find whether a series solution for pricing the stochastic volatility and corre-
lation simultaneously is available. Supposing that the stochastic process of
correlation is independent, we finally developed a series solution for pricing
both of volatility and correlation risks, i.e., Eq.(47) , whose second and
third terms occupy three, five, or ten percents of total value, which could
be used to capture the feature of structure of implied correlation. Conse-
quently, we could use the trading strategy to hedge the correlation risk.
For example, if trading a basket option on stocks highlighted in Standard
and Poor’s 500, to hedge the correlation risk involved, the trader could ma-
nipulate an option on the Standard and Poor index. An alternative way is
that for instance, trading a basket option results in a correlation risk, but
it can be hedged by applying a best-of option highlighting the component
of the basket option. Namely, in the currency market, if the correlation
risk results from an option on the basket consisting of U.S. dollar, Japanese
Yen, and British pounds, then, a best-of call allows the owner to buy any of
the currencies that increases the most at the maturity of the option, which
can be used to hedge the risk.
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