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Concavity-Preserving Integration and Its Application in

Principal-Agent Problems
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This paper finds the necessary and sufficient condition for an integration
to be concavity preserving. Using this condition, we can, for the first time in
the literature of the principal-agent problems, justify the first-order approach
without requiring the contract to be monotonic.
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1. INTRODUCTION

Assume a random variable x̃, whose probability density function is de-
noted by f(x|a) indexed by a parameter a. We find the necessary and
sufficient condition for ϕT (a) ≡

∫
ϕ(x)f(x|a)dx to be concavity preserv-

ing, that is, ϕT (a) is concave in a for any concave function ϕ(x).
Jewitt (1988) and Conlon (2009) have found sufficient conditions for

ϕT (a) to be mono-tonicity and concavity preserving, i.e., ϕT (a) is nonde-
creasing and concave in a for any nondecreasing and concave function ϕ(x).
Conlon (2009) has also found sufficient conditions for ϕT (a) to be mono-
tonicity preserving, i.e., ϕT (a) is nondecreasing in a for any nondecreasing
function ϕ(x). However, there has been no study on concavity preservation
of ϕT (a) as we are aware of, and this paper tends to fill in this blank.

The concavity-preserving integration has important implications in the
principal-agent problem. Particularly, we are able to justify the first-order
approach, as long as the optimal contract is concave. This is the first time
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in relevant literature that the first-order approach can be justified without
requiring the contract to be monotonic.1

2. CONCAVITY-PRESERVING INTEGRATION

The condition is best represented in the state-space formulation. As-
sume that x̃ is generated by a parameter a and another random vari-
able s̃ with probability density function f(s), i.e., x̃ ≡ x(s̃, a). Then
ϕT (a) =

∫
ϕ(x(s, a))f(s)ds.

Proposition 1. ϕT (a) is concavity preserving if and only if the follow-
ing two conditions hold for all a and all constant α:

∫
xaa(s, a)f(s)ds = 0 (1)

∫

S(α,a)

xaa(s, a)f(s)ds ≤ 0, (2)

where S(α, a) ≡ {s|x(s, a) ≤ α}. In particular, ϕT (a) is concavity pre-
serving if x(s, a) is linear in a for almost all s.

Proof. We prove the sufficiency of (1) and (2) first. ϕT (a) is concave if

and only if ∂2ϕT (a)
∂a2 ≤ 0, ∀a. We have:

∂2ϕT (a)

∂a2
=

∂2
∫
ϕ(x(s, a))f(s)ds

∂a2

=

∫
[ϕxx(x(s, a))x2a(s, a) + ϕx(x(s, a))xaa(s, a)]f(s)ds

=

∫
ϕxx(x(s, a))x2a(s, a)f(s)ds+

∫
ϕx(x(s, a))xaa(s, a)f(s)ds.(3)

The first integration in (3) is always non-positive, as ϕxx(x) ≤ 0 due to
ϕ(x) being concave. Then it suffices to prove that the second integration
is non-positive as well, that is,

∫
ϕx(x(s, a))xaa(s, a)ds ≤ 0 if (1) and (2)

hold. First, define I(x ≤ γ) = 1 if x ≤ γ, and zero otherwise. ϕx(x)
is non-increasing due to ϕ(x) being concave. Therefore we can define its
inverse function as follows: ϕ−1x (β) ≡ sup{x|ϕx(x) ≥ β}. Define:

ϕβ,nx (x) = β +

∞∑

i=1

1

n
I

(
x ≤ ϕ−1x

(
β +

i

n

))
. (4)

1For the literature of the first-order approach in principal-agent problems, see Roger-
son, 1985; Jewitt, 1988; Sinclaire-Desgagne, 1994; Mirrlees, 1999; Conlon, 2009 a,b;
Jung and Kim, 2015; and Xie, 2017.
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Then ϕβ,nx (x) approximates ϕβx(x) ≡ max(β, ϕx(x)) uniformly from above.
Figure 1 shows ϕβ,nx (x) and ϕx(x), as functions of x.

Figure 1: ϕβ,nx (x) and ϕx(x) as functions of x
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i

n
)
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n
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where the first equality follows from substituting (4) in, the third equality follows from (1),
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xaa(s, a)f(s)ds ≤ 0, (5)

where the first equality follows from substituting (4) in, the third equality
follows from (1), and the inequality at the end follows from (2). Then we
have:
∫
ϕβx(x(s, a))xaa(s, a)f(s)ds = lim

n→∞

∫
ϕβ,nx (x(s, a))xaa(s, a)f(s)ds ≤ 0,

(6)
where the inequality follows from (5). Then according to the monotone
convergence theorem, we have:
∫
ϕx(x(s, a))xaa(s, a)f(s)ds = lim

β→−∞

∫
ϕβx(x(s, a))xaa(s, a)f(s)ds ≤ 0,

where the inequality follows from (6). This completes the proof of suffi-
ciency.
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To proof the necessity of (1) and (2), we need to construct concave
functions ϕ(x) such that, if (1) or (2) does not hold, then ϕT (a) is not
concave in a. First, assume (1) does not hold, i.e., there is a constant λ 6= 0
such that

∫
xaa(s, a)f(s)ds = λ. Let ϕ(x) = λx. Then ϕ(x) is concave in

x, with ϕx(x) = λ and ϕxx(x) = 0. Then by substituting the last two
equalities into (3), we have ∂2ϕT (a)/a2 = λ

∫
xaa(s, a)f(s)ds = λ2 > 0.

Therefore, ϕT (a) is not concave in a.
Second, assume (2) does not hold, i.e, there is a constant α such that∫
S(α,a)

xaa(s, a)f(s)ds = µ > 0. Let Sc(α, a) be the complement set of

S(α, a), i.e., Sc(α, a) ≡ {s|x(s, a) > α}. Then according to (1),∫
Sc(α,a)

xaa(s, a)f(s)ds = −
∫
S(α,a)

xaa(s, a)f(s)ds = −µ < 0. Then we

construct ϕ(x) as follows:

ϕ(x) =

{
µx if x ≤ α,
−µx if x > α.

Then ϕ(x) is concave in x, with ϕxx(x) = 0 and

ϕx(x) =

{
µ if x ≤ α,
−µ if x > α.

(7)

Equation (7) is equivalent to

ϕx(x(s, a)) =

{
µ if s ∈ S(α, a),
−µ if s ∈ Sc(α, a).

(8)

Then according to (3), we have

∂2ϕT (a)

a2
=

∫
ϕx(x(s, a))xaa(s, a)f(s)ds

=

∫

S(α,a)

ϕx(x(s, a))xaa(s, a)f(s)ds+

∫

Sc(α,a)

ϕx(x(s, a))xaa(s, a)f(s)ds

= µ

∫

S(α,a)

xaa(s, a)f(s)ds− µ
∫

Sc(α,a)

xaa(s, a)f(s)ds.

= µ2 + µ2 = 2µ2 > 0, (9)

where the second equality follows from the fact that S(α, a) and Sc(α, a)
are complement sets, the third equality follows from (8), the fourth equal-
ity follows from the assumption that

∫
S(α,a)

xaa(s, a)f(s)ds = µ and that∫
Sc(α,a)

xaa(s, a)f(s)ds = −µ. (9) implies ϕT (a) is not concave in a. We

have thus proven that (2) is necessary for ϕT to be concavity preserving.
Finally, if x(s, a) is linear in a, then xaa(s, a) = 0 and thus both (1) and

(2) hold.
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3. THE FIRST-ORDER APPROACH IN PRINCIPAL-AGENT
MODEL

The principal-agent model can be described as follows. There is a prin-
cipal and an agent. The agent exerts an effort a ∈ R+ that stochastically
generates a signal, denoted by a random variable x̃. Let f(x|a) denote the
density function of x̃. The outcome is determined by the function π(x),
and the payment to the agent is specified by s(x). The principal is risk
neutral, with her welfare being π(x)− s(x), while the agent is risk averse,
with a utility function u(s(x)). In addition, the agent has an increasing and
convex cost function c(a). The principal’s problem is to choose a target
action a∗ and a contract s∗(·) that solve the follow program:

max
a∗,s∗(·)

∫
[π(x)− s∗(x)]f(x|a∗)dx (10)

s.t.

∫
u(s∗(x))f(x|a∗)dx− c(a∗) ≥ 0, and (11)

a∗ = argmaxa

∫
u(s∗(x))f(x|a)dx− c(a). (12)

Constraint (11) is the participation constraint, which states that the
agent’s expected utility must be no less than his outside reservation utility,
which is normalized to zero. Constraint (12) is the incentive compatibility
constraint, which states that, given the payment schedule s∗, a∗ maximizes
the agent’s expected utility.

A technical challenge is the infinite number of constraints imposed by
(12). A common solution is to use the first-order approach, which replaces
(12) with the first-order necessary condition that

∫
u(s∗(x))fa(x|a∗)dx− ca(a∗) = 0, (13)

where the subscript denotes a partial derivative in a. The first-order ap-
proach is valid if

∫
u(s∗(x))f(x|a)dx is concave in a. (14)

Proposition 2. If s∗(x) is concave and Conditions (1) and (2) are
satisfied, then (14) holds and the first-order approach is valid.

Proof. Since the utility function u(·) is increasing and concave, if
s∗(x) is concave in x, so is u(s∗(x)). Then according to Proposition 1,
u(s∗(x))f(x|a)dx is concave in a. An important implication of Proposition
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2 is that, for the first time in the principal-agent model literature, the con-
tract does not have to be nondecreasing for the first-order approach to be

valid.
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