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A Characterization of Nonminimal Nash Networks in Two-way

Flow Model

Banchongsan Charoensook*

A long-lasting open question in the literature of strategic network formation
is the characterization of nonminimal Nash networks in the context of two-
way flow model with nonrival information. In this note, I provide a partial
answer to this question for the class of nonminimal networks such that every
chain between two agents has the length of at most two and heterogeneity in
information value possessed by each agent is assumed. I show that every strict
Nash network is a strongly nested split graph. I also show that every strict
Nash network is also efficient given a specific structure of information value.
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1. INTRODUCTION

The seminal paper of Bala and Goyal (2000) proposes a simple form of
strategic network formation. It assumes that information owned by each
agent is nonrival. Hence, contrary to the other seminal work of Jackson
and Wolinsky (1996), link formation does not require a mutual consent and
is unilateral. This simplicity allows Bala and Goyal (2000) to propose Nash
network (NN) and strict Nash network (SNN), defined as Nash equilibrium
and strict Nash equilibrium in pure strategies, as solution concepts. A
major advantage of these solutions concept is that it allows game theorist
to conveniently observe how each agent in the network strategically decides
as to who he prefers to establish links with. Nash network as a solution
concept has been used in a myriad of works in the literature. Recent
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works that applied this solution concept are, for instances, in the context
of common enemy effect (Haller and Hoyer (2019)) and signed network
(Hiller (2017)).

Of particular interest to this note is the literature that seeks to under-
stand the role of information decay in the context of nonrival information
network. Information decay is a form of imperfect communication such
that the worth of each piece of information is assumed to decay as it tra-
verses via each link. Within this literature, a long-lasting open question
— indeed a two-decade open question — is the characterization of Nash
networks that are not minimal 1. In this note, I provide a partial answer to
this long-lasting open question by: (i) providing a detailed characterization
of nonminimal Nash networks and strict Nash networks for the class of non-
minimal networks such that every chain between two agents has at most
two links, given an assumption that the worth of information possessed by
each agent is allowed to vary and (ii) providing an answer as to how these
equilibrium networks relate to efficient networks, which have recently been
characterized by Olaizola and Valenciano (2021).

The impacts of information decay on the characteristics of Nash and/or
strict Nash networks was left as an open question by Bala and Goyal (2000),
since the only finding is that a linked star, periphery-sponsored star and
an empty network can be strict Nash networks (see Proposition 5.4 in Bala
and Goyal (2000)). Recent development in the literature then solved this
question by limiting the scope of characterization to the class of networks
that are minimal. Specifically De Jaegher and Kamphorst (2015) did so
by restricting the information decay to be sufficiently small, which accord-
ingly implies that Nash networks contain no superfluous links and hence
all Nash networks are minimal. In so doing, De Jaegher and Kamphorst
(2015) successfully provide a detailed characterization of Nash networks.
Charoensook (2020) then further generalizes this work of De Jaegher and
Kamphorst (2015) to the case of agent heterogeneity in terms of infor-
mational value. Another recent work of Charoensook (2022) shows how
minimal Nash networks and efficient networks are closely related to each
other. However, in the case of nonminimal Nash networks very little is
known. Indeed, to my knowledge, this note is the first work in the lit-
erature that attempts to provide a characterization of nonminimal Nash
networks.

I summarize my findings as follows. Proposition 1 in this note provides
a detailed characterization of Nash networks and Strict Nash networks for
the class of nonminimal networks such that every chain has at most two
links, assuming that value of information possessed by each agent is allowed

1Where the term minimal network here refers to a network such that every pair of
agents is connected via at most one link or a series of links. See the formal definition in
the next section.
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to vary 2 3. Importantly, I find that the set of Strict Nash networks under
these assumptions belongs to a class of networks called Strongly Nested
Split Graph (SNSG), a term that has only recently been introduced to
the literature of strategic network formation by Olaizola and Valenciano
(2021) (see Remark 1 in this note). Interestingly, Olaizola and Valenciano
(2021) also show that efficient networks are also SNSG (see Proposition
2 in this note). Since both efficient networks and strict Nash networks
are SNSG, a natural question is whether strict Nash networks are also
efficient. My Proposition 3 answers this question. I show that, within the
set of all possible strict Nash networks, every network can be supported
as an efficient network and concurrently strict Nash network by a specific
structure of information value. Put differently, Nash networks and efficient
networks are substantially compatible. I remark that this finding contrasts
with most of the existing works literature, which finds that there is much
tension between equilibrium networks and efficient networks 4.

This note proceeds as follows. The next section introduces the model
and related notations. Subsequently, the main analysis section provides
two propositions and a remark on strict Nash networks and efficient net-
works. Proposition 1 provides a necessary and sufficient condition for Nash
network and strict Nash networks within the class of networks such that ev-
ery path between two agents has at most two links and agent heterogeneity
in information value is assumed. Proposition 3 provides then shows that
every network whose properties are according to Proposition 1 can be sup-
ported as Nash and efficient networks by a value structure.

2. THE MODEL

Let N = {1, . . . , n} be the set of all agents and let i and j be typical
members of this set. The information that each agent possesses is nonrival.
If i and j are connected then i and j exchange their information, hence the
term ‘two-way flow’. i and j can be connected via either a direct link or a
series of links. In what follows, most of the notations follow those of Bala
Goyal (2000) and Billand et al. (2011).

Link establishment and individual’s strategy. Link establishment
is unilateral, which follows from the assumption that agents do not mind
sharing their nonrival information. Link establishment cost is c > 0. A

2Note that this equilibrium characterization is for any level of information decay
rather than just small amount of decay, unlike other existing works in the literature.

3This form of value heterogeneity is shown to enlarge the set of minimal SNN to a
larger class of network called Bi and branching networks. See Billand et al. (2011),
Charoensook (2020).

4In the words of Unlu (2018), “a central theme in the literature of network formation
is the conflict between the set of stable networks and the set of efficient networks.”
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(pure) strategy of i is gi = {gi,j : j ∈ N, j 6= i}, where gi,j = 1 if i estab-
lishes a link with j and gi,j = 0 otherwise. That is, a strategy of i is a
collection of his decision of whether to form a link with every other agent.
If gi,j = 1, it is said that i accesses j or j receives a link from i. A strategy
profile is g = ∪i∈Ngi.

Network representation. Visually, a node depicts an agent. An arrow
from a node i to a node j if and only if gi,j = 1. Thus, there is a one-to-one
correspondence between a strategy profile and a network. Hence, the term
network g and strategy profile g will be used interchangeably. If the head
of each arrow is removed, then the resulting network merely represents the
structure of information flow. Thisstructure of information flow is denoted
by ḡ = {ḡi,j : i, j ∈ N, i 6= j}, where ḡi,j = 1 if gi,j = 1 or gj,i = 1 or both,
and ḡi,j = 0 otherwise.

Information flow. Information flow is two-way in the sense that in-
formation flows from i to j whenever ḡi,j = 1. Alternatively the informa-
tion flows between i and j via a chain, which is a series of links. Specifi-
cally, a chain is defined as a sequence j0, . . . , jm such that ḡjl,jl+1

= 1 for
l = 0, . . . ,m− 1 and j0 = i and jm = j. The length of a chain is defined as
the number of links in the chain. If a chain between i and j exists then it is
said that i observes j and vice versa. If i can observe j via more than one
chain, the distance between i and j, denoted by (i, j; g) is defined as the
length of the shortest chain(s). The distance between two agents i and j,
dij (g), is defined as the length of the shortest chain through which i and j
observes each other. If i and j do not observe each other we set, following
the literature, dij (g) =∞.

Value heterogeneity. Each agent i ∈ N possesses nonrival information
whose value is Vi. That is, the worth of information that any agent receives
from i (including i himself), assuming that information transmission is
perfect, is Vi. A value structure is then defined as V = {Vi}i∈N . Observe
that, unlike most works in the literature, I do not require that Vi = Vj for
every i 6= j, hence the term ‘value heterogeneity’ 5.

Information decay. As information traverses through each link, it
decays at the rate of 1 − σ where σ < 1. Hence, if the distance between i
and j is k, then i receives σkVj and j receives σkVi

6.
Network-related notations. A network is connected if there is a chain

between any distinct pair of agents. In a network g, letNi (g) ≡ {j|ḡij = 1}.
A network g is said to be a nested split graph (NSG) network if |Ni (g) | ≤

5Readers should be aware of a terminological discrepancy. The term value heterogene-
ity here is equivalent to the term ‘node heterogeneity’ used in Olaizola and Valenciano
(2021)

6This form of information here follows the convention in the literature including, for
instances, Bala and Goyal (2000), De Jaegher and Kamphorst (2015), Galeotti et al.
(2006) and Billand et al. (2010)
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|Nj (g) | ⇒ Ni (g) ⊆ Nj (g)∪ {j}. A network is said to be a strongly nested
split graph (SNSG) if it is NSG and Vi > Vj ⇒ |Ni (g) | ≥ |Nj (g) | 7.

The payoffs. The payoff below follows those in the literature that
studies efficiency in two-way flow model of network formation:

Ui (g) =
∑

j∈N,j 6=i

σdij(g)Vj − ndi (g) c (1)

where ndi = |N i
d (g) | and Nd

i (g) = {j ∈ N |gi,j = 1}.
Efficiency. Let W (g) =

∑n
i=1 Ui (g). A network g dominates another

network g′ if W (g) ≥W (g′). A network g is efficient if it dominates every
other network.

Nash networks. Consider a network g∗ such that a strategy of i is
g∗i ⊂ g∗. Let g∗−i = g∗\g∗i so that g∗ = g∗i t g∗−i. g∗i is said to be a best
response of i if Ui (g∗) ≥ Ui

(
gi ∪ g∗−i

)
for every gi which is a strategy of i.

g∗ is said to be a Nash network if every agent chooses his best response. A
Nash network is said to be a strict Nash network (SNN), if a best response
of every agent in it is unique.

2.1. Main Result 1: Equilibrium Characterization

The main objective is to characterize NNs and SNNs for the class of
nonminimal networks such that every chain has at most two links, given
that value heterogeneity is assumed. All proofs are relegated to the Ap-
pendix. I begin by introducing some notations and important facts. Let
GNN (GSNN ) be the set of all nonminimal NNs (SNNs) whose every chain
is at most 2 links.
Fact 1. If a network g is minimal and every chain in it has at most two
links, then there exists an agent i that has precisely n− 1 links
Fact 2. If g ∈ GNN then there exist at least two agents, say i, j, such that
Vi, Vj ≥ c

σ−σ2 .
As a result of this fact, the equilibrium characterization below assumes

that there are at least two agents whose values are above c
σ−σ2 .

Proposition 1 (Characterization of NNs and SNNs). Let the set of
agents N be partitioned into three types — H,M,L — and let NH , NM , NL

be the corresponding sets of agents so that N = NH tNM tNL. Consider
a network g with the properties (i), (ii), (iii) and (iv) described below.

7The definitions of NSG and SNSG here follow those of Olaizola and Valenciano
(2021). Olaizola and Valenciano (2021) were the first to establish the term SNSG, while
the concept of NSG was first introduced into the literature on Economics by König et
al. (2014). Its root is in applied mathematics, which has been well studied for several
decades (see Mahadev and Peled (1995)). For a literature review, see Olaizola and
Valenciano (2021).
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(i) For every i, j such that i ∈ NL or NM , j ∈ NH we have gij = 1.
That is, agent of type H always receives a link from an agent of type L or
M .

(ii) For every i, j such that i, j ∈ NH we have either gij = 1 or gji = 1
(but not both). That is, agents of type H always access each other (but
never at the same time).

(iii) For every i, j such that i ∈ NL, NM , NH and j ∈ NL, gij = 0.
That is, agents of type L never receive a link.

(iv) For every i, j such that i ∈ NL, NM , NH and j ∈ NM , either
gij = 0 or gij = 1 . That is, if j ∈ NM every other agent i 6= j is always
indifferent between accessing and not accessing j.

This network g can be supported as NN by a value structure V such that:
(a) Vj <

c
σ−σ2 for every j ∈ NL, (b) Vj >

c
σ−σ2 for every j ∈ NH and (c)

Vj = c
σ−σ2 for every j ∈ NM . Conversely, if g is NN then V satisfies these

inequalities (a), (b) and (c).
Moreover, if NM = ∅ then any g with the above characterization is SNN

instead of NN.

Figure 1 illustrates examples of NNs and SNNs according to Proposition
1. Observe that in this figure there is an NN that is not SNSG while
all SNNs in are SNSG 8. Are all SNNs SNSGs? Remark 2.1 answers this
question.

Remark 2.1. If g is SNN then g is SNSG.

2.2. Main Result 2: Relating Equilibrium networks with effi-
cient networks

Next, I relate my above results, the characterization of NNs and SNNs,
with the characterization of efficient networks, which has been recently es-
tablished in the literature by Olaizola and Valenciano (2021). I summarize
my results as follows. First, in case of NN, there are some NNs that can
never be efficient for any value structure. Second, on the contrary every
network that belongs to the set of all SNNs can be supported by a value
structure as SNN and concurrently efficient network. Before establishing
these results, I recall the results of Olaizola and Valenciano (2021), which
characterize efficient networks as follows.

Proposition 2 (Olaizola and Valenciano (2021), Proposition 1, 2 and 4, p. 494).
Enumerate agents such that V1 ≥ V2 ≥, . . . ,≥ Vn. Any connected network

8To clarify, observe that in Figure 1b |NM1
| = |NM2

|, L1 ∈ NM1
but L1 /∈ NM2

while L2 ∈ NM2
but L2 /∈ NM1

, Hence, this network is not even NSG.
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FIG. 1. Examples of NNs and SNNs. In these networks, circles, triangles and
squares represent agents of type H, M and L respectively. Note that an arrow points
away from a link sender and points towards a link receiver.
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(b) NN that is not SNSG

(c) SNN that is SNSG (d) SNN that is SNSG

Figure 1: Examples of NNs and SNNs. In these networks, circles, triangles and squares
represent agents of type H, M and L respectively. Note that an arrow points away from a
link sender and points towards a link receiver.
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7

(d) SNN that is SNSG

with a positive net value is dominated by a connected strong nested split
graph. A connected strong nested split graph network g is efficient if and
only if:

max
(j,k)∈T &gij=0

(Vj + Vk)
(a′)

≤ c

σ − σ2

(b′)

≤ min
(j,k)∈T ,j 6=1&gij=1

(Vj + Vk)

and, if Nn (g) = 1

c ≤ σ (V1 + Vn) + σ2
∑

k∈N\{1,n}

(Vk + Vn) (2)

Thus, there are some NNs that can never be efficient since they are
not SNSG (recall the paragraph above Remark 2.1). On the contrary,
it is intuitive to see that for the class of networks that are SNN every
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network can be supported as SNN and concurrently efficient network by
a value structure. First, observe that the inequality (b’) in the result of
Olaizola and Valenciano (2021) above is closely related to inequality (b) in
Proposition 1. Indeed, it is straightforward to observe that the inequality
(b) in my Proposition 1 implies inequality (b’) in the above proposition.
On the other hand, the inequality (a’) in the above proposition implies
inequality (a) in my Proposition 1. This leads to the following proposition.

Proposition 3 (Compatibility between SNNs and efficient networks).
Any network with properties (i), (ii) and (iii) in Proposition 1 can be sup-
ported as a SNN and (concurrently) an efficient network by a value struc-
ture V. That is, for any g ∈ GSNN there exists V that guarantees that g is
both SNN and efficient.

3. CONCLUSION

In this note, I characterize NNs and SNNs for the class of nonminimal
networks such that every chain has at most two links. The network for-
mation model in this note, which is based on the two-way flow model with
decay of Bala Goyal (2000), assumes heterogeneity in terms of value of in-
formation that each agent possesses. My results show that SNNs belong to
the class of networks called SNSG which has been recently introduced to
the literature by Olaizola and Valenciano (2021). I also relate my results
to the characterization of efficient networks as in Olaizola and Valenciano
(2021). My results show that SNNs are closely related to efficient networks
in the sense that every SNN can at the same time be efficient.

As mentioned in the introduction section, this note is the first work
in the literature that characterizes NNs and SNNs that are nonminimal,
which is achieved by restricting the scope of characterization to the class
of networks mentioned above. A remaining open question in this literature
that has lasted for two decades since the publication of Bala Goyal (2000)
is, therefore, a complete and general characterization of nonminimal Nash
networks. It becomes the ambition of this author that this note serves a
building block towards the answer of this question.
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APPENDIX A

A.1. USEFUL LEMMA

Lemma 1. In a network g, let there be a two-link chain between i and
j. Let i∗ be the agent who is in the middle of this chain. Then: (i) gij = 1
is a unique best response of i if and only if gji = 0 and Vj >

c
σ−σ2 , (ii)

either gij = 1 or gij = 0 is a (non-unique) best response of i if and only if
gji = 0 and Vj = c

σ−σ2 , (iii) and gij = 0 is a best response of i if and only
if gji = 0 and Vj <

c
σ−σ2 .

Proof. [Proof of (i)] We first begin with the “if” part, because the chain
between i and j with i∗ in the middle has two links and we assume gji = 0,
i receives σ2 from j. If i further establishes a link with j, then i receives
σVj − c. Thus if σVj − c > σ2V (equivalently, Vj >

c
σ−σ2 ) then i strictly

improves his payoff. Hence, i’s unique best response is to establish the link
with j.

Finally, to prove the “only-if” part let us assume that i’s unique best
response is to establish a link with j. This means that a removal of the
link ij will reduce the payoff of i. By the same analogy as in the above
paragraph we conclude that Vj >

c
σ−σ2 and gji = 0.

[Proofs of (ii) and (iii)] The proofs of (ii) and (iii) trivially follow the same

analogy as that of (i). I leave the full proofs to my readers.

A.2. PROOFS OF FACT 1 AND 2

Proof (Proof of Fact 1). Suppose not. Let i′ be an agent that has the
most links in g, which means that i′ has at most n− 2 links. Let j 6= i be
an agent that i′ does not have a link with. This means that the shortest
chain between i and j has two links. Let x be the agent who is in the
middle of this chain. That is, ḡi′x = 1 and the chain between i′ and j is
i′, x, j. Consequently, for any agent k that has a link with i where k 6= x,
there is a chain k, i′, x, j. But this chain has three links. A contradiction.

Proof (Proof of Fact 2). Suppose not. First, recall from Fact 1 that
g has an agent i∗ such that i∗ has exactly n − 1 links. Because g is also
nonminimal, we know that there is a pair of agents i, j 6= i∗ such that
ḡij = 1, which further necessitates that there is a two-link chain i, i∗, j.
By Lemma 1, we know that either Vj ≥ c

σ−σ2 or Vi ≥ c
σ−σ2 but not

both. Hence, without loss of generality let us assume that Vj ≥ c
σ−σ2 but

Vi <
c

σ−σ2 .
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Next, consider the fact that ḡi∗j = 1 and another two-link chain i, j, i∗

exists. Then by the same analogy as in the above paragraph we conclude
that either Vi∗ ≥ c

σ−σ2 or Vi ≥ c
σ−σ2 . But because in the above para-

graph we have already assumed that Vj ≥ c
σ−σ2 we conclude that there are

at least two agents such whose values are above c
σ−σ2 . A contradiction.

A.3. PROOF OF PROPOSITION 1, REMARK 1 AND
PROPOSITION 3

Proof (Proof of Proposition 1).
[Sufficiency condition]
Proof of Property (i). Consider an agent i ∈ NL, NM and j ∈ NH . First

observe that because Vj >
c

σ−σ2 it is true that σVj > c. Thus, establishing
no link is not a best response of i. This guarantees that a best response of
i is to establish at least one link with an agent j ∈ NH . It remains to be
proven, therefore, that i establishes a link with every agent of type H. To
prove so, observe that in g−i ḡkl = 1 for every k, l ∈ H. Next, recall that
we have proven that a best response of i is to establish at least one with
an agent j ∈ NH . Thus, it follows that for every k 6= j, k ∈ H there is
a two-link chain i, j, k. If follows, by Lemma 1, that gik = 1 is a (unique)
best response of i.

Proof of Property (ii). First trivially if gji = 1 then gij = 0 because the
link gij = 1 becomes superfluous. Next, if gji = 0 then we need to prove
that gij = 1. The proof here follows precisely the proof of property (i)
above.

Proof of Property (iii). Consider an agent i ∈ N . Let j ∈ NL. In case
that gji = 1 then trivially gij = 0. Hence, onwards we assume that gji = 0.
Next, recall from Property (i) that in g for every agent k ∈ NH , k 6= i it
holds true that ḡik = 1 and gjk = 1 for every j ∈ NL. Thus, there is a two-
link chain i, k, j. The existence of this two-link chain and the assumption
that Vj <

c
σ−σ2 allows us to use Lemma 1 to conclude that the (unique)

best response of i is to establish no link with any agent j ∈ NL.
Proof of Property (iv). Let i be that of type L or H or M . Observe that

in g−i there is a link between an agent of j ∈ NM and an agent i′ ∈ NH ,
where j, i′ 6= i (recall property (i) and (ii), which necessitates that an agent
of type H has a link with every other agent in the network). Thus, there
is a two-link chain between i and j ∈ NM with i′ ∈ NH in the middle.
Thus, if this j ∈ M does not send a link to i, then by Lemma 1 i’s (non-
unique) best response is to either sending a link to k or send no link since
Vk = c

σ−σ2 .
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[Necessary condition] The proof trivially follows from the fact that Lemma
1, which is invoked to complete the above proof for the sufficiency part, are
if and only if condition.

Finally, for the characterization of SNN observe that in the above proof a
non-unique best response occurs only when gij = 1 or 0 and j is of type M .
Thus, ifNM = ∅ then every best response in the above proof is unique. This
completes our proof.

Proof (Proof of Remark 1). First, recall from Proposition 1 that if g
is SNN then Ni (g) = NL t NH\i for every i ∈ NH and Ni = NH\i
for every i ∈ NL. Clearly |Ni (g) | ≤ |Nj (g) | → Ni (g) ⊆ Nj (g) ∪ {j}
for every i, j such that ḡij = 1, and Vi > Vj → |Ni (g) | ≥ |Nj (g) |.

Proof (Proof of Proposition 3). First, let g be a network that satisfies
properties (i), (ii) and (iii) in the Proposition 1 and let V be the value
structure that supports g as a strict Nash network. Hence, we know that
V satisfies inequalities (a) and (b) in Proposition 1. Now oberve that
the inequality (b) in Proposition 1, which chracterizes SNN, is a sufficient
condition for the inequality (b’) in Proposition 2, which characterizes an
efficient network. However, the inequality (a) in my Proposition 1 does
not imply the inequality (a’) in Proposition 2 . More specifically, for any
ḡij = 0 the inequality (a) in Proposition 1 requires that Vi, Vj <

c
σ−σ2 .

This does not imply that Vi + Vj ≤ c
σ−σ2 , which is the property (a’) in

Proposition 2. Thus, for any such Vi, Vj ∈ V we simply replace them with
V ′i and V ′j , V ′i < Vi and V ′j < Vj , sufficiently low that V ′i + V ′j ≤ c

σ−σ2 .
Thus, in V for any ḡij = 0 by replacing Vi, Vj with V ′i and V ′j as described
in the previous sentence the network g can be suppported as both strict
Nash and efficient.

Finally, observe that Proposition 2 also requires that in an efficient net-
work inequality 2 holds if Nn (g) = {1}. That is, the inequality 2 has to
hold if agent n, who is the agent with the lowest value, has exactly one
link with the agent 1 (who is the agent with the highest value). But this
is never the case for any g ∈ GSNN since, according to my Proposition
1, the agent n (who is either of type L or H) has at least two links g .
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