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Human Capital Accumulation and Life-cycle Earning

Bo Zhang and Zhixiang Zhang*

We investigate optimal time allocation between human capital accumula-
tion and wage earning in dynamic settings. We present closed form solutions
(modified MRAP) and find a remarkable difference between deterministic and
stochastic exponential horizons. If death date is known, time during the early
years is devoted to learning, then allocated between learning and working at
a suitable constant ratio, then devoted solely to working until death; if death
date is unknown, then, after an early-years period of pure learning, time is
allocated between learning and working according to a suitable constant ratio
forever.
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1. INTRODUCTION

Learning is advocated in today’s society. To some extent, it has been
a consensus that one of the main engines of economic growth is the im-
provement of human capital. Much has been written on human capital
accumulation since an early study by Uzawa (1965), with following works
including Lucas (1988), Ortigueira (1998) and Meng and Ye (2009). These
papers all use an infinite horizon setting. Our work is most closely related
to that of Ben-Porath (1967), who studied the finite horizon setting. How-
ever, we do not consider the investment issue, and our objective function
is not linear. We also investigate a case with a random life horizon. We
consider a representative agent who allocates her time (or effort)1 between
human capital accumulation and wage earning. The time is continuous and
we use the conventional dynamic optimization approach2 to investigate the
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1See Becker (1965) for early work in allocation of time. Also see Mincer (1974).
2Some of the references are Berkovitz (1974), Kamien and Schwartz (1991), and Lo-

catelli (2001).

611

1529-7373/2019

All rights of reproduction in any form reserved.



612 BO ZHANG AND ZHIXIANG ZHANG

agent’s choices. Acemoglu (2009, Chapter 10) provides an insightful survey
on human capital accumulation and economic growth.

Our main findings are as follows.
In the deterministic case with no human capital depreciation, we obtain

a bang-bang solution rather than a learning-by-doing result. For a typical
and not very short lifetime, the optimal strategy is to continue accumu-
lating human capital at full effort from the very beginning until a specific
finite time point, and to keep earning a wage at full effort thereafter. With
capital depreciation, the solution will not be of a bang-bang type; in a typ-
ical case, in the middle period of her life, the individual will allocate her
time between learning and working according to a suitable constant ratio,
just as in the stochastic case.

In the stochastic case, with human capital depreciation being taken into
consideration, the solution will not be of a bang-bang type. Instead, in
the most interesting case where the initial human capital is low, the opti-
mal strategy is to first keep accumulating human capital until it reaches
a specific level, after which time will be allocated between human capital
accumulation and wage earning according to a fixed ratio. This result con-
forms with the reality to some extent in that everybody would continue
studying while working so as to offset knowledge depreciation and keep up
with the times.

A remarkable difference exists between the two settings as follows. If the
agent knows the date of her death exactly, then she will devote all of her
time to learning during her early years. She will then allocate her time
between learning and working according to a suitable constant ratio, and,
as she draws nearer to her death date, will give up on-the-job learning and
devote all of her time to working up to the end of her life. If she does not
know her death date exactly, then, after some period of pure leaning in
her early years, she will allocate her time between learning and working
according to a suitable constant ratio forever. In other words, she will not
give up on-the-job learning before her death.

From the view point of mathematics, for a linear optimal control prob-
lem in both a finite time horizon setting and an infinite time horizon set-
ting, we find that the optimal strategy is a form of trichotomous solution,
rather than the classic dichotomous bang-bang solution. Moreover, the
corresponding optimal state trajectory in the finite time horizon setting is
a modified MRAP (most rapid approach path), rather than the standard
MRAP in the infinite time horizon setting. The modification is applied only
in the tail part, where it deviates from the standard MRAP and approaches
its destiny as rapidly as possible.
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2. DETERMINISTIC CASE

In this section, we consider the deterministic finite time horizon case.

2.1. Model setup

Let us consider an agent facing the problem of planing time allocation
between learning and working in the time interval [0, T ], where T > 0 is
given. The time point t = 0 is the start time for her to begin making a
serious plan, and the time point t = T is the end point of her life. Hence,
T is her life-span.

For each time point t, let x(t) be her human capital stock, and u(t) ∈
[0, 1] be the instant proportion of time devoted to human capital accumu-
lation (in other words, learning). We see 1−u(t) as the instant proportion
of time devoted to wage earning (in other words, working). We assume
that, if the human capital stock is x, then the earning rate is f(x) = xα,
and the human capital accumulation rate is g(x) = xβ for a time unit at
any time point, where α > 0 and 0 < β < 1. We do not consider human
capital depreciation here.

The agent’s decision on time allocation can be formulated into the fol-
lowing optimal control problem PT

max

∫ T

0

e−ρt(1− u)xαdt,

such that

ẋ = uxβ ,

0 ≤ u ≤ 1,

x(0) = x0,

where ρ > 0 is her discounting rate, and x0 ≥ 0 is her initial human
capital. Clearly, all feasible state paths are increasing.

2.2. Main results

For convenience, we follow the convention that lnx = −∞ for any x ≤ 0,
and for any real numbers x, y, we denote x ∧ y = min(x, y), x ∨ y =
max(x, y), and x+ = max(x, 0). We denote I(·) as the indicator function,
which takes a value of 1 if the condition in the parentheses is true, and 0
otherwise.

In the t− x plane, the curve

x = κ(t) :=

[
α

ρ

(
1− eρ(t−T )

)] 1
1−β
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is denoted as Γ. We will see below in Lemma 3 that the curve Γ is the
boundary crossing which, by the state variable from left to right, the opti-
mal control u will switch abruptly from 1 to 0. It is easy to see that κ is
strictly decreasing and strictly concave, and

κ(0) =

[
α

ρ

(
1− e−ρT

)] 1
1−β

, κ(T ) = 0.

For any t ∈ [0, T ] and x ≥ 0, we define

τ(t, x) = inf
{
s ≥ 0|x1−β + (1− β)s ≥ κ(t+ s)1−β

}
.

It is obvious that τ(t, x) is determined uniquely by

G(t, τ(t, x)) =
(
κ(t)1−β − x1−β

)+
,

where

G(t, s) = (1− β)s+
α

ρ
eρ(t−T ) [eρs − 1] ,

which is strictly increasing with respect to s for any t, and G(t, 0) = 0 for
any t. Clearly, τ(t, x) ∈ [0, T − t), and τ(t, x) = 0 iff x ≥ κ(t).

Now we can define a function V as follows:

V (t, x) =
1

ρ

(
e−ρτ(t,x) − eρ(t−T ))

) (
x1−β + (1− β)τ(t, x)

) α
1−β .

In the t−x plane, we divide the region A = {(t, x)|t ∈ [0, T ], x ≥ 0} into
three parts:

A1 = {(t, x) ∈ A|x < κ(t)} ,

A2 = {(t, x) ∈ A|x = κ(t)} ,

A3 = {(t, x) ∈ A|x > κ(t)} .

We define the current value Hamiltonian function as

H(x, u, λ) = (1− u)xα + λuxβ .

Since H is linear in u, we have

arg max
0≤u≤1

H(x, u, λ) =

 {1}, if λ > xα−β ,
[0, 1] , if λ = xα−β ,
{0}, if λ < xα−β .
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For simplicity, we denote τ = τ(0, x0).
In order to derive our main results, we will require some lemmas. Firstly,

it is easy to see that τ(t, x) is a continuous but not smooth function in A;
in fact, it is not smooth only on the curve Γ. But, somewhat surprisingly,
V is smooth.

Lemma 1. V is smooth in A.

Proof. We treat the three regions A1,A2 and A3 separately.
(i) Region A1

In this case, we have τ(t, x) > 0,

x1−β + (1− β)τ(t, x) =
α

ρ

(
1− eρ(t+τ(t,x)−T )

)
=: U,

and

V (t, x) =
1

ρ

(
e−ρε − eρ(t−T )

)
U

α
1−β ,

where, for simplicity, ε = τ(t, x). With subscripts for derivatives, we have
the following results regarding the partial derivatives of function V

Vt =
(
−e−ρεεt − eρ(t−T )

)
U

α
1−β + α

ρ

(
e−ρε − eρ(t−T )

) (
x1−β + (1− β)ε

) α
1−β−1 εt

=
(
−e−ρεεt − eρ(t−T )

)
U

α
1−β + e−ρεU

α
1−β εt

= −eρ(t−T )U
α

1−β ,

Vx = −e−ρεεxU
α

1−β + α
ρ

(
e−ρε − eρ(t−T )

) (
x1−β + (1− β)ε

) α
1−β−1 (x−β + εx

)
= −e−ρεεxU

α
1−β + e−ρεU

α
1−β

(
x−β + εx

)
= x−βe−ρεU

α
1−β .

(ii) Region A3

In this case, we have τ(t, x) = 0, and,

V (t, x) =
xα

ρ

(
1− e−ρ(T−t)

)
.

Hence it follows that

Vt(t, x) = −xαe−ρ(T−t),

Vx(t, x) =
αxα−1

ρ

(
1− e−ρ(T−t)

)
.

(iii) Region A2
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In this case, we have τ(t, x) = 0. Notice that the treatment in case (i)
can also be applied to the curve Γ to obtain the left partial derivatives:

Vt−(t, x) = −xαe−ρ(T−t),

Vx−(t, x) = xα−β .

Similarly, by applying the treatment in (ii), we obtain the right partial
derivatives:

Vt+(t, x) = −xαe−ρ(T−t),

Vx+(t, x) = xα−β .

We see that on the curve Γ, Vt− = Vt+, Vx− = Vx+, and hence, Vt and Vx
exist.

Moreover, it is clear that, in the whole region A,

Vt(t, x) = −eρ(t−T )κα(t+ τ(t, x)),

Vx(t, x) = e−ρτ(t,x)x−βκα(t+ τ(t, x)), if τ(t, x) > 0,
= xα−1κ1−β(t), if τ(t, x) = 0.

Therefore, Vt and Vx are all continuous, and hence, V is smooth. Thus the

lemma is proved.

Lemma 2. V satisfies the Hamilton-Jacobi-Bellman (HJB) equation

ρV (t, x)− Vt(t, x) = max
0≤u≤1

H(x, u, Vx(t, x)). (1)

Proof. We explore the three regions A1,A2 and A3 separately. We use
the results and the notations in Lemma 1.

(i) Region A1

In this case, we have τ(t, x) > 0, and

V (t, x) =
1

ρ

(
e−ρε − eρ(t−T )

)
U

α
1−β ,

Vt = −eρ(t−T )U
α

1−β ,

Vx = x−βe−ρεU
α

1−β ,

therefore,

ρV (t, x)− Vt(t, x) = Vx(t, x)xβ .
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In addition, notice that

Ue−
ρ(1−β)
α ε

> U
(

1− ρ(1−β)
α ε

)
= x1−β + (1− β)ε− (1− β)ε

(
1− eρ(t+ε−T )

)
= x1−β + (1− β)εeρ(t+ε−T )

> x1−β ,

and hence,

Vx(t, x) > xα−β .

It follows that

{1} = arg max
0≤u≤1

H(x, u, Vx(t, x)).

Therefore,

max
0≤u≤1

H(x, u, Vx(t, x)) = Vx(t, x)xβ .

Thus the HJB equation (1) holds.
(ii) Region A2

In this case, we have τ(t, x) = 0,

V (t, x) =
1

ρ

(
1− eρ(t−T )

)
xα,

Vt(t, x) = −xαe−ρ(T−t),

and

Vx(t, x) = xα−β .

It follows that

ρV (t, x)− Vt(t, x) = Vx(t, x)xβ ,

and

[0, 1] = arg max
0≤u≤1

H(x, u, Vx(t, x)).

Therefore,

ρV (t, x)− Vt(t, x) = xα = Vx(t, x)xβ = max
0≤u≤1

H(x, u, Vx(t, x)),

which gives the HJB equation (1).
(iii) Region A3
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In this case, we have τ(t, x) = 0,

V (t, x) =
xα

ρ

(
1− e−ρ(T−t)

)
,

Vt(t, x) = −xαe−ρ(T−t),

and

Vx(t, x) =
αxα−1

ρ

(
1− e−ρ(T−t)

)
.

Therefore we get

ρV (t, x)− Vt(t, x) = xα.

Noticing that x > κ(t), we have

Vx(t, x) < xα−β ,

which yields

{0} = arg max
0≤u≤1

H(x, u, Vx(t, x)).

Therefore,

max
0≤u≤1

H(x, u, Vx(t, x)) = xα.

It follows that the HJB equation (1) holds. Thus the lemma is proved.

Lemma 3. The control path and its corresponding state path, induced by
the Markovian strategy

u(t) = I(x(t) < κ(t)), (2)

are respectively as follows:

u(t) = I(t < τ), (3)

x(t) =
(
x1−β0 + (1− β)[t ∧ τ ]

) 1
1−β

. (4)

Proof. We denote the control path and the corresponding state path,
induced by the Markovian strategy u(t) = I(x(t) < κ(t)), as z(t) and Z(t),
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respectively. Then, we have z(t) = I(Z(t) < κ(t)) for any t. Noticing that
Z is increasing and κ is strictly decreasing, we define

σ = inf {0 ≤ t ≤ T |Z(t) ≥ κ(t)} .

Since Z(T ) > 0 and κ(T ) = 0, we know that {0 ≤ t ≤ T |Z(t) ≥ κ(t)} must
be non-empty, and σ ∈ [0, T ). By the continuity of Z and κ, we have
I(Z(t) < κ(t)) = I(t < σ), which means that the control path z satisfies

z(t) = I(t < σ).

It follows that the corresponding state path Z satisfies Ż(t) = Z(t)β for all
t < σ, and Ż(t) = 0 for all t ≥ σ. Thus, we obtain

Z(t) =
(
x1−β0 + (1− β)[t ∧ σ]

) 1
1−β

.

If x0 ≥ κ(0), then, Z(0) ≥ κ(0), which implies that σ = 0. By the definition
of τ , we have in this case τ = 0, and hence σ = τ .

If x0 < κ(0), then, σ > 0 and τ > 0. By the continuity of Z and κ, we
have Z(σ) = κ(σ), which implies that

x1−β0 + (1− β)σ =
α

ρ

(
1− eρ(σ−T )

)
.

Again, by the definition of τ , we obtain σ = τ . Therefore, the lemma is

proved.

Lemma 4. For any t ∈ [0, T ], the control path (3) and its corresponding
state path (4) satisfy

H(x(t), u(t), Vx(t, x(t))) = max
0≤u≤1

H(x(t), u, Vx(t, x(t))). (5)

Proof. It is equivalent to prove that along the state path (4),

1 ∈ arg max
0≤u≤1

H(x(t), u, Vx(t, x(t))), if t < τ,

0 ∈ arg max
0≤u≤1

H(x(t), u, Vx(t, x(t))), if t ≥ τ,

for which, according to the proof of Lemma 2, it suffices to show that along
the state path (4),

(t, x(t)) ∈ A1, if and only if t < τ,
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or, equivalently,

x(t) < κ(t), if and only if t < τ,

that is,

x1−β0 + (1− β)[t ∧ τ ] < κ(t)1−β , if and only if t < τ,

which is straightforward by the definition of τ ,

τ = inf
{
s ≥ 0|x1−β0 + (1− β)s ≥ κ(s)1−β

}
.

Hence, the lemma is proved.

Theorem 1. For the problem PT , the unique Markovian optimal strategy
is given by Equation (2), and V (0, x0) is its value function.

Proof. Firstly, we notice that for any control path v and its correspond-
ing state path y, we have∫ T

0
e−ρt(1− v)yαdt

=
∫ T
0
e−ρt

(
H (y, v, Vx(t, y))− Vx(t, y)vyβ

)
dt

≤
∫ T
0
e−ρt

(
ρV (t, y)− Vt(t, y)− Vx(t, y)vyβ

)
dt

= −
∫ T
0

d
dt (e−ρtV (t, y)) dt

= V (0, x0).

The inequality turns out to be equality for the control path in Equation
(3) and its corresponding state path in Equation (4). Thus we reach the
conclusions that the control path in (3) is really optimal for the problem
PT , that the Markovian strategy (2) is optimal, and that V (0, x0) is its
value function.

Now, we address the uniqueness of the solution. We restrict our consider-
ation to only Markovian strategies. We know that the Markovian optimal
strategy must be the solution of the static optimization problem in the
right-hand side of the HJB equation (1). By using the same method as in
Lemma 3, we can show that the unique solution for the static optimization
problem in the right-hand side of the HJB equation (1) is simply equation

(2). The theorem is proved.

Note that τ is the point of switching from full-time learning to full-time
working prescribed by the optimal strategy (see equation (2)). It can be
viewed as schooling time. We explore its properties in the next theorems.
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Theorem 2. Along the state path in (4), τ(t, x(t)) is decreasing in [0, T ],
and for any 0 ≤ s ≤ t ≤ T ,

t ∧ τ + τ(t, x(t)) = τ ; (6)

τ(s, x(s))− τ(t, x(t)) = (t− s) ∧ τ(s, x(s)). (7)

Proof. In fact, if x(t) ≥ κ(t), then, by the definition of τ , we have t ≥ τ ,
and

τ(t, x(t)) = inf
{

0 ≤ s ≤ T |x(t)1−β + (1− β)s ≥ κ(t+ s)1−β
}

= 0.

Hence Equation (6) holds. If x(t) < κ(t), then, by the definition of τ , we
have t < τ , and

τ(t, x(t)) = inf
{

0 ≤ s ≤ T |x(t)1−β + (1− β)s ≥ κ(t+ s)1−β
}

= inf
{

0 ≤ s ≤ T |x1−β0 + (1− β)(t+ s) ≥ κ(t+ s)1−β
}

= inf
{

0 ≤ m ≤ T |x1−β0 + (1− β)m ≥ κ(m)1−β
}
− t

= τ − t,

which yields (6). Equation (7) can be proved similarly. The theorem is

proved.

The following theorem states that, provided the initial human capital
is sufficiently low and life span is sufficiently large, the agent must study.
That is, one must accumulate human capital in one’s early years before
entering into society to earn a wage.

Theorem 3. τ > 0 if and only if

e−ρT +
ρ

α
x1−β0 < 1. (8)

And if x0 ∈ [0, x∗), then, τ < T ∗, and τ ↑ T ∗ as T →∞, where

x∗ =

(
α

ρ

) 1
1−β

,

T ∗ =
1

1− β

(
α

ρ
− x1−β0

)
.
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Proof. The first part of this theorem is straightforward, as a direct
consequence of the definition of τ .

Next, fix x0 ∈ [0, x∗) arbitrarily. For sufficiently large T , we have x0 <
κ(0), and

x1−β0 + (1− β)τ =
α

ρ

(
1− eρ(τ−T )

)
<
α

ρ
,

and hence, τ < T ∗, and τ ↑ T ∗ as T → ∞. Therefore, the theorem is

proved.

From Theorem 3 we know that the time of pure human capital accu-
mulation without working is uniformly bounded regardless of the agent’s
life span. Generally speaking, if her initial human capital is large, or she
discounts the future sharply, or her life-time is short, or the sensitivity of
wage earning to human capital is low, then the agent will not wish to learn
and will devote all of her time to working. The following theorem also
supports this concept.

Theorem 4. τ is strictly decreasing with respect to x0 and ρ, and strictly
increasing with respect to α and T .

Proof. One can easily verify that

∂τ

∂x0
< 0;

∂τ

∂ρ
< 0;

∂τ

∂α
> 0;

∂τ

∂T
> 0,

which yield the results.

The time span of studying or accumulating human capital is decreasing
with respect to the agent’s initial human capital and her discount rate.
This appears to coincide with the reality. The less she knows, the longer
she should keep studying; the less patient she is, the less time she would
spend studying and the earlier she would start working to earn an income.

The time span of studying or human capital accumulation is increasing
with respect to her lifetime and the degrees of contribution (or elasticity)
of human capital stock to wage earning. In general, the longer she lives,
the longer she would wish to study; the higher the value of human capital
to wage earning, the longer she would wish to study.

In the sequel, we analyze the monotonicity of τ with respect to β. We
assume that x0 < κ(0) = α

ρ (1 − e−ρT ), otherwise, τ = 0. Therefore, τ is
uniquely determined by

x1−β0 + (1− β)τ =
α

ρ

(
1− eρ(τ−T )

)
,
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and τ ∈ (0, T ). It’s easy to see that(
1− β + αeρ(τ−T )

) ∂τ
∂β

= τ + x1−β0 lnx0.

Therefore ∂τ
∂β has the same sign as τ − x1−β0 lnx−10 . Now, we define

Φ(t) = x1−β0 + (1− β)t+
α

ρ

(
eρ(t−T ) − 1

)
.

Clearly, Φ is strictly increasing, and Φ(τ) = 0. We denote

∆ = Φ(x1−β0 lnx−10 ).

Then, we obtain the following results immediately:

Theorem 5. ∂τ
∂β > 0 (< 0) if and only if τ+x1−β0 lnx0 > 0 (< 0), which

holds if and only if ∆ < 0 ( > 0).

The proof is straightforward, and hence is omitted.

Corollary 1. If x0 ≥ 1, then, τ is strictly increasing with respect to
β.

The proof is easy, hence omitted.

Corollary 2. For any ε ∈ (0, 1), τ is strictly increasing with respect to
β ∈ (0, 1− ε) if x0 is sufficiently small.

Proof. Fix ε ∈ (0, 1) arbitrarily. It is easy to see that along with x0 → 0,

we have x1−β0 → 0 and x1−β0 lnx0 → 0 uniformly for all β ∈ (0, 1− ε), and
hence, ∆ < 0 for sufficiently small x0, which yields the result immedi-
ately.

Corollary 3. If κ(0) < 1, then, τ is strictly decreasing with respect to
β, provided |κ(0)− x0| is sufficiently small.

Proof. In fact, along with x0 → κ(0), we have τ → 0 uniformly

for all β ∈ (0, 1), and x1−β0 lnx0 → κ(0)1−β lnκ(0) < 0, and hence,

τ+x1−β0 lnx0 → κ(0)1−β lnκ(0) < 0, which yields the result immediately.

2.3. Some remarks
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The relationship between the time span of human capital accumulation
and the degrees of contribution of human capital stock to human capital
growth is complicated and ambiguous. In general, when the agent’s initial
human capital is sufficiently low, the higher the human capital stock elastic-
ity of human capital growth rate (or in other words, the greater sensitivity
of the speed of knowledge growth to the knowledge stock ), the more time
the agent would wish to study; in another typical case, where the agent
discounts the future so sharply or the human capital stock elasticity of
wage earning is so small that the initial human capital upper bound is low,
then, an opposite phenomenon occurs, such that the greater sensitivity of
the speed of knowledge growth to the knowledge stock, the less time the
agent would wish to study.

The solution of the problem PT can also be called a MRAP (most rapid
approach path) in the sense that the path is just the one which most rapidly
approaches the critical curve Γ. For the extreme case, where T = ∞,
the problem PT becomes the standard linear infinite time horizon optimal
control problem

max

∫ ∞
0

e−ρt(1− u)xαdt,

such that ẋ = uxβ ,

0 ≤ u ≤ 1,

x(0) = x0,

for which the solution is just the standard MRAP, which most rapidly
approaches the horizontal line x ≡ x∗, and x∗ is its unique steady state. In
addition, we notice that the critical curve Γ reduces to this horizontal line
as T →∞.

Let us discuss the meaning of H = f + λg. We know that λ = Vx is
the shadow or real value of human capital, and hence, in any state x, if we
choose u as the time of learning, then, f can be interpreted as the explicit
(surface, direct) income from working, and λg can be seen as the implicit
(latent, indirect) income from human capital accumulation, H therefore is
just the total symbolic income at any moment. Moreover, Lemma 2 tells
us that, at any time, we should choose u so as to maximize H, rather than
f itself. If we only maximize the explicit income and ignore the implicit
income, then the total real income of our whole life will not be maximized.
In other words, if we win at every time, we will lose as a whole. This is the
essence of the Pontryagin maximum principle.

If, in the above model, the assumption 0 < β < 1 is replaced by β = 1,
then similar results still hold and the treatment will be much easier.

In contrast to this finite time horizon problem, where the Markovian
optimal strategy is non-stationary, the infinite time horizon homogeneous
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problem, which is considered in the next section, has a stationary Marko-
vian optimal strategy.

2.4. Extension to the case with depreciation

If human capital depreciation is considered, then, the problem becomes
more complicated.

Consider the problem (P)

max

∫ T

0

e−ρt(1− u)xαdt,

such that ẋ = uxβ − δx,
0 ≤ u ≤ 1,

x(0) = x0,

where ρ > 0 is the agent’s discounting rate, δ > 0 is the human capital
depreciation rate, and x0 ≥ 0 is the agent’s initial human capital.

To solve this problem, we first consider its corresponding infinite time
horizon problem (P∞):

max

∫ ∞
0

e−ρt(1− u)xαdt,

such that ẋ = uxβ − δx,
0 ≤ u ≤ 1,

x(0) = x0.

We denote the optimal control path and the corresponding optimal state
path of problem (P∞) as w and W respectively.

Clearly, problem (P∞) is equivalent to problem (P′∞):

max

∫ ∞
0

e−ρt
(
(xα − δxα+1−β)− xα−β ẋ

)
dt,

such that −δx ≤ ẋ ≤ xβ − δx,
x(0) = x0.

It is well known that the unique solution of the problem (P′∞) is the
standard MRAP, that is, the optimal state path is simply the path that
approaches the unique steady state xs most rapidly from the initial state x0
among all of the feasible paths. That is, the optimal state path of problem
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(P′∞) (and problem (P∞)) is

W (t) = xs ∨
[
x0e
−δt] , if x0 ≥ xs,

= xs ∧
[
1
δ −

(
1
δ − x

1−β
0

)
e−δ(1−β)t

] 1
1−β

, if x0 < xs.

and the corresponding optimal control path for problem (P) is

w(t) = I(x0 < xs, t < K) + usI(t ≥ K),

where

xs =

[
α

δ(α+ 1− β) + ρ

] 1
1−β

,

us =
αδ

δ(α+ 1− β) + ρ
,

and K is the first time at which the optimal state path W touches the
point xs. More precisely,

K = 1
δ(1−β) ln

δ−1−x1−β
0

δ−1−x1−β
s

, if x0 < xs,

= 1
δ ln x0

xs
, if x0 ≥ xs.

And, clearly, the corresponding Markovian strategy for the problem (P∞)
is

u(t) =

 1, x(t) < xs,
us, x(t) = xs,
0, x(t) > xs.

We define

κ(t) = xs ∧
[

α

αδ + ρ

(
1− e(αδ+ρ)(t−T )

)] 1
1−β

,

and denote

A = {t ∈ [0, T ]|W (t) = κ(t)} .
Clearly, the set A is either empty or a closed interval. We denote

τ = supA,

with the convention supA = 0 if A is empty.
By the same dynamic programming method (Bellman equation), which

was used for the case without capital depreciation in the last subsection,
we can prove the following result.
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Theorem 6. For problem (P), the unique Markovian optimal strategy
is

u(t) =

 1, x(t) < κ(t),
us, x(t) = κ(t),
0, x(t) > κ(t).

(9)

The control path and the corresponding state path, induced by the Marko-
vian strategy (9), are respectively

u(t) = w(t)I(t < τ),

and

x(t) = W (t ∧ τ)e−δ(t∨τ−τ).

Corollary 4. If x0 ≥ κ(0), then, the optimal state path is decreas-
ing. If x0 < κ(0), then, the optimal state path is increasing in [0, τ ] and
decreasing in [τ, T ].

We can see that, in general, the finite time horizon case is similar to
the infinite time horizon case. The main difference is as follows. For the
infinite time horizon case, there are only two phases: in the first phase, the
state approaches the steady state at the most rapid speed; in the second
phase, it stays in the steady state forever. In comparison, in the finite time
horizon case, there are in general three phases: in the first phase, the state
approaches the steady state at the most rapid speed; in the second phase,
it stays in the steady state for some time; in the third phase, the state
decreases at the most rapid speed. This third phase always exists, while
the first two may not for certain parameters in a specific range.

In our human capital accumulation context, this can be explained as
follows. In general, the steady state is the best, the human capital stock
is kept at a suitable level, and the time is allocated between learning and
working according to a suitable fixed ratio. In this case, the total benefit is
kept sustainable at the highest level, where the total benefit comprises two
parts: (i) instant income (the direct earning from working); and (ii) latent
income (the implicit shadow value added from the increment of human
capital through learning). However, if the agent knows her lifetime exactly,
then, for some period before death, learning is not needed. Learning is
fruitless, since the essential object of learning is to change her fate of future.
Before the time of her death, which is known to her, however, she considers
that she does not have future, and hence, gives up learning and devotes all
of her time to working and earning money.
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Of course, this is not consistent with the reality, and this inconsistence
relates, in part, to the fact that we have ignored leisure and recreation. If
we modified our model to include recreation, this defect could be overcome.
Such a modification is left for subsequent works.

3. A STOCHASTIC CASE

In this section, we consider the stochastic case: the agent’s lifetime T is
random and exponentially distributed with parameter λ > 0, and hence,
the expected lifetime is 1/λ. We assume that the depreciation rate of
human capital is a constant δ > 0.

The agent will find the optimal path of time allocation between learning
and working, that is, the problem the agent will try to solve is the following
stochastic optimal control problem (P):

max E

∫ T

0

e−ρt(1− u)xαdt,

such that ẋ = uxβ − δx,
0 ≤ u ≤ 1,

x(0) = x0,

where ρ > 0 is the agent’s discounting rate, and x0 > 0 is the agent’s
initial human capital.

For convenience, we denote

x∗ =

(
1

δ

) 1
1−β

,

xs =

(
α

δ(α+ 1− β) + ρ+ λ

) 1
1−β

,

and

us =
αδ

δ(α+ 1− β) + ρ+ λ
.

Clearly,

xs < x∗,

and x∗ is the unique steady state for the dynamical system

ẋ = xβ − δx
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on the strictly positive half line (0,∞), and it is globally and asymptotically
stable.

Theorem 7. For the problem (P), the unique Markovian optimal strat-
egy is

u(t) =

 1, x(t) < xs,
us, x(t) = xs,
0, x(t) > xs.

(10)

Proof. It is well known that the problem (P) is equivalent to

max

∫ ∞
0

e−(ρ+λ)t(1− u)xαdt,

such that ẋ = uxβ − δx,
0 ≤ u ≤ 1,

x(0) = x0,

which, in turn, is equivalent to the following dynamic programming prob-
lem (P′):

max

∫ ∞
0

e−(ρ+λ)t
(
(xα − δxα+1−β)− xα−β ẋ

)
dt,

such that −δx ≤ ẋ ≤ xβ − δx,
x(0) = x0.

It is easy to see that the unique solution of the above problem is the stan-
dard MRAP, that is, the optimal path of x is just the one that approaches xs
most rapidly from the initial state among all the feasible paths. And, obvi-
ously, the corresponding Markovian strategy is just equation (10). The the-

orem is proved.

In the typical case, where the agent’s initial capital is low, the optimal
strategy for her is to continue devoting all of her time to human capital
accumulation until this reaches a specific level through a finite time span,
and thereafter, to allocate her time between learning and working at a fixed
ratio in order to offset the effect of human capital depreciation. In other
words, in reality, a person’s knowledge is continuously depreciating. Hence,
she should continue studying and updating her knowledge all of her life in
order to keep up.

For the problem (P′), denote the MRAP as x, and let

τ = inf {t ≥ 0|x(t) = xs} ,
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that is, τ is the least time needed to approach the steady state from the
initial state. We term it the schooling time. And, for the problem (P), the
approaching process could be interrupted by the death of the individual,
and hence, we call T ∧ τ the stopped schooling time.

It is easy to find that

τ =

{
1

δ(1−β) ln
x1−β
∗ −x1−β

0

x1−β
∗ −x1−β

s
, x0 ∈ (0, xs),

1
δ ln x0

xs
, x0 ∈ [xs,∞)

E[T ∧ τ ] =
1

λ
(1− exp{−λτ}) .

The next theorem follows immediately.

Theorem 8. xs is increasing in α and β, and is decreasing in ρ, λ and
δ. E(T ∧ τ) is decreasing with respect to ρ, λ, δ, x0 ∈ (0, xs) and increasing
with respect to α, x0 ∈ (xs,∞).

Recall that in a typical case, where the initial human capital is low,
the initial time period is fully devoted to learning without working. The
expected stopped schooling time is decreasing with respect to small ini-
tial capital, the impatience degree represented by the discount rate, and
the human capital depreciation rate. It is increasing with respect to the
expected lifetime, the elasticity of human capital to wage, and the initial
human capital if it is sufficiently large. All of these points coincide with
our intuition.

At the end of this paper, we comment that, in Chapter 10 (Human Cap-
ital and Economic Growth) of his book, Introduction to Modern Economic
Growth, Acemoglu (2009) presented a simplified Ben-Porath model as fol-
lows:

max

∫ ∞
0

e−ρt(1− u)xdt,

such that ẋ = f(ux)− δx,
0 ≤ u ≤ 1,

x(0) = x0

where f satisfies f(0) = 0, f ′ > 0, f ′′ < 0, f ′(0) =∞, and f ′(∞) = 0. We
can prove that it has a unique steady state (xs, us), a saddle point, and a
unique perfect Markovian strategy

u(t) =

{
1, x(t) < us,
us, x(t) ≥ us,
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and the corresponding trajectory in the x− u plain is simply an MRAP.
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