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The best asset allocation model is searched for. In this paper, we argue that
it is unlikely to find an individual model which continuously outperforms its
competitors. Rather one should consider a combined model out of a given set
of asset allocation models. In a large empirical study using various standard
asset allocation models, we find that (i) the best model depends strongly on
the chosen data set, (ii) it is difficult to ex-ante select the best model, and
(iii) the combination of models performs exceptionally well. Frequently, the
combination even outperforms the ex-post best asset allocation model. The
promising results are obtained by a simple combination method based on a
bootstrap procedure. More advanced combination approaches are likely to
achieve even better results.
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1. INTRODUCTION

In many fields of research the combination of models performs well, some-
times even better than all individual models. This empricial finding has
been observed for forecasts (Smith and Wallis, 2009), experts recommen-
dations (Genre et al., 2013), estimators (Hansen, 2010), and others (for
an excellent review, see Clemen, 1989). Three explanations are provided.
Different models can be based on different information sets or different
information processing (Bates and Granger, 1969). Combination helps to
combine those information sets or information channels, resp. The sec-
ond argument is that models are differently affected by structural breaks
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(Diebold and Pauly, 1987). Some models are fine tuned in calm periods,
at the cost of not being robust in turbulent times. The third argument
is that the true data generating process is more complex and of a higher
dimension than even the most flexible models (Stock and Watson, 2004).
The combination of models is robust to the misspecification of individual
models.

Most of these arguments come from the forecasting literature. But they
are likely to hold for asset allocation as well. Markowitz (1952) introduced
a fundamental concept of portfolio optimization. But when it comes to
practice, the concept is difficult to implement (Britten-Jones, 1999). The
returns’ means are in particular difficult to estimate Frost and Savarino
(1986). Also the error in the covariance matrix can become large (Chan
et al., 1999). Alternative restricted models have been suggested: the Min-
imum Variance portfolio (Merton, 1980), the short-selling restricted port-
folio (Jagannathan and Ma, 2003), and several norm penalized portfolios
(for a Lasso restriction, see e.g. Fan et al., 2012). Even the naive port-
folio performs surprisingly well (DeMiguel et al., 2009). Which individual
models should be selected? This question remains unanswered. Instead
selecting one particular portfolio, one could also consider the combination
of several portfolios. So far only few attempts to combine asset allocation
models have been suggested. Tu and Zhou (2011) combine the tangency
strategy and the naive portfolio. Schanbacher (2012) considers the average
over several portfolios. Many shrinkage approaches can be decomposed in
the combination of two portfolios, e.g. the Ledoit and Wolf (2004) portfolio
can be regarded as a combination of the moments of the Minimum Vari-
ance portfolio and the naive portfolio. A general recipe to combine several
given portfolios has not been given.

We present a general framework which covers a large range of standard
asset allocation models. We analyze three combination methods and one
selection method: the combination of portfolios, the average of portfolios,
the combination of moments and the selection of the previous best model.
We use a simple bootstrap method to determine the share each individual
model should get in the combination. Finally, we analyze empirically the
performance of the combination and selection methods, as well as the per-
formance of the individual models. We find that (i) no individual model
outperforms its competitors, (ii) ex-ante selection of the best model ap-
pears to be difficult, (iii) the combination of portfolios often outperforms
each individual model. Instead trying to improve a single asset allocation
model, one should rather try to make the most of the set of available asset
allocation models.

The remainder of the paper is structured as follows. Section two intro-
duces a general decision framework. Section three translates the framework
to portfolio choice. We show that the framework captures a large range of
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common asset allocation models. Section four presents several combination
and selection methods and discusses their implications. Section five shows
the empirical performance of the individual models and the combination
methods. Section six summarizes and concludes.

2. GENERAL DECISION PROBLEM

We apply a single-period forecasting and decision problem. The results
can be also applied to multiperiod decision making. The decision is based
on a vector of state variables xT−1 realized over time period T − 1 to T .
The set of information at time T , FT , can be either based on a rolling
window of length h, e.g. FT = {xt}Tt=T−h or expanding FT = {xt}Tt=1 or

with discounted information FT =
{
ρT−txt

}T
t=1

with 0 < ρ < 1. Based on
the information at FT−1 the forecaster estimates a parameter θT by some
forecasting model M ,

θ̂T = M(FT−1) (1)

Parameter θT describes the relevant properties of xT , e.g. the moments
of xT . Based on the parameter θT , a decision dT for time T is made. We
assume a unique time invariant loss function l(d, θ) : D × Θ → R. The

optimal decision with respect to the estimated parameter θ̂T is given by
the decision minimizing the loss, e.g.

dT = arg min
d∈D

l(d, θ̂T ) (2)

The parameter of interest can correspond to the decision dT ∈ D itself.
Mostly, this is given if the set of decision variables D is univariate, e.g. for
point forecasts. Also, it can be a distributional parameter of the variable
of interest which gives guidance for decision dT ∈ D.

The optimization of eq. 2 is very flexible. It incorporates many stan-
dard decision problems, as e.g. the expected loss (see e.g. Pesaran and
Timmermann, 2005).

Suppose there is not only one modelM , butm different modelsM1, . . . ,Mm.
The corresponding parameters of interest are θ̂1T , . . . , θ̂

m
T with θ̂iT = Mi(FT−1).

The decision the forecaster takes, depends on the applied model, i.e. diT =

arg mind∈D l(d, θ̂
i
T ). Generally, different models Mi 6= Mj lead to different

input parameters θ̂i 6= θ̂j ; which lead to different decisions di 6= dj . If
several models are available, the question arises which model to take. One
can try to select the best model, i.e. Mi? with i? = arg mini l(d

i
T , θT ). In

the following, the strategy to pick the best individual model is denoted by
Ind. Unfortunately, the true parameter θT is not known and needs to be
estimated itself. The (expected) loss l(diT , θT ) of the decision i remains
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unobserved. It is difficult to ex-ante select the ex-post best model. Alter-
natively, one can combine models M1, . . . ,Mm. We call π = (π1, . . . , πm)
the shares, satisfying ι′π = 1. The element πi ≥ 0 is the share of model
i in the combination. There are mainly two alternatives on how to com-

bine. One can combine the decisions, i.e. d
(comb)
T =

∑m
i=1 π

idiT . This
way of combining different models is the most intuitive type. We refer
to it as the Comb. The second alternative is the combination of the in-
put parameters, i.e. θ̂

(mom)
T =

∑m
i=1 π

iθ̂iT . The decision is then given by

d
(mom)
T = arg mind∈D l(d, θ̂

(mom)
T ). In many situations the parameters of in-

terest are the estimated moments. We call this combination approach the
moment combination, abbreviated by Mom. The shares π as well as the es-

timated parameters
{
θ̂iT

}m
i=1

are somehow estimated based on FT−1. Then

there exists some model satisfying, θ̂
(mom)
T = M(mom)(FT−1). This type of

combination can be regarded as a combination of models M1, . . . ,Mm or
as an additional super model M(mom).

The decision maker not only faces estimation risk with respect to θ but
he might be also uncertain about his loss function l. To remain in a well-
defined setting we suppose that the loss function is known to the decision
maker. Additional sources of risk is the measurement of the state vari-
ables xT . We also assume that the decision maker does not suffer of data
uncertainty.

Finally, we require that no feedbacks arise. The decisions {dt}t∈N should
not have an impact on the outcome of the variable of interest {xt}t∈N. For
portfolio optimization and a sufficiently small investor in a liquid market,
the assumption is likely to be satisfied. In macroeconomic decision making,
e.g. for monetary policy, feedback effects are likely to be relevant.

3. CHOICE OF PORTFOLIO WEIGHTS

In this section we transfer the decision problem of section 2 to asset allo-
cation. We show how common models can be implemented in the decision
problem. We consider n assets, one of which might be but need not to
be the risk-free asset. The return of the assets at time t is given by the
n−dimensional vector rt = (rt,1, . . . , rt,n)′. We concentrate on portfolio
optimization based on the returns’ history only. Extensions with addi-
tional state variables such as macroeconomic history could be thought of.
At time T − 1 the investor’s information is given by the returns {rt}T−1t=1 .
He has to chose his portfolio for the next period represented by weights
wT = (w1, . . . , wn)′ with wi being the amount invested in asset i. We re-
quire that the investor is fully invested with possible short positions. The
allowed weights are then given by wT ∈ W = {w ∈ Rn : ι′w = 1}. After
one period the investor receives return w′T rT . How should the investor
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choose weights wT ? The choice depends on the investor’s loss function, his
selected model and the estimation risk of the parameters of interest.

3.1. Loss Function

In a seminal paper, Markowitz (1952) introduced portfolio optimization
based on the first two moments of the returns’ distribution. The parameter
of interest are given by the returns’ mean and variance, e.g. θT = (µT ,ΣT ).
Given portfolio weights wT , next period’s returns have mean w′TµT and
variance w′TΣTwT . To evaluate the risk (or loss) of portfolio wT , we use
the common Certainty Equivalent risk measure. For simplification, we drop
time index T when presenting the Certainty Equivalent (CE), given by

CEγ(w, θ) = w′µ− γ

2
w′Σw

Parameter γ equals the risk aversion of the investor. The CE is positively
orientated, i.e. the higher the better. The risk measure covers a broad
range of potential investors. It includes the risk-neutral investor (γ = 0) as
well as highly risk-averse investors such as the minimum variance investor
(γ →∞). It can be shown that the investor maximizes the CE if his utility
function is quadratic, or if r is normal distributed and an exponential utility
function is applied, or if the investment horizon is short. The information
set of the investor consists of past returns only, FT−1 = {rt}T−1t=1 . Using
some model M , he estimates the parameters of interest,

θ̂T =
(
µ̂, Σ̂

)
:= M(FT−1)

The optimal portfolio weights for the investor are then given by

ŵT = arg max
w∈W

CE(w, θ̂T )

Unfortunately, θ might be rather difficult to estimate which brings us to
the next point.

3.2. Estimation Risk

The parameter of interest θ = (µ,Σ) consists of the first and second
moment of the returns. As the CE is a rather general loss function, we
concentrate our further analysis on the CE. Assume the investor wants to
optimize his CE, i.e. his loss function is given by l(w, θ) = w′µ− γ

2w
′Σw.

Of his estimates of the first two moments θ̂, the investor obtains his opti-
mal weights ŵ = arg maxw∈W l(w, θ̂). The intuitive approach is to replace

the first moments by their sample counterpart, i.e. θ̂ =
(
µ̂T , Σ̂T

)
. Un-

fortunately, based on the sample counterparts, the portfolio suffers of high
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estimation risk. Britten-Jones (1999) shows that the sampling error of the
weights is large. In particular the mean of each asset is difficult to estimate
(see Merton, 1980 or Best and Grauer, 1991 for a sensitivity analysis). To
estimate the mean more stable, one could assume that the mean of all as-
sets correspond to the average mean, i.e. µ = ι · 1

n·(T−1)
∑n
i=1

∑T−1
t=1 ri,t.

Looking at our risk measures we find that w′µ = 1
n·(T−1)

∑n
i=1

∑T−1
t=1 ri,t is

independent of the weights w ∈ W. In this case the CEγ concentrates on
minimizing the variance only. Intermediated approaches could be thought
of. An approach that neither tries to estimate each mean return indi-
vidually, nor restricts all return means to be equal. An example is the
Bayes-Stein model proposed by Jorion (1986). The model shrinks the mean
towards some predetermined target mean. The shrinkage intensity is se-
lected by the Stein (1955) method. Black and Litterman (1992) show how
one can incorporate own views into portfolio optimization.

Not only the estimation risk in the mean, but also the estimation risk in
the covariance matrix is large (Chan et al., 1999). Several approaches to
reduce estimation risk have been proposed. Similar to before, the strongest
restriction one could impose is that the covariances are zero and the vari-
ances are equal, i.e. Σ̂ = c · I with I being the identity matrix. Shrinkage
approaches to this identity matrix or to the single factor model of Sharpe
(1963) have been proposed by Ledoit and Wolf (2003, 2004a,b).

A variety of different models proposes different stable estimation proce-
dures to determine the mean and the covariance. In the following section
we discuss the some common models.

3.3. Models

Different estimation procedures result in different portfolio weights. We
discuss various estimation procedures and show the link to an unified asset
allocation framework. Consider some estimates of the first two moments,
i.e. θ̂ = (µ̂, Σ̂). The optimal weights are then given by

wopt = arg max
w∈W

CEγ(w, θ̂) (3)

= arg max
w∈W

w′µ̂− γ

2
w′Σ̂w (4)

Fortunately a closed form solution for equation 3 exists and is given by

wopt =
Σ̂−1ι

ι′Σ̂−1ι
+

1

γ

(
Σ̂−1 − Σ̂−1ιι′Σ̂−1

ι′Σ̂−1ι

)
µ̂

There are several approaches to estimate the first two moments. Different
estimation procedures correspond to different asset allocation models. Let
the estimation be based on the sample counterpart of the first two moments,
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e.g. µ̂T = 1
T−1

∑T−1
t=1 rt and Σ̂T = 1

T−2
∑T−1
t=1 (rt− µ̂T )′(rt− µ̂T ). Applying

the sample estimators to optimize the CE (i.e. θ̂(MV ) = (µ̂T , Σ̂T )) results

in the Mean Variance (MV) model, i.e. w
(MV )
T = arg maxw∈W w′µ̂T −

γ
2w
′Σ̂Tw. The closed form solution is then given by

w(MV ) =
Σ̂−1T ι

ι′Σ̂−1T ι
+

1

γ

(
Σ̂−1T −

Σ̂−1T ιι′Σ̂−1T
ι′Σ̂−1T ι

)
µ̂T

As discussed in section 3.2, the estimation risk of the mean is high. Let

all returns be restricted to have equal means, i.e. µ =
(

1
n(T−1)

∑
i,t rt,i

)
ι.

In this case the optimization results in the minimum variance (MinVar)

weights, i.e. w
(MinV ar)
T = arg minw∈W w′Σ̂Tw. A closed form solution is

given by w(MinV ar) = (ι′Σ̂−1T ι)−1Σ̂−1T ι. The investor obtains the Min-

Var weights, if he optimizes with respect to θ̂(MinV ar) = (µ, Σ̂T ), i.e.

w(MinV ar) = arg maxw∈W CEγ

(
w, θ̂(MinV ar)

)
.

TABLE 1.

List of asset allocation models.

Asset Allocation Model Reference / Description θ̂ Abbreviation

Mean Variance Best and Grauer (1991a) (µ̂T , Σ̂T ) MV

MV without Short-selling Jagannathan and Ma (2003) (µ, S) MVSR

Minimum Variance Merton (1980) (µ, Σ̂T ) MinVar

Equally weighted DeMiguel et al. (2009) (µ, σ2I) EQ

Bayes-Stein Jorion (1986) (µ(BS), Σ̂T ) BS

Ledoit-Wolf Ledoit and Wolf (2004a) (µ,Σ(LW )) LW

Weight combination w(comb) =
∑
π(i)w(i) θ of individual models Comb

Average combination w(average) = 1
6

∑
w(i) θ of individual models Average

Moment combination w(mom) = arg maxw CE(w, θ(mom)) θ(mom) =
∑
π(i)θ(i) Mom

Best individual w(ind) = w(i?), i? = arg maxi π
(i) θi

?

Ind

The table lists the considered asset allocation models along with its original (or prominent) reference
or a brief description, resp. The last two columns denote the moment estimator of each model and the
abbreviation.

Jagannathan and Ma (2003) analyze the mean variance short-selling

restricted (MVSR) portfolio, i.e. w
(MV SR)
T = arg minw∈W,wi≥0 w

′Σ̂Tw.
They find that the optimization is equivalent to optimize w(MV SR) =
arg minw∈W w′Sw where S = Σ̂T + δι′ + δ′ι and δ the Lagrange multi-
pliers for the nonnegativity constraints. Under the CE, the MVSR weights
are obtained if the investor optimizes with respect to θ̂(MV SR) = (µ, S).
The short-selling restricted portfolio is a special case of the L1 norm regu-
larization (DeMiguel et al., 2009).
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The Bayes-Stein (BS) model (Jorion, 1986) is obtained by shrinking the
mean towards some prior value, i.e. µ(BS) = (1−λ)µ̂T +λµ(Target). Jorion
selects the mean of the minimum variance portfolio as the target mean. The
Bayes-Stein Model corresponds then to the estimated parameters θ̂(BS) =
(µ(BS), Σ̂T ).

The Ledoit and Wolf (LW) portfolio is given by w(LW ) = arg minw∈W w′Σ(LW )w
with the Ledoit-Wolf covariance matrix Σ(LW ) = δF + (1 − δ)Σ̂T . The
shrinkage target can be a single factor model or a constant correlation
matrix (for further information see Ledoit and Wolf, 2003, 2004a,b). We
apply the constant correlation approach. The Ledoit and Wolf model is
then given by θ̂(LW ) = (µ,Σ(LW )).

The equally weighted (EQ) portfolio (w(EQ) = 1
n ι) performs surprisingly

well as it not suffers of estimation risk (DeMiguel et al., 2009). The equally

weighted portfolio corresponds to the investor optimizing θ̂(EQ) = (µ, σ2I)
with the average variance being σ2 = 1

n(T−2)Σt,i(rt,i − µ̂T,i)
2.

We find that common asset allocation models can be incorporated into
the framework of eq. 3 by using different estimators for θ̂. Table 1 presents
an overview of the stated models, the corresponding moment estimators
and their abbreviations.

3.4. Which model is best?

Merton (1980) shows that the mean is difficult to estimate. As the mean
estimate contains high estimation risk, these days most models relay on
the estimation of the covariance matrix only. The estimation risk of the
covariance matrix was encountered by various shrinkage approaches. The
shrinkage of the covariance matrix is related to the shrinkage of the norm
of the weights (Fan et al., 2012). Step by step literature moved forward,
characterized by the quest for the best model. Recent horse races, how-
ever, showed that there is no generally best model. DeMiguel et al. (2009)
conduct a large horse race of many asset allocation models using various
data sets. Their main finding is that it is hard to significantly beat the
equally weighted portfolio. Their study also reveals that the optimal port-
folio depends on the applied data set. For some data sets the MinVar model
performs best, for others it is the MVSR or the EQ. In one case (the SMB
and HML portfolio) even the unstable MV portfolio performs best. This
finding is not surprising. In turbulent periods estimation risk is high. High
regularized asset allocation model as the equally weighted portfolio will
perform well. In calm and stable periods estimation risk is low. Despite
its sensitivity to estimation risk (Best and Grauer, 1991b), in these periods
the standard MV portfolio can perform well.

We conclude that it is unlikely to find a generally best model. An attrac-
tive alternative is to let data select or combine the optimal model from a
set of asset allocation models. But why should the combination work well?
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Reality is usually much more complex than reflect by low parameterized
models. High dimensional models suffer of high estimation risk. A combi-
nation can deliver a good trade-off between capturing complex reality and
reducing estimation noise. The combination of several misspecified mod-
els might better reflect reality than an individual model. The same holds
true if models are biased. If some models are upward biased and others
are downward biased, the combination can be unbiased. Even if the best
model is available in a large pool of models, it can be unlikely that the
forecaster selects this model ex-ante. A combination of different models
can give an insurance of against choosing the wrong model. The idea of
combination is pursued in the following section.

4. COMBINATION AND SELECTION OF MODELS

Consider a set of m asset allocation models. These models correspond
to m different estimation procedures of the parameter of interest, i.e.

ΘT =
(
θ̂1T , . . . , θ̂

m
T

)
with θ̂iT being the moments estimated by the ith esti-

mation procedure. The corresponding portfolio weights are given by WT =(
w1
T , . . . , w

m
T

)
. Each element represents the optimal weight with respect to

the considered asset allocation model, i.e. wiT = arg maxw∈W CE
(
w, θ̂iT

)
.

There are mainly three alternatives how to make use of the m asset
allocation models. The combination of the portfolio weights, the combi-
nation of the parameter of interest or selection of individual models. The
combination / selection methods are summarized in table 1.

4.1. Combination of Weights

The first method is to combine portfolio weights. Consider the shares
π = (π1, . . . , πm) with ι′π = 1. The element πi ≥ 0 represents the share of
the ith model in the combination. Then the combined portfolio weight is
given by

w(comb) =

m∑
i=1

πi · wiT (5)

The question on how to select the shares π, we tackle in section 4.5.

4.2. Combination of Moments

The second method refers to the combination of the parameters of in-
terest. In our case the parameters of interest are the moments θ = (µ,Σ).
Instead of combining the weights, one could combine moments instead.
Using some shares π, the combined moments are then given by θ̂(mom) =
(µ̂(mom), Σ̂(mom)) with µ̂(mom) =

∑m
i=1 π

(i)µ̂(i) and Σ̂(mom) =
∑m
i=1 π

(i)Σ̂(i).
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The optimal weights of the moment combining approach are then given by

w(mom) = arg max
w∈W

CE
(
w, θ̂(mom)

)
(6)

4.3. Selection

Finally, we approach the third method: the selection of the best model.
As before, let the shares be π = (π1, . . . , πm). The share should be
high for good models, and low for bad performing models. The best
individual model is given by the asset allocation model which obtains
the highest share. Formally, the best model equals w(ind) = w(i?) with
i? = arg maxi∈{1,...,m} π

i.
Two main points shall be highlighted here. The combination can be

superior the best individual model. A short and simple example shall
highlight this fact. Let there be two assets (n = 2) and two allocation
models (m = 2). Let the two assets have the same characteristic without
perfect correlation, i.e. µ(1) = µ(2), σ(1) = σ(2) and ρ 6= 1. Let the weights
of the asset allocation model be w1

T = (ω, 1 − ω) and w2
T = (1 − ω, ω) for

some ω ∈ (0, 12 ). As both weights lead to the same performance. But any

strict combination of the weights w(comb) = π1w1
T + π2w2

T outperforms the
best individual model (see A.1). The other problem to be mentioned is
the instability of solution. The asset allocation shares are either estimated
or determined by the investor. What happens if the investor changes the
shares slightly? Consider the combination first. The shares are given by
π = (π1, . . . , πj , . . . , πk, . . . , πm). Assume, the investor applieds the shares
π̃ = (π1, . . . , πj − ε, . . . , πk + ε, . . . , πm). The change of the weights is then
given by

||π′WT − π̃′WT ||∞ = ε||wjT − w
k
T ||∞ ≤ 2ε||WT ||∞

with ||.||∞ being the maximum norm. The change of the weights is bounded
if the shares changes slightly. In case of selection we find a different pattern.
Let e.g. πk = maxπ < πj + ε. Consider the same change as above. Then

the best individual model is w
(ind)
T = wkT , while the individual model used

of the investor is given by w̃
(ind)
T = wjT . The difference can be bounded

as follows ||w(ind)
T − w̃(ind)

T ||∞ ≤ 2 · ||WT ||∞. In case of model selection,
a small change of the shares can induce a large shift of the weights. We
regard these instabilities as problematic with regard to potential estimation
risk.

4.4. Difference in the Combination Approaches

We discussed before, a selection of the (seemingly) best model can lead
to unstable models and is therefore not recommendable. In this section we
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discuss the differences between both combination procedures: the combi-
nation of weights (Comb) and the combination of moments (Mom). The
Comb can be regarded as combining the outcomes (or generally decisions)
of a system. The Mom refers to the combination of input parameters the
decision is based on. Both procedures are appropriate to counteract esti-
mation risk. The question arises if one approach is better than the other.

Assume that the available asset allocation models have different mean
estimates but the correct covariance estimate. Then both combination
approaches result are equivalent.

Proposition 1. Let there be n asset allocation models (µ̂i,Σ) i = 1, . . . , n
with µ,Σ being the moments of the returns and π the model shares. Then
the combination of the weights as in eq. 5 and the combination of the
moments as in eq. 6 lead to the same results, i.e. w(comb) = w(mom).

Proof. See A.2

For difference in the estimates of the covariances, a similar result to
proposition 1 cannot be given. It also cannot be said which combination
method is better. For different covariance estimates, the combination of
the weights can but need not to be superior to the combination of moments.
This fact is highlighted by the following simple example.

Example 4.1. Let the covariance matrix be Σ =

(
1 0
0 1

)
. Consider

the average of the true model and an alternative model, i.e. π =
(
1
2 ,

1
2

)
.

The covariance matrix of the alternative model is denoted by Σ̃ and the
corresponding weights by w̃ = (ι′Σ̃−1ι)−1Σ̃−1ι. The applied weights can
be determined by (i) averaging the weights, i.e. w(comb) = 1

2 (w + w̃) (see

eq. 5) or (ii) averaging the moments, i.e. w(mom) = (ι′Σ−1c ι)−1Σ−1c ι with
Σc = 1

2 (Σ + Σ̃) (see eq. 6). It depends on the alternative model which

method is better. Table 2 presents two different covariances Σ̃. For one
it is better to combine the weights, for the other it is better to combine
moments.

4.5. Model Shares

How should the shares π = (π1, . . . , πn) of the models be determined?
Model averaging is often performed by defining the shares on some in-
formation criterion, e.g. AIC, BIC (see e.g. Hjort and Claeskens, 2003).
In the case of portfolio optimization these information criteria cannot be
applied as the likelihood is unknown. Alternatively, one could determine
the shares by the corresponding loss l. As the loss is often negative, some
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TABLE 2.

Example 1:

Average w, w̃ / Σ, Σ̃ w(comb)′Σw(comb) w(mom)′Σw(mom)

Σ̃ =

(
1 0

0 1.5

)
0.5050 0.5062

Σ̃ =

(
1 0

0 0.5

)
0.5139 0.5102

Table contains variance if weights are determined by (i) weights
averaging (first column, i.e. 1

2
(w + w̃)) or (ii) moment averaging

(second column, i.e. 1
2

(Σ + Σ̃)). The minimum variance of 0.5 is
given for w = (0.5, 0.5)′.

transformation is needed to obtain positive shares. Often the exponential
weighting is used, e.g.

πm =
exp (−λl(wm, θ))∑n
i=1 exp (−λl(wi, θ))

The function is sensitive to scaling in form of λ ≥ 0. If the loss depends on
basis points of the return rather than percentage points, the loss is scaled
by a factor λ = 100. Everything but λ being constant, the solution can
range from model selection (i.e. λ → ∞) to naive weighting (i.e. λ → 0).
An intuitive idea is to set πi equal to the probability that model i is best.
Then the combination of the portfolios is given by

w(comb) =

n∑
i=1

πi · wi (7)

with π(i) being the probability that current model dominates all other
models, i.e. l(wi, θ) ≤ l(wj , θ) for all j 6= i1. We apply a bootstrap
method to estimate the probabilities. For returns r1, . . . , rT we generate
a random sample with replacement of T returns, r?1 , . . . , r

?
T . We apply all

m asset allocation model to these bootstrapped returns. The procedure
is repeated B times. Let si,b = 1 if model i is the best model in the bth
bootstrapped sample, otherwise si,b = 0. The probability of model i being
best, is estimated by

π̂i =
1

B

B∑
b=1

si,b (8)

1We assume that it holds that l(w(i), θ) 6= l(w(j), θ) for any j 6= i. Otherwise the
probabilities π(i) do not sum up to one and a marginal correction is needed in equation
7.
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TABLE 3.

List of Data Sets.

No. Data Set n Time period Source Abbreviation

1 10 industry portfolio 10 07/1963-12/2012 French Ind10

2 30 industry portfolio 30 07/1963-12/2012 French Ind30

3 48 industry portfolio 48 07/1969-12/2012 French Ind48

4 6 Fama-French portfolios sorted by book-to-market 6 07/1927-12/2012 French 6BookMarket

5 25 Fama-French portfolios sorted by size and momentum 25 07/1927-12/2012 French 25SizeMom

6 Dow Jones Industrial 30 02/1973-12/2012 Datastream Dow

The table lists the considered data sets of monthly returns. The number of assets n, the time period spanned by the data set, the
source of the data, and the abbreviation used to refer to each data set.

The method is related to bagging Breiman (1996a,b). In our following
analysis, the model shares π = (π̂1, . . . , π̂m) are estimated by eq. 8. There
is no reason to believe that our bagging strategy is the best choice to
obtain shares π. Nevertheless, the simple strategy appears to work well.
More sophisticated methods to determine the shares are likely to provide
even better results. An additional point is the autocorrelation structure
of the time series data. One might consider block bagging (Politis et al.,
1999). In our application we find that the improvement of using block
bagging is small (not stated), given the uncertainty of selecting the block
size. Therefore we rely on the common bagging procedure, e.g. the block
size is equal to one.

5. EMPIRICAL STUDY

To compare empirically the out-of-sample performance of the combined
strategy to the individual strategies, we apply six different data sets. The
data sets considered are listed in table 3. We include the Fama French
Industry portfolios for various sizes to analyze the models’ performances
when the number of assets increases. We include alternative sorting meth-
ods, namely book-to-market, size and momentum. Finally, we consider
the most common equity index, the Dow Jones Industrial. The data sets
are common to literature and (apart from the Dow Jones Industrial) are
freely available2. The applied models were introduced in section 3.3 and
are summarized in table 1.

5.1. Methodology for Out-of-Sample Evaluation

We calculate the CE performance of the individual models and the com-
bination methods. We apply the following rolling-window procedure. The

2See French’s Database on
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html



446 P. SCHANBACHER

estimation window is denoted by τ < T with T being the total number of
returns. For the empirical study we chose the length τ = 60, which corre-
sponds to 5 years. Standing at time t− 1 and using model i ∈ {1, . . . ,m},
the weights wit are determined based on the past τ return observations
rt−τ , . . . , rt−1. The rolling window approach is repeated for the next month
by including next month’s returns and dropping the returns of the earliest
month. The approach is continued to the end of the data set. At the end
there are T −τ portfolio weights for each asset allocation strategy i, i.e. wit
with t = τ + 1, . . . , T , i = 1, . . . ,m. Using strategy i and being at time t
leads to the out-of-sample return rit = r′tw

i
t with rt being the asset returns.

The time series of returns can then be used to determine the mean and
variance of each strategy, i.e.

(
σ̂i
)2

=
1

T − τ − 1

T∑
t=τ+1

(rit − µ̂i)2

where

µ̂i =
1

T − τ

T∑
t=τ+1

rit

The corresponding CE is then given by

ĈE
i

= µ̂− γ

2

(
σ̂i
)2

Consider the combination / selection methods of m asset allocation mod-
els. Denote the matrix of portfolio weights by wt =

(
w1
t , . . . , w

m
t

)
and the

matrix of the corresponding moments by θt =
(
θ1t , . . . , θ

m
t

)
. For each time

t, the model share πit is based on bootstrapping the past returns. The
bootstrapping procedure is described in section 4.5. Note that the shares
πt =

(
π1
t , . . . , π

m
t

)
are also computed out-of-sample. We use four different

model combination/selection methods. The weights combination (Comb)

is given by w
(comb)
t = π′twt (see eq. 5). The average combination (Aver-

age) is given by w
(average)
t = 1

m ι
′wt, which is the naive combination over

all asset allocation models. The moment combination (Mom) is given by

w
(mom)
t = arg maxw CE(w, θ(mom)) with θmom = π′tθt (see eq. 6). Finally,

we also give a selection method picking only the best individual model

(Ind), i.e. w
(ind)
t = w(i?) with i? = arg maxi π

(i).
We measure the statistical difference between the CEs of an asset allo-

cation model to our benchmark strategy (Comb) by a bootstrap method.
In particular the p−values are computed by the methodology proposed by
Ledoit and Wolf (2008). The methodology accounts for fat tails, autocorre-
lation and volatility clustering of the asset returns. As the methodology of
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Model Ind10 Ind30 Ind48 6BookMarket 25SizeMom Dow

Comb 0.0174 0.0079 0.0176 0.014 0.0091 0.0088

Average 0.0221 -0.0319 -2.842 0.0169 -0.0003 -0.0126

(0.8407) (0.0005) (0.0105) (0.8307) (0.1688) (0.0005)

Mom 0.012 0.0049 0.0099 0.008 0.0076 -0.0077

(0.0844) (0.1179) (0.0734) (0.002) (0.0854) (0.0015)

Ind 0.0098 0.0074 0.0167 0.0109 0.0086 0.0088

(0.0105) (0.3432) (0.2138) (0.0115) (0.1678) (0.478)

MV -0.1276 -0.9799 -79.4689 -0.0119 -0.9192 -0.3326

(0.001) (0.0005) (0.0045) (0.001) (0.002) (0.0005)

MVSR 0.0126 0.008 0.0172 0.0083 0.0088 0.0102

(0.0085) (0.533) (0.4091) (0.0754) (0.4301) (0.8616)

MinVar 0.0091 0.0058 0.0115 0.0087 0.0096 0.0018

(0.011) (0.1449) (0.0884) (0.1004) (0.6693) (0.0175)

EQ 0.0131 0.0072 0.0166 0.0055 0.0058 0.0077

(0.044) (0.3132) (0.2428) (0.0205) (0.007) (0.3037)

BS -0.0223 -0.1272 -3.0267 0.0123 -0.1466 -0.0472

(0.014) (0.0005) (0.046) (0.2817) (0.014) (0.0005)

LW 0.0115 0.0082 0.0124 0.008 0.0084 0.005

(0.0405) (0.5854) (0.0385) (0.0689) (0.2433) (0.0649)

For each of the considered datasets, the table reports the CE for the combination (Comb), the
average combination (Average), the moment combination (Mom), the past best individual
model (Ind) and the asset allocation models presented in section 3.3. In parentheses is the
p−value of the difference between the CE of each strategy from that of the combination
benchmark. The p−values are computed as proposed by Ledoit and Wolf (2008).

Ledoit and Wolf (2008) is specified for the Sharpe ratio a minor adjustment
to CE has to be made (for the adjustment details see Schanbacher, 2012).
The p−value is computed on the two-sided test with the null hypothesis
H0 : CE(comb) = CE(i).

5.2. Discussion of Performance

Table 3 shows the out-of-sample CE for various asset allocation models
and combination / selection methods. The p−values shows if a strategy is
different to the combination (Comb). In the following discussion we say a
difference is significant if the p−value is smaller than 10%.

Consider the individual asset allocation models first. In line with litera-
ture, the MV model is the only model performing continuously bad. The
short-selling restricted portfolio MVSR and the minimum variance port-
folio MinVar perform continuously well. Both portfolios are even best for
some data sets (Ind48 and 25SizeMom, resp.). The equally weighted port-
folio EQ is not exceptionally good but shows a stable performance for all
data sets. This result supports the finding of DeMiguel et al. (2009) that
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the naive portfolio is hard to beat significantly, although it is not the best
portfolio strategy. An interesting strategy is the Bayes-Stein BS strategy.
The BS can perform well, but also rather poor. It confirms the empirical
finding that a portfolio strategy can work well in a certain setting but com-
pletely fail in another environment. One of the best portfolio strategies is
the Ledoit and Wolf (2004a) portfolio. It can also perform best (Ind30)
and performs never poor. We find that no asset allocation strategy dom-
inates over all data sets. It depends on the data set which model should
be chosen. The finding supports the idea to use a combination or selection
method, instead of hunting for a single best portfolio strategy.

Now we analyze the combination methods. We find that the combina-
tionComb performs exceptionally well. The combination is always among
the two best strategies out of all individual models and the alternative
combination methods3. In half of the analyzed data sets (Ind10, Ind48,
6BookMarket) the combination is even better than the ex-post best indi-
vidual model. Even if you knew the best model ex-ante, you could not beat
the combination. The combination significantly outperforms each individ-
ual model in at least two of the considered six data sets, while it is never
significantly outperformed. We find that the Average over all models per-
forms very well in some cases (Ind10, 6BookMarket) but completely fails in
others (Ind48). In cases when one asset strategy fails (here the MV port-
folio for high dimensional asset allocation), the Average suffers strongly.
The moment combination Mom turns out not to work well. The Mom is
never as good as the Comb. Instead of combining the input parameters θ,
it is better to combine the decisions w. Finally, we come to the selection
method Ind picking the best individual asset allocation model. Selecting
the best individual model does not work. First, in all cases it is worse than
Comb. Second, in all cases it is worse than the best individual model. The
selection method cannot accurately detect the best individual model. We
conclude that ex-ante the investor should select the combination method
Comb. The combination provides an insurance against choosing the wrong
individual model. Even ex-post, the Comb strategy has a good chance to
be superior to the ex-post best individual model.

We summarize the findings over all data sets and asset allocation mod-
els (6 data sets × 6 individual models = 36 cases). The combination is
never significantly beaten. In almost 9 out of 10 cases the combination
outperforms the individual model. In 64% of all direct comparisons, the
combination significantly beats the individual model.

3The only exception is Ind30 where Comb is third best with 0.01% CE difference to
the second best.
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5.3. Behavior of the Combination

As the combination is the favorite method, we analyze its behavior. In
the figures for the shares are provided. We find that there are no sudden
jumps in the shares. Usually one or two models are dominating with minor
parts of the remaining strategies, e.g. the LW strategy for the Ind30 data
set or the MVSR strategy in the Dow data set. It can happen that the
share of a model shifts slowly over time. Over a 20 years period, in the
25SizeMom data set, the share of the MinVar model increased from about
15% to about 80%. Similar results are found for the 6BookMarket data set
and the BS strategy.

FIG. 1. Monthly shares for Ind10/Ind30, Ind48/6BookMarket, 25SizeMom/Dow
(top down). The shares are estimated as stated in section
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Figure B.1: Monthly shares for Ind10/Ind30, Ind48/6BookMarket, 25SizeMom/Dow (top
down). The shares are estimated as stated in section 4.5We find that the share of the ex-post best model is usually highest. For

the Ind30 data set, the LW portfolio is strongly favored. For the Ind48
data set, the MVSR is mainly selected. Using the 6BookMarket data set,
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FIG. 2. Monthly CE for Ind10/Ind30, Ind48/6BookMarket, 25SizeMom/Dow (top
down). The CE of each asset allocation strategy is estimated based on the past 100
returns.
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Figure B.2: Monthly CE for Ind10/Ind30, Ind48/6BookMarket, 25SizeMom/Dow (top down).
The CE of each asset allocation strategy is estimated based on the past 100 returns.

the largest share goes to the BS portfolio. And for the Dow data set, the
MVSR dominates. In each case the corresponding strategy turns out to be
ex-post best.

In Appendix B.3 the CE over time is given. As the CE depends on the
mean and the variance, these are estimated based on the previous τ returns.
We find that the combination stays always among the top best strategies.
For the Ind30 data set, we find that the Average is strongly effect by the
worse performance of the MV and the BS portfolio, while the combination
is not. Looking at the period 1990-2000 of the 6BookMarket data set, we
find that the performance of the combination is strongly increasing while
most other strategies stay low.

We conclude that our simple proposed method leads to sensible shares
of the models. The corresponding combination proves to work well over all
data sets and over time.
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5.4. Robustness

We find that the results are robust to various changes of the setting.
The analysis is based on various data sets commonly used for horse-races
in literature (see e.g. DeMiguel et al., 2009). Although the performance
evaluation relied on the CE measure, the results are similar for other risk
measures. In the appendix (B.1) we provide the results for using the Sharpe
ratio. The chosen risk aversion equals γ = 2. We also consider alternative
values, but as the insights are similar these results are not reported. As an
alternative for the length of the estimation window, we also conduct the
study with τ = 120. These results (not stated) remain similar.

6. CONCLUSION

Literature continues to search for the single best asset allocation model.
We analyze the performance of commonly used asset allocation models for
standard data sets. Our results indicate that it is unlikely that there ex-
ists one individual model which continuously dominates its competitors.
Instead relying on one single model, one could combine or select from a
set of different asset allocation models. We contribute to literature by
proposing a general setup to combine the weights or moments for a wide
range of different asset allocation models. We also propose a bootstrap
method to determine the share of each individual asset allocation model.
We find that the combination of asset allocation models appears to per-
form exceptionally well. The combination significantly outperforms each
individual model at least once. But it is never significantly outperformed
by any model. For half of our data sets, the combination even outperforms
all individual models. For the other data sets, it is unlikely that the in-
vestor would have ex-ante chosen the ex-post best model. We find that it
is difficult to select the best model. The combination approach provides an
insurance of selecting the wrong model. We conclude that combination of
models is not only interesting in the context of forecasting (see e.g. Tim-
mermann, 2006 and the references therein), but also for portfolio choice.
Future research should analyze more advanced methods to combine asset
allocation models.
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APPENDIX A

Proofs

A.1. COMMENT

Proof. There are two assets n = 2 and two asset allocation models
m = 2. Both assets have the same characteristic without perfect correla-
tion, i.e. µ1 = µ2, σ1 = σ2, ρ < 1. The weights of the asset allocation
models are given by w1 = (ω, 1−ω) and w2 = (1−ω, ω) for some ω ∈ (0, 12 ).
Consider the combination w(comb) = πw1+(1−π)w2. The mean of the com-
bination is the same as the mean of the individual model, i.e. µ′w(comb) =
µ′w(ind). Hence the difference in CE is only driven by the variance. It holds
that w′1Σw1 = w′2Σw2. By the concavity property of the variance for any
combination w(comb), it holds that w′(comb)Σw(comb) ≤ w′1Σw(1) = w′2Σw2.

A.2. PROPOSITION 2

Proof. The optimal weights are given by

wi =
Σ−1ι

ι′Σ−1ι
+

1

γ

(
Σ−1 − Σ−1ιι′Σ−1

ι′Σ−1ι

)
µ̂i

then the combination of the weights is given by

w(comb) =

n∑
i=1

πiwi

=
Σ−1ι

ι′Σ−1ι
+

1

γ

(
Σ−1 − Σ−1ιι′Σ−1

ι′Σ−1ι

) n∑
i=1

πiµ̂i

The combination of the moments is given by

w(mom) =
Σ(mom)−1ι

ι′Σ(mom)−1ι
+

1

γ

(
Σ(mom)−1 − Σ(mom)−1ιι′Σ(mom)−1

ι′Σ(mom)−1ι

)
µ(mom)

=
Σ−1ι

ι′Σ−1ι
+

1

γ

(
Σ−1 − Σ−1ιι′Σ−1

ι′Σ−1ι

) n∑
i=1

πiµ̂i

Hence w(mom) = w(comb)
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APPENDIX B

Data and Plots

B.1. SHARPE RATIO

Model Ind10 Ind30 Ind48 6BookMarket 25SizeMom Dow

Comb 0.3532 0.2429 0.3841 0.2988 0.2419 0.2358

Average 0.3643 0.143 0.2198 0.3388 0.3309 0.0789

(0.6014) (0.0569) (0.02) (0.9765) (0.9905) (0.0005)

Mom 0.3053 0.1734 0.2624 0.2497 0.2146 0.0136

(0.2488) (0.1239) (0.1159) (0.0005) (0.0754) (0.002)

Ind 0.2453 0.2213 0.3441 0.2854 0.2317 0.234

(0.0045) (0.1763) (0.009) (0.0649) (0.1454) (0.3641)

MV 0.2854 0.0934 0.1934 0.2517 0.2703 0.0086

(0.1299) (0.0095) (0.007) (0.0395) (0.7542) (0.001)

MVSR 0.2821 0.22 0.3381 0.2278 0.2339 0.2507

(0.0015) (0.1918) (0.017) (0.019) (0.3796) (0.8057)

MinVar 0.3011 0.1948 0.2666 0.2511 0.259 0.1099

(0.1738) (0.1404) (0.0514) (0.1084) (0.7887) (0.0125)

EQ 0.305 0.2165 0.3639 0.185 0.1878 0.2295

(0.0819) (0.2018) (0.1868) (0.0015) (0.016) (0.4346)

BS 0.3463 0.1426 0.2719 0.3085 0.3356 0.0615

(0.4436) (0.046) (0.0524) (0.6898) (0.9945) (0.0025)

LW 0.3702 0.2774 0.3957 0.2318 0.256 0.1838

(0.6508) (0.8147) (0.5769) (0.041) (0.7807) (0.1144)

For each of the considered datasets, the table reports the Sharpe ratio for the combination
(Comb), the average combination (Average), the moment combination (Mom), the past best
individual model (Ind) and the asset allocation models presented in section 3.3. In parentheses
is the p−value of the difference between the Sharpe ratio of each strategy from that of the
combination benchmark. The p−values are computed as proposed by Ledoit and Wolf (2008).
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