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Efficiency in Overlapping Generations Economies with Natural

Resources*

Bo Zhang and Zhixiang Zhang†

This paper investigates the Pareto efficiency of competitive equilibria in
overlapping-generations (OLG) economies with three productive factors—physical
capital, labor, and a natural resource. We derive general criteria for both effi-
ciency and inefficiency by comparing the interest rate with the growth rates of
the capital stock, income, and aggregate asset value. Specifically, in the long
run, the equilibrium is efficient if any of these growth rates is lower than the
interest rate, and inefficient if any exceeds it. These criteria also hold in OLG
economies with land. We apply these criteria to several models of resource use,
some of which are novel. In one such model, where the resource regeneration
function is linear, we establish a threshold for the rate of resource extraction:
below this threshold, the equilibrium is efficient; above it, the equilibrium is
inefficient. In another novel model featuring a quadratic regeneration function,
we introduce a composite capital index. If the labor share is below this index,
the equilibrium is efficient; if it exceeds the index, the equilibrium is inefficient.
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1. INTRODUCTION

In resource economics, the overlapping generations (OLG) model is a
fundamental tool to analyze interactions between different generations in
resource utilization. It is well known that in OLG economies, even without
natural resources, equilibrium can be Pareto inefficient. This means that

* The authors would like to thank Justin Yifu Lin, Min Wang, Xi Weng, Xiaojun
Zhao, Pengfei Zhang, Pan Liu, Xinxi Song, Qing Liu, Yulei Luo and Hengfu Zou for
their valuable comments and suggestions, and the Key Laboratory of Mathematical
Economics and Quantitative Finance (Peking University), Ministry of Education, China,
and the National Natural Science Foundation of China (Grant No.72141301) for their
financial support.

† Zhang: Corresponding author. School of Economics, Peking University, Beijing
100871, China. E-mail: bozhang@pku.edu.cn; Zhang: China Economics and Manage-
ment Academy, Central University of Finance and Economics, Beijing, 100081, China.
E-mail: zhangzhixiang@cufe.edu.cn.

765

1529-7373/2025
All rights of reproduction in any form reserved.



766 BO ZHANG AND ZHIXIANG ZHANG

the market mechanism does not always result in an efficient allocation of
resources. When natural resources are introduced, the problem becomes
even more complex.

A fundamental question arises: Given an equilibrium in an OLG econ-
omy, is it Pareto efficient? How can we assess the Pareto efficiency of such
an equilibrium? Are there appropriate tools or criteria for doing so? This
issue is not only of academic importance, but also crucial for policymakers
to determine whether market intervention is necessary and, if so, what form
that intervention should take. Only when the efficiency issue is identified
can we evaluate the role of markets in resource allocation and consider the
need for government intervention.

In resource economics, most previous researchers on Pareto efficiency in
OLG economies have focused on models with natural resources but with-
out physical capital, primarily analyzing steady-state equilibrium, which
is much simpler than dynamic equilibrium. However, when both natural
resources and physical capital are considered simultaneously, the problem
becomes significantly more complex. In reality, physical capital and natural
resources typically coexist in production processes, and their interrelation-
ship has a substantial impact on output. Therefore, it is essential to include
both physical capital and natural resources in the analysis. Furthermore,
focusing solely on steady-state equilibrium limits the analysis to long-run
outcomes, whereas dynamic equilibrium captures the entire process of eco-
nomic development. Dynamic equilibrium analysis is especially important
when a steady state does not exist but a dynamic equilibrium does.

Since Malinvaud (1953), an influential approach to assessing the effi-
ciency of a dynamic economy has been to compare the return on capital
with the economy’s growth rate—the r-g comparison. This perspective has,
in effect, become part of the standard toolkit and is often invoked explicitly
or implicitly. Yet most existing results remain narrow in scope, and the
literature has not produced clear, general, model-agnostic criteria. This
paper develops precise and broadly applicable tests for Pareto efficiency
in deterministic OLG economies, unifying and extending the benchmark
results along this line.

More concretely, we formulate tests that compare the interest rate with
the growth rates of (i) the capital stock, (ii) income, or (iii) aggregate as-
set value. Intuitively, when the relevant growth rate exceeds the interest
rate, the economy exhibits overaccumulation or intertemporal misalloca-
tion, implying inefficiency; when it falls short of the interest rate, such
overaccumulation is precluded, supporting efficiency (under stated regular-
ity conditions).

The remainder of the paper is organized as follows. First, we conduct
a systematic review of the relevant literature. Second, we construct the
model framework and present several general criteria. Third, we apply
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these criteria to three specific examples. Each of these examples represents
an interesting model that illustrates some important features of resource
utilization. Agnani et al. (2005) introduced a simplified version of the first
model, focusing solely on exhaustible resources, whereas the second and
third models are original to this paper.

More concretely, in each example, the utility function is log-linear, whereas
the resource regeneration function and production function vary. In the
first example, the resource regeneration function is linear, and the produc-
tion function follows a Cobb–Douglas form. In the second example, the
resource regeneration function remains linear, but the production function
is of the general type of constant elasticity of substitution (CES) beyond
Cobb–Douglas. In the third example, the resource regeneration function is
logistic, whereas the production function is Cobb-Douglas. Along the way,
we also discuss the issues of sustainability and equilibrium stability.

Additionally, through these examples, we address the following question:
Does the inclusion of natural resources improve economic efficiency com-
pared to an economy without natural resources? We find that the relation-
ship between natural resources and capital plays a crucial role. In broad
terms, if natural resources are substitutable for capital, then the stronger
the resource’s capacity of regeneration, the more likely their inclusion is to
improve the economy’s efficiency; if resources are complementary to cap-
ital, then a weaker regenerative capacity is more likely to do so. In both
cases, the improvement operates by reducing the risk of overaccumulation
of capital.

It is important to note that this paper primarily focuses on determining
whether a given equilibrium is Pareto efficient, rather than exploring the
existence of equilibrium under general conditions. While the existence of
equilibrium is certainly a significant issue, typically, existence and efficiency
can be analyzed separately. For the three examples discussed, of course,
we first need to identify the equilibrium and then evaluate its efficiency.

Developing general criteria to assess equilibrium efficiency in OLG economies
is already a challenging task. Due to space limitations, we do not address
government intervention in cases of inefficiency. Additionally, we only con-
sider deterministic scenarios and do not tackle the complexities arising from
uncertainty.

2. LITERATURE REVIEW

Although this paper studies Pareto efficiency in OLG economies, the
modern discussion of dynamic efficiency largely originated in neoclassical
Ramsey-type growth models. We therefore begin with that planner lit-
erature before turning to competitive OLG equilibria, with and without
natural resources.
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2.1. Dynamic efficiency in Ramsey-type growth models

Early work on dynamic efficiency analyzed planned economies rather
than decentralized equilibria. Malinvaud (1953) introduced the Malinvaud
condition, a transversality-style requirement stipulating that the present
value of capital must vanish along an efficient program, thereby ruling out
“free lunches at infinity.” Cass (1972) provided a tractable, price-based cri-
terion for dynamic efficiency: a program is efficient if and only if the series
of reciprocals of discount factors diverges. Benveniste and Gale (1975),
under some conditions on the production function, extend the Cass crite-
rion: a program is dynamically efficient if the sum of the reciprocals of the
norms of present value of capital is divergent. Mitra (1978) transplanted
this logic to economies with an exhaustible resource: if the resource is im-
portant in production, a competitive program is efficient if and only if a
Malinvaud-type terminal condition holds for total assets, i.e., the present
value of aggregate wealth tends to zero.

2.2. Pareto efficiency in OLG without natural resources

With finite-lived agents and competitive markets, the model’s structure
necessitates a focus on intergenerational trade and feasibility. Balasko and
Shell (1980) established Cass-type tests for pure-exchange OLG economies:
upon suitable assumptions, an equilibrium is Pareto inefficient if and only
if a series formed from inverse price norms converges, market language for
intertemporal arbitrage at infinity. Wilson (1981) studied environments
mixing infinitely and finitely lived agents and derived a sufficient efficiency
condition based on the finiteness of the sum of the present value of ini-
tial endowments. In stochastic settings, Abel et al. (1989) introduced the
net-dividend criterion, offering a practical test that nests earlier intuition.
Geanakoplos and Polemarchakis (1991) identified a complementary mecha-
nism: if the first generation owns an asset that produces income in every pe-
riod, a sufficient condition for efficiency can be obtained. Homburg (1992)
provided another factor-income-based sufficiency condition: the present
value of wages must vanish along the equilibrium path, an OLG analogue
of Malinvaud’s insight. Finally, Tirole (1985) showed that with productive
and nonproductive (bubbly) assets, OLG economies may feature multi-
ple steady states with different efficiency properties; in such environments,
rate comparisons involving the interest rate and demographic growth are
informative about bubbles and intergenerational inefficiencies. Collectively,
these results translate the conceptual intuition of the transversality condi-
tion into market-based tests for OLG equilibria, utilizing prices and income.
In addition, they reveal that demographics and asset composition matter
in a manner distinct from the outcomes of Ramsey programs.
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2.3. Pareto efficiency in OLG with natural resources

Introducing natural resources changes both technology and intertemporal
trade in essential ways. Kemp and Long (1979) developed an OLG model
with an exhaustible resource but without capital, in which the production
function is not homogeneous of degree one, and the resource is not essential
for production. The unique equilibrium is inefficient, in which nothing is
extracted. Rhee (1991) established a robust sufficiency condition for effi-
ciency when land is important in production (its income share does not
vanish) and also showed by counterexample that importance is not neces-
sary. Olson and Knapp (1997), returning to exhaustible resources without
physical capital, proved that the resource is ultimately depleted and equilib-
rium is Pareto efficient even without assuming importance, demonstrating
that scarcity alone need not imply inefficiency. For renewable resources,
Krautkraemer and Batina (1999) studied the utility of additive logarithmic
functions with logistic regeneration and showed that when the share of the
output of the resource is small, overaccumulation of the stock can occur,
producing inefficient steady states, reversing the Ramsey intuition from
“too much capital” to “too much resource”. Koskela et al. (2002), also
without capital and under quasi-linear preferences, demonstrated coexis-
tence of a stable and an unstable steady state, with the unstable one always
efficient and the stable one potentially inefficient—underscoring that stabil-
ity and efficiency can diverge. Reintroducing capital, Agnani et al. (2005)
examined a Cobb–Douglas/log-utility economy on a balanced growth path
and proved social optimality (hence efficiency). In a study of renewable re-
sources (without capital), Farmer and Bednare-Friedl (2017) incorporated
logistic growth and harvesting costs that depend on the resource stock.
They established that with inverse dependence on stock and certain param-
eter restrictions, a unique, asymptotically stable steady state can achieve
Pareto efficiency despite the resource’s own rate of return being negative.
Their work highlights that the structure of costs can supersede simplistic
rate-comparison rules. Taken together, these findings demonstrate that
the efficiency of OLG equilibria is fundamentally determined by the nature
and significance of the resource (e.g., whether it is exhaustible or renew-
able, and its regeneration technology), as well as by income shares and
cost structure. This complexity precludes the use of a single, universally
applicable efficiency test.

In summary, across these strands, efficiency consistently appears as “no
arbitrage at infinity”, implemented via vanishing present values (Malin-
vaud; Homburg), divergence tests based on prices (Cass; Balasko–Shell),
or dividend-based conditions (Abel et al.). In OLG settings, demographics,
asset structure (productive versus bubbly), and the presence and nature of
resources complicate how that idea translates into verifiable criteria. The
widespread heuristic is to compare the return on capital with the growth



770 BO ZHANG AND ZHIXIANG ZHANG

rate—the r-g lens—to diagnose overaccumulation and dynamic inefficiency.
However, despite its prominence, there is still no clear, general, determin-
istic criterion that settles efficiency uniformly on the basis of such rate
comparisons.

Relatedly, Hellwig (2024) considers stochastic OLG economies that ex-
clude labor and natural resources and examines only the autarkic alloca-
tion’s interim Pareto efficiency using the r-g comparison; hence, the results
do not subsume the deterministic, resource-inclusive economies analyzed
here.

In addition, Sachs and Warner (1995, 2025), a seminal contribution to
the resource-curse literature, argue, on the basis of a partial cross-country
sample, that the impact of resource abundance on economic development
is negative. To elucidate the mechanism underlying this impact, they de-
velop, in an appendix, a three-sector OLG model in which a resource boom
induces Dutch disease and erodes learning-by-doing in tradables, thereby
dampening growth. Subsequent theoretical and empirical work, drawing
on different country sets, time windows and measures, and exploring dif-
ferent channels (e.g., Big Push mechanisms1 and institutional pathways2),
is mixed, reporting positive, negative, and null effects3 . Consequently,
the “resource curse” remains a great puzzle and an active area for fur-
ther research.4 Notably, Sachs and Warner (1995, 2025) do not analyze
the efficiency issue, and assessing efficiency is harder in multi-sector OLG
economies than in the single-sector settings typically considered in the lit-
erature mentioned above5 .

3. MODEL SETUP

We begin with some preliminary notation. Let N (N+) be the set of
nonnegative (positive) integers, and N− = {−1} ∪ N. For any natural
number n, let Rn++ be the open positive orthant of Rn, that is, Rn++ =
{(x1, ..., xn) ∈ Rn|xi > 0, i = 1, ..., n}.

For any two positive dynamic variables xt and yt, we use xt ∼ yt to
indicate that yt/xt converges to some positive number, as t→∞.

1See, e.g., Sachs and Warner (1999).
2See, e.g., Mehlum et al. (2006).
3See, e.g., Wick and Bulte (2009) and Ding and Field (2005).
4 Our paper does not aim to resolve this puzzle.
5With Dutch disease and learning-by-doing, the decentralized economy is likely inef-

ficient because of the learning externality, which can be established using the approach
developed in this paper.
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3.1. The Economy

Consider a two-period OLG economy with natural resources that exist
at all points in time within N.

Population: At any time t ∈ N, a new generation (generation-t) of the
populationNt is born, living for two periods. Each individual of generation-
t has utility function U(at, bt+1), where at and bt+1 represent their con-
sumption at t and t+1, respectively, and U is smooth, concave, and strictly
increasing with respect to all elements.

Furthermore, at t = 0, there is an original generation of size N−1. Each
member of this generation lives for just one period with utility function
u(b0), where u is strictly increasing, smooth, and concave, and b0 is their
consumption at t = 0.

Endowments: Every young individual is endowed with one unit of labor.
Members of the original generation equally share physical capital K0 > 0
and natural resource S0 > 0 (whether renewable or non-renewable).

Firms: At each time t ∈ N, there is only one sector comprising nu-
merous homogeneous firms sharing an identical technology represented by
production function

Y = F t(K,L,R),

where Y is the output of the final good, and K,L and R are the inputs of
factors: the physical capital, labor, natural resources, respectively, F t is the
production function at time t, which is homogeneous of degree one, smooth,
concave, and strictly increasing with respect to each element. Production
functions may change due to technological progress. The final goods can be
consumed or invested in physical capital. For simplicity, the depreciation
rate for physical capital is assumed to be 1.

Natural resources: Each natural resource, viewed as a unified entity, is
extracted and sold. They are not physically divided among the owners. In-
stead, owners have shared property rights and, therefore, have a equal split
in the revenue derived from these resources6. Harvesting these resources is
cost-free.

With respect to resource transaction and dynamics, we make the as-
sumptions as follows7:

At the beginning of each period t, the natural resource (with a stock
of St) is held by older adults with even property rights. A portion of the
resource, Rt, is extracted and sold to firms, and the remaining resources
St − Rt are sold to young people with even property rights. At the start
of the next period, t + 1, the resource stock grows to G(St − Rt). The
function G describes the regeneration of resources. It is defined on [0,∞),

6Tirole(1985) and Rhee (1991), among others, adopt this treatment.
7Farmer (2000), among others, uses an alternative approach.



772 BO ZHANG AND ZHIXIANG ZHANG

smooth, concave, and nonnegative, with properties G(0) = 0, G′(0) ∈
(0,∞], G′(x) > 0, ∀x > 0.

In particular, it refers to the case of exhausted (non-renewable) resources
if G(x) = x.

The dynamics of the resource are described by

St+1 = G(St −Rt).

Assume that all markets are completely competitive and that every
young person has perfect foresight regarding the price system in the next
period.

3.2. Efficiency and Social Optimality

The main concern in this paper is Pareto efficiency. Two other related
concepts are dynamic efficiency and social optimality. We discuss them
separately.

We first give the concepts of allocation and program.
Allocation: A sequence of nonnegative vectors {at, bt,Kt, St, Rt}t∈N is

called an allocation, if it satisfies the conditions of feasibility: K0 = K0,
S0 = S0, and for any t ∈ N,

Ntat +Nt−1bt +Kt+1 ≤ F t(Kt, Nt, Rt),

St+1 = G(St −Rt).

Denote the set of all allocations by A . For any allocation A = {at, bt,Kt, St, Rt}t∈N,
and any t ∈ N−, denote the utility of generation-t under A as Ut(A).

Program: A sequence of nonnegative vectors {Ct,Kt, St, Rt}t∈N is called

a program if it satisfies the feasibility conditions: K0 = K0, S0 = S0, and
for any t ∈ N,

Ct +Kt+1 ≤ F t(Kt, Nt, Rt),

St+1 = G(St −Rt).

Denote the set of all programs by P.
For any allocation {at, bt,Kt, St, Rt}t∈N, the program {Ct,Kt, St, Rt}t∈N,

where

Ct = Ntat +Nt−1bt, ∀t ∈ N,

is called its corresponding program. Here, at, bt, and Ct are the consump-
tion of each young man, the consumption of each old man, and the aggre-
gate consumption at time t, respectively.
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Pareto improvement: An allocation A is Pareto-improved by another
allocation A′ if

Ut(A) ≤ Ut(A′), ∀t ∈ N−,

with at least one inequality being strict.
Pareto efficiency: An allocation is Pareto efficient, if it cannot be Pareto-

improved by any allocation.
The other concept is dynamic efficiency.
Dynamic improvement: A program {Ct,Kt, St, Rt}t∈N is dynamically

improved by another program {C ′t,K ′t, S′t, R′t}t∈N, if

Ct ≤ C ′t, ∀t ∈ N,

with at least one inequality being strict.
Dynamic efficiency8: A program is dynamically efficient if it cannot be

dynamically improved by any program.
An allocation is dynamically efficient if its corresponding program is

dynamically efficient.
Clearly, dynamic efficiency is weaker than Pareto efficiency. The converse

is not universally true, even if the allocation is an equilibrium allocation
(see Section 3.3). Below is a counterexample, the essence of which is the
same as in Hilbert’s infinite hotel paradox.

There are no natural resources, no population growth, and no techno-
logical progress. The production function is F (K,L) = K + L, the utility
function is U(a, b) = a + b, and the initial endowment of capital of the
ancestor is K0 = 1. Then the equilibrium allocation (at, bt, kt)t∈N (the cor-
responding price system is rt ≡ 0, ωt ≡ 1) is dynamically efficient, where

at = 1, ∀t ∈ N,

b0 = 1, bt = 0, ∀1 ≤ t ∈ N,

k0 = 1, kt = 0, ∀1 ≤ t ∈ N.

But it is not Pareto efficient, because it can be Preto-improved by the
following allocation (a′t, b

′
t, k
′
t)t∈N:

a′t = 0, ∀t ∈ N,

b′0 = 2, b′t = 1, ∀1 ≤ t ∈ N,

8Some authors call it the dynamic efficiency in the aggregate. See, for example, Miao
(2020).
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k′0 = 1, k′t = 0, ∀1 ≤ t ∈ N,

which is itself Pareto efficient9.
The third concept is social optimality, which is concerned with measuring

social welfare. The social welfare is typically measured by a social welfare
functional. In most cases, this functional takes the form of a weighted
sum of utilities across generations10: given a sequence of positive numbers
as weights λ = (λt)t∈N− , for any A ∈ A , the social welfare functional is
defined as

Wλ(A) =

∞∑
t=−1

λtUt(A).

The most commonly used weights follow an exponential form: for any
t ∈ N−, λt = εt, where ε ∈ (0, 1) is known as the social discount factor.

In this paper, we only consider the specific weights of this exponential
form, and simply denote it as Wε.

In particular, if for any t ∈ N, the utility function for generation-t is of
the form U(at, bt+1) = u(at) + ρu(bt+1), and the utility function for the
ancestor is ρu(b0), where u is some smooth, concave, and strictly increasing
function, then for any ε ∈ (0, 1), the social welfare functional Wε can be
simplified to a reduced form: for any A = (at, bt,Kt, St, Rt)t∈N ∈ A ,

Wε(A) = ρu(b0) +

∞∑
t=0

εt+1 (u(at) + ρu(bt+1)) =

∞∑
t=0

εt(εu(at) + ρu(bt)).

Social optimality: An allocation is socially optimal with respect to a
social welfare functional Wε for some ε ∈ (0, 1) if it maximizes Wε over A .

Obviously, Pareto efficiency is weaker than social optimality. But the
converse is not universally true, even under arbitrary weights.

Social optimality can serve as a useful tool for assessing Pareto efficiency,
while also holding intrinsic significance in its own right. From a societal
perspective, social optimality offers a framework for determining whether
a given allocation is desirable. This criterion operates at a higher level
than the Pareto principle, which is often regarded as the most fundamen-
tal form of optimality. Consequently, many researchers who address Pareto
efficiency also consider social optimality where appropriate. In this paper,

9This assertion can be proved by a lemma similar to Lemma 3 in the Appendix. It
states that an allocation can be Pareto-improved if and only if the ancestor can be made
strictly better off without making anyone else worse off. In allocation (a′t, b

′
t, k
′
t)t∈N, the

ancestor’s consumption is 2, which is already the maximum of the output at time t = 0
and of course cannot be improved any more.

10In certain scenarios, such a social welfare functional may not be well defined. In
these instances, an alternative approach, such as the overtaking criterion, may be em-
ployed instead.
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we apply the concept of social optimality in some specific examples. How-
ever, in cases where it is difficult to construct a suitable social welfare
functional, we refrain from further analysis.

3.3. Equilibrium

With the final good as the numéraire (with price set to 1), the prices
of the physical capital, labor and the natural resource at time t ∈ N are
denoted as rt, ωt, and pt, respectively, and the consumption of each young
individual and the consumption of each old individual at time t are denoted
as at and bt, respectively.

Equilibrium: A price system and an allocation, {rt, ωt, pt; at, bt,Kt, St, Rt}t∈N,
with (1 + rt, ωt, pt, at, bt,Kt, St, Rt) ∈ R8

++ for any t ∈ N, is called a dy-
namic equilibrium (or simply an equilibrium), if for any t ∈ N,

(at, bt+1,Kt+1/Nt, (St −Rt))
∈ arg max

(a,b,s,X)
{U(a, b)|a+ s+ ptX/Nt ≤ ωt; b = (1 + rt+1)s+ pt+1G(X)/Nt} ;

(Kt, Nt, Rt) ∈ arg max
(K,L,R)

F t(K,L,R)− (1 + rt)K − ωtL− ptR;

Kt+1 = F t(Kt, Nt, Rt)−Ntat −Nt−1bt, St+1 = G(St −Rt).

It is easy to verify that along the equilibrium path {rt, ωt, pt; at, bt,Kt, St, Rt}t∈N,
it holds that for any t ∈ N,

1 + rt+1 =
pt+1G

′(St −Rt)
pt

, (1)

which is the no-arbitrage condition, implying that the rates of return on
investments in any assets (including physical capital and natural resource)
are equal.

This no-arbitrage condition can be referred to as the generalized Hotelling
rule. It reduces to the classical Hotelling rule (Hotelling(1931)) when
G(x) = x, corresponding to the case of exhaustible resources.

Existence of equilibrium: Concerning the existence of the equilibrium, it
is easy to see that the following basic assertion holds true, which we present
as a lemma.

Lemma 1. An equilibrium exists if and only if the following system of
equations for (at, bt,Kt, St, Rt)t∈N with K0 = K0, S0 = S0 has a positive
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solution:

F tK(Kt+1, Nt+1, Rt+1) =
F t+1
R (Kt+1, Nt+1, Rt+1)

F tR(Kt, Nt, Rt)
G′(St −Rt),

F tK(Kt+1, Nt+1, Rt+1) =
Ua(at, bt+1)

Ub(at, bt+1)
,

F t(Kt, Nt, Rt) = Ntat +Nt−1bt +Kt+1,

Nt−1bt = KtF
t
K(Kt, Nt, Rt) + StF

t
R(Kt, Nt, Rt),

St+1 = G(St −Rt).

The first equation is the previously mentioned generalized Hotelling rule
(1); the second reflects the equality of MRS (marginal rate of substitution)
and MRT (marginal rate of transformation) in each period; the third is the
feasibility condition; the fourth indicates that older people consume all of
their assets; and the fifth describes the dynamic equation for the resource
stock.

Because (Nt)t∈N is given exogenously, and (at, bt)t∈N can be derived from
(Kt, St, Rt)t∈N, then the above system of equations for (at, bt,Kt, St, Rt)t∈N
can be equivalently transformed to a system of equations for (Kt, St, Rt)t∈N.
According to the implicit function theorem, under certain conditions (e.g.,
the corresponding Jacobian matrix is nondegenerate), explicit recursive
equations can be derived:

Kt+1 = ϕ(Kt, St, Rt, Nt, Nt+1),

St+1 = G(St −Rt),
Rt+1 = ψ(Kt, St, Rt, Nt, Nt+1),

where ϕ,ψ are some functions. In this case, an equilibrium exists, if
and only if there exists an R0 > 0, ensuring the entire trajectory of
(Kt, St, Rt)t∈N remains in R3

++
11.

For simplicity, we say the equilibrium is dynamically efficient (Pareto ef-
ficient), if the corresponding equilibrium allocation is dynamically efficient
(Pareto efficient).

4. GENERAL RESULTS

Given an equilibrium of the above economy {rt, ωt, pt; at, bt;Kt, St, Rt}t∈N ,
the question we are concerned with is: is it efficient? In order to answer

11At times, this dynamical system can be further transformed to a dynamical system
of (kt, st, zt)t∈N, where kt, st, zt are the capital, resource stock, and resource extraction
per effective labor.
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this question, we first need to introduce some basic notations. Afterward,
we will provide some criteria to assess efficiency.

For any t ∈ N, denote the total output as

Yt = F t(Kt, Nt, Rt).

For any t ∈ N+, define the market discount factor from time t to time 0 as

Dt =

t∏
s=1

(1 + rs)
−1,

and set D0 := 1. For convenience, let D−1 = 1 + r0.
We know that by the generalized Hoteling rule, for any t ∈ N,

Dt+1pt+1G
′(St −Rt) = Dtpt.

For any t ∈ N, denote the total value of assets held by all the old people
at time t as

Vt = (1 + rt)Kt + ptSt,

the combined total investments made by all the young people of generation-
t as

Mt = Kt+1 + pt(St −Rt),

the total income from both labor and investment in natural resources of
generation-t as

It = ωtNt +
pt+1

1 + rt+1
St+1 − pt(St −Rt).

At time t, the old people hold the assets (Kt, St). Through market
transactions, they can obtain the total revenue Vt and consume it. Clearly,
Vt = Nt−1bt.

For any t ∈ N, when considering society as a whole, define the dividend
as

Zt = Vt −Mt = (1 + rt)Kt −Kt+1 + ptRt.

For any t ∈ N, denote the growth rate of total income and the growth
rate of the physical capital stock (the growth rate of capital, for short) at
time t by

it =
It
It−1

− 1, jt =
Kt+1

Kt
− 1,

respectively.
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Of course, if there is no natural resource, the above concepts reduce
respectively to

Vt = (1 + rt)Kt, Mt = Kt+1, It = ωtNt, Zt = (1 + rt)Kt −Kt+1.

4.1. Main Criteria

We discuss the dynamic efficiency and Pareto efficiency separately.

4.1.1. Dynamic Efficiency

We provide a criterion for dynamic efficiency.

Theorem 1. The equilibrium is dynamically efficient, if

lim
t→∞

DtVt = 0. (2)

Remark 1. Condition (2) is the Malinvaud-type condition. Malinvaud

(1953) originally formulates it in a neoclassical growth model without nat-

ural resources12. Mitra (1978) extends Malinvaud’s result to cases with

exhaustible resources. We further extend it to cases with any type of nat-

ural resources. This condition means that the total wealth is eventually

exhausted.

In order to get the converse of the above theorem, we make the following

assumptions:

A1. The regeneration function for the natural resource is linear.

A2. The natural resource is important in production relative to labor,

meaning that13

lim
t→∞

ptRt
ωtNt

> 0.

Theorem 2. Under assumptions A1,A2, if the equilibrium is dynami-

cally efficient, then

lim
t→∞

DtVt = 0.

12See also Theorem 1 in Becker and Mitra (2012).
13A stronger version of this condition is

inf
t∈N,(Kt,Nt,Rt)∈R3

++

RtF t
R(Kt, Nt, Rt)

F t(Kt, Nt, Rt)
> 0.

That is, the minimum income share of natural resource at all times is away from zero.
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Remark 2. Mitra (1978) obtains this result for the case of exhaustible

resources. We extend it to cases involving natural resources with arbitrary

linear regeneration functions.

4.1.2. Pareto Efficiency

We provide a criterion for Pareto efficiency.

Theorem 3. The equilibrium is Pareto efficient if

lim
t→∞

DtωtNt = 0. (3)

Remark 3. Homburg (1992) first introduced condition (3) without con-

sidering natural resources14. We extend it to cases involving natural re-

sources. The condition means that all income derived from labor is even-

tually exhausted.

To some extent, we can say that the criterion in Theorem 3 involves

comparing the growth rate of income from labor (e.g., wages) with the

interest rate. Clearly, condition (3) is weaker than

lim
t→∞

1 + i′t
1 + rt

< 1,

where i′t = (ωtNt)/(ωt−1Nt−1)− 1 is the growth rate of total wages.

And obviously, condition (3) is also weaker than the Wilson-type condi-

tion:
∞∑
t=0

DtYt <∞.

We now provide a criterion for Pareto inefficiency. We need the following

assumption.

A3. The technological progress is Harrod-neutral, that is, for any t ∈ N,

F t(K,L,R) = F (K,BtL,R) for some function F , which is homogeneous of

degree one, smooth, concave, and strictly increasing with respect to each

element; and Bt = (1 + ν)t, Nt = (1 + n)t, where ν ≥ 0, n > −1 are

constants; supt zt <∞; lim
k→∞

fk(k, z) < µ =: (1 + ν)(1 + n) uniformly for z

in any bounded interval; and either lim inf
t→∞

kt > 0, or fk(0, z) <∞ for any

z ≥ 0, where f(k, z) = F (k, 1, z), kt = Kt/(BtNt), zt = Rt/(BtNt)
15.

14See Theorem 1 in Homburg (1992), which excludes natural resources, although he
later addresses land in subsequent chapters.

15The condition supt zt < ∞ means that the resource extraction per effective labor
is bounded above. A stronger version is supt St/(BtNt) < ∞, which is determined
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Theorem 4. Under assumption A3, the equilibrium is Pareto inefficient

if

lim
t→∞

1 + jt
1 + rt

> 1. (4)

Remark 4. This result implies that if the growth rate of the capital

stock exceeds the interest rate in the long run, the economy experiences

overaccumulation of capital, leading to inefficiency. Roughly, Abel et al.

(1989) initially presented this criterion, without considering natural re-

sources. We extend it to cases where natural resources are taken into

account under some conditions on production functions.

Remark 5. (Further discussion on Abel et al. (1989)) Abel et al. (1989)

introduces the net dividend criterion for Pareto inefficiency, stating that an

equilibrium allocation is Pareto inefficient if

Zt
Mt
≤ −ε, ∀t ∈ N, (5)

for some ε > 0. This is equivalent to

1 + jt
1 + rt

≥ 1 + ε′, ∀t ∈ N,

for some ε′ > 0.

Clearly, our condition (4) is weaker than (5) of Abel et al. (1989). In-

stead of requiring the capital growth rate to consistently exceed the interest

rate throughout the entire process of economic development, our condition

only demands this in the long run, as time approaches infinity. What is the

intuition behind our result? From a certain point in time, say T , onward, if

the capital growth rate exceeds the interest rate, this is sufficient to ensure

inefficiency. There is no need to impose this condition from the very begin-

ning (i.e., T = 0). The portion of the equilibrium allocation before T can

remain unchanged, while the allocation after T can be Pareto improved by

reducing capital and increasing consumption. This improvement is possi-

ble as long as the capital growth rate continues to exceed the interest rate

from time T onward.

exogenously by the regeneration function, technological progress, and the population
growth.
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Abel et al. (1989) also presents the net dividend criterion for Pareto

efficiency, stating that an equilibrium allocation is Pareto efficient if

Zt
Mt
≥ ε, ∀t ∈ N, (6)

for some ε > 0. This is equivalent to

1 + jt
1 + rt

≤ 1− ε′, ∀t ∈ N,

for some ε′ > 0. However, Chattopadhyay (2008) disproves this criterion

by providing a counterexample16.

At the end of this subsection, we attempt to investigate the converse of

Theorem 3 to some extent.

Theorem 3 gives a criterion of Pareto efficiency in terms of income from

labor (i.e., the wages), but, it is not necessary17.

Now, we try to provide a criterion for Pareto inefficiency in terms of

income. However, we find that we need to modify the income from labor

to the total income, and compare the growth rate of the total income with

the interest rate, which is similar to the criterion in Theorem 4 comparing

the growth rate of capital and the interest rate.

Additionally, to derive a concise form of such a criterion, here we only

consider the case of log-linear utility function18. But the regeneration and

production functions remain arbitrary, ensuring that the result is still rel-

atively general.

Theorem 5. Suppose U(a, b) = ln a + ρ ln b, where ρ ∈ (0, 1) is a con-

stant. Then, the equilibrium is Pareto inefficient if

lim
t→∞

1 + it
1 + rt

> 1. (7)

Remark 6. Condition (7) implies that if total income grows too rapidly,

eventually surpassing the interest rate in the long run, valuable resources

will remain underutilized, leading to inefficiency. This introduces a new

criterion for assessing Pareto inefficiency. The underlying mechanism in

16After adding an additional condition, condition (6) is really sufficient for the Pareto
efficiency of the equilibrium. See Corollary 3 below.

17Rhee (1991) presents a counterexample for an OLG economy with land.
18Other forms of utility functions can be considered, but the resulting formulas would

be complex and less elegant, so they are not presented here.
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this new criterion is the same as in Hilbert’s infinite hotel paradox. It will

be applied to prove the Pareto inefficiency of equilibrium in an example

involving a quadratic regeneration function of the resource, where assump-

tion A3 is not satisfied, making the criterion in Theorem 4 insufficient to

guarantee the Pareto inefficiency of the equilibrium.

4.2. Corollaries

From the above theorems, we immediately have the following corollaries.

Corollary 1. Under the assumptions A1,A2, the equilibrium is Pareto

efficient if and only if lim
t→∞

DtVt = 0.

Remark 7. Under A1,A2, the condition lim
t→∞

DtVt = 0 is a complete

characterization for Pareto efficiency of the equilibrium.

Corollary 2. If

lim
t→∞

Rt+1

RtG′(St −Rt)
< 1, (8)

lim
t→∞

ptRt
ωtNt

> 0, (9)

then, the equilibrium is Pareto efficient.

Remark 8. Condition (8) indicates that for large t,

Rt+1

Rt
< G′(St −Rt),

which means that the growth speed of harvesting is lower than the marginal

regeneration capacity. In other words, the natural resource is not extracted

too quickly; condition (9) means that in the long run, in production, the

resource share is not nil, compared with the labor share. Condition (9) is

weaker than the assumption A2.

Corollary 3. If

lim
t→∞

1 + jt
1 + rt

< 1, (10)

lim
t→∞

(1 + rt)Kt

ωtNt
> 0, (11)
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the equilibrium is Pareto efficient.

Remark 9. Roughly speaking, condition (10) indicates that the growth

rate of capital is less than the interest rate, which can be seen as the reverse

inequality of condition (4); condition (11) means that the physical capital

is important in production relative to labor. This result can be seen as the

converse of Theorem 4 to some extent and also as a modified version of the

dividend criterion for Pareto efficiency of Abel et al. (1989)19.

By combining Theorem 4 and Corollary 3, we can infer that the long-

term relationship between the growth rate of capital and the interest rate

is crucial in determining economic efficiency. Roughly, if the growth rate

of capital consistently exceeds the interest rate in the long run, it may re-

sult in over-accumulation of capital, leading to inefficiency. Conversely, if

the growth rate of capital remains below the interest rate in the long run,

capital accumulation is more controlled, promoting efficiency. This conclu-

sion aligns with our intuitive understanding. In summary, comparing the

long-term growth rate of capital to the interest rate provides a meaning-

ful approach to assessing economic efficiency. Of course, for rigorousness,

certain preassumptions would need to be made.

Corollary 4. Under assumption A3, furthermore, suppose that as t→
∞,

Kt

BtNt
→ k∗ > 0, rt → r∗ > −1,

ωt
Bt
→ ω∗ > 0,

where k∗, r∗, ω∗ are constants. Then, the equilibrium is Pareto efficient if

r∗ > n′; it is Pareto inefficient if r∗ < n′, where n′ = (1 + ν)(1 + n)− 1 is

the growth rate of capital in the long run.

Remark 10. Theorems 1, 3, 4, and 5, and Corollaries 3 and 4 remain

valid in the absence of natural resources. This is because the proofs of

these results do not rely on the assumption that “the production function

at any time is strictly increasing with respect to the natural resource.”

(See Section 3.1.). However, Theorem 2 does require this assumption for

its validity.

19See Remark 5.
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5. APPLICATIONS

In this section, we apply the above general criteria to several examples

where the regeneration function is either linear or quadratic.

The quadratic regeneration function is the simplest example to illustrate

the characteristic that any renewable resource has a finite environmental

carrying capacity. Consequently, it is widely used in resource economics.

In contrast, the linear regeneration function is typically used for non-

renewable resources, resources that degenerate exponentially, or idealized

renewable resources with infinite environmental carrying capacity.

In all of these concrete examples, we first need to identify the equilibrium

(or equilibria, if multiple exist) and then evaluate its efficiency. This is

where our criteria come into play. While finding the equilibrium can be

challenging, our primary focus is on assessing its efficiency.

Moreover, none of these examples is trivial; each represents an intriguing

model in resource economics, highlighting some important features of re-

source use. Specifically, there are three models presented here. A simplified

version of the first model appeared in Agnani et al. (2005); the other two

are original to this paper.

In all examples in this section, we assume that the utility function is as

follows: U(a, b) = ln a+ ρ ln b, where ρ ∈ (0, 1) is a constant.

5.1. Linear Regeneration Function, Cobb–Douglas Production

Function

Assume

G(x) = ηx, F t(K,L,R) = AtK
αLβRγ , ∀t ∈ N,

where At > 0, η > 0, 0 < α, β, γ < 1 are constants, satisfying α+β+γ = 1.

The parameter η can be called the intensity of the regeneration of the

resource.

Agnani et al. (2005) investigate the case of an exhaustible resource

where η = 1. However, they implicitly assume the existence of equilibrium

and further assume that the economy follows an exact balanced growth

path, with both At and Nt growing at exogenously given rates. Under

such narrowly defined conditions, they discuss issues of Pareto efficiency,

sustainability, and social optimality.

In contrast, we rigorously prove the existence and uniqueness of equi-

librium, as well as its Pareto efficiency and social optimality, while also

examining the sustainability issue in a more general context.
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Mourmouras (1991) demonstrates the existence of equilibrium and ad-

dresses sustainability in the absence of technical progress and population

change.

Our results in this subsection fully encompass both Agnani et al. (2005)

and Mourmouras (1991).

For use in the sequel, let θ = ρβ/(1 + ρ), δ = 1 − τ , and τ ∈ (0, 1) be

determined uniquely by

τ =
γ + ατ

θ + γ + ατ
.

5.1.1. Equilibrium Existence, Uniqueness and Efficiency

By the definition of equilibrium, one can easily verify that the equilibrium

exists and is unique if and only if the following system of equations for

(Kt, St, Rt)t∈N with K0 = K0 and S0 = S0 has a unique positive solution:

Kt+1 =
Yt
Rt

[(θ + γ)Rt − γSt] , (12)

St+1 = η(St −Rt), (13)

Rt+1 =
η

α
[(θ + γ)Rt − γSt] , (14)

where Yt = AtK
α
t N

β
t R

γ
t . And, obviously, this system of equations has

a unique positive solution if and only if the planar dynamical system for

(St, Rt)t∈N with S0 = S0, described by (13) and (14), has a unique positive

solution.

Following this line of reasoning, we can derive

Proposition 1. The equilibrium exists and is unique, in which for any

t ∈ N, Ntat = β
1+ρYt, Nt−1bt = (α + γ/τ)Yt, Rt = τSt, Kt+1 = αδYt,

where Yt = AtK
α
t N

β
t R

γ
t .

Remark 11. The resource extraction rate is constant τ , and the to-

tal consumption of the young, the total consumption of the old, and the

investment in capital are all proportional to the total output, each by a

constant ratio.

Proposition 2. The equilibrium is Pareto efficient.

Remark 12. (Comparison between this model and the classical Dia-

mond OLG model) The case γ = 0 corresponds to the classical Diamond
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OLG model, in which for any t ∈ N,

Kt+1 = θYt.

Thus,

Dt+1Yt+1

DtYt
=

Yt+1

(1 + rt+1)Yt
=
Kt+1

αYt
=
θ

α
,

1 + jt
1 + rt

=
Kt+1

(1 + rt)Kt
=
Kt+1

αYt
=
θ

α
,

1 + it+1

1 + rt+1
=

Yt+1

(1 + rt+1)Yt
=
Kt+1

αYt
=
θ

α
,

Therefore, if α > θ, then

lim
t→∞

DtωtNt = β lim
t→∞

DtYt = βY0 lim
t→∞

(
θ

α

)t
= 0.

Therefore, by Theorem 1, the equilibrium is Pareto efficient.

If α < θ,

lim
t→∞

1 + jt
1 + rt

= lim
t→∞

1 + it
1 + rt

=
θ

α
> 1.

Therefore, by Theorem 2 or 3, the equilibrium is Pareto inefficient.

In contrast, in the cases of γ > 0,

1 + jt
1 + rt

=
Kt+1

(1 + rt)Kt
=
Kt+1

αYt
= δ < 1.

This implies that the growth rate of capital is always lower than the interest

rate, preventing overaccumulation of capital.

5.1.2. Social Optimality

We will use the following assumption.

A4. At = (1 + g)t, Nt = (1 + n)t, ∀t ∈ N, where g ≥ 0, n > −1 are

constants.

Proposition 3. Under assumption A4, the equilibrium allocation is

socially optimal with respect to Wδ.

In the previous subsection, we demonstrated Pareto efficiency without

assumption A4. With this assumption, however, we can derive a stronger
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result. Here, δ represents the social discount factor embedded in the market

system, whereas ρ corresponds to the individual discount factor.

The social discount factor is determined by the aggregation of individual

discount rates across all economic agents in the economy, reflecting the un-

derlying economic structure, including aspects such as resource availability

and the relative significance of labor.

Furthermore, δ increases with respect to ρ, indicating a positive correla-

tion between the social and individual discount factors.

Which is larger, δ or ρ? The answer primarily depends on the labor

share, β. If β is sufficiently small, then δ < ρ; if β is sufficiently large, then

δ > ρ. Specifically, when β = 0, we have δ = 0, and when β = 1, we have

δ = 1. This suggests that the greater the role of labor in production, the

less the “social planner” discounts the future.

Additionally, because δ = 1− τ , where τ represents the optimal resource

extraction rate in the market, a heavier discounting of the future by the

“social planner” implies more rapid resource extraction.

Remark 13. It is easy to verify that under assumption A4, the equilib-

rium path converges to a balanced growth path (BGP), and it is exactly a

BGP if and only if

φKβ+γ
0 = αδ (τS0)

γ
,

where φ :=
(
(1 + λ)(1 + n)β(ηδ)γ

)1/(β+γ) − 1.

5.1.3. Sustainability

Denote the output per capita at time t as yt = Yt/Nt. Because

Yt+1 = At+1(αδYt)
αNβ

t+1R
γ
t+1,

then, yt+1 = mty
α
t , where

mt ∼
At+1N

α
t

Nα+γ
t+1

(ηδ)γt.

Clearly, the behavior of the economy depends on the long-term behavior

of mt. If lim
t→∞

mt =∞, the economy grows without bound. If lim
t→∞

mt = m

for some m > 0, the economy converges to a finite level. If lim
t→∞

mt = 0,

the economy contracts, leading to a collapse. If (mt)t∈N does not converge,

the economy exhibits fluctuations.

In particular, under A4, we have

mt ∼ ht, h := (1 + g)

(
ηδ

1 + n

)γ
.
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Here, h is a composite index, indicating the extent of sustainability. If

h > 1, the economy expands without bound. If h = 1, the economy

converges to a finite level. If h < 1, the economy contracts.

For example, for a given technical growth rate g > 0, if the resource

share γ is sufficiently small, then the economy will expand without bound.

For given g, n, η, γ, if the discount factor ρ or the labor share β is suffi-

ciently small, then the resource harvesting rate τ is sufficiently close to 1,

and δ is sufficiently low, leading to h < 1, and consequently, the economy

will contract.

5.2. Linear Regeneration Function, CES Production Function

Now, consider other types of CES functions beyond Cobb-Douglas. More

precisely, assume G(x) = ηx, and for any t ∈ N,

F t(K,L,R) = (αKσ + βLσ + γRσ)
1/σ

, Nt = (1 + n)t,

where20 0 6= σ < 1, η > 0, n ≥ 0, 0 < α, β, γ < 1 are given constants,

satisfying α+ β + γ = 1.

To the best of our knowledge, this model in resource economics is novel

and has not been covered in existing literature.

Denote the capital, resource stock, and resource extraction per capita

respectively as

kt =
Kt

Nt
, st =

St
Nt
, zt =

Rt
Nt
.

It is easy to see that the equilibrium exists if and only if the follow-

ing three-dimensional difference dynamical system D of (kt, st, zt)t∈N with

given k0 > 0, s0 > 0 has positive solution:

kt+1 =
1

1 + n
(αkσt + β + γzσt )

(1−σ)/σ
[
θ − γ(st − zt)

z1−σt

]
, (15)

st+1 =
η

1 + n
(st − zt), (16)

zt+1 =
1

1 + n

( η
α

)1/(1−σ) zt
αkσt + β + γzσt

[
θ − γ(st − zt)

z1−σt

]
, (17)

where θ = ρβ/(1 + ρ).

20When σ = 0, it will reduce to the Cobb–Douglas case, which is fully analyzed in
Section 5.1. In this subsection, we focus exclusively on the case where σ 6= 0, except in
Section 5.2.3, where we discuss the role of σ in shaping the behavior of the economy.
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Clearly, any positive solution of D must meet the feasibility condition

that for any t ∈ N,

(st, zt) ∈ Θ =:

{
(s, z)

∣∣∣∣0 < z < s < z +
θ

γ
z1−σ

}
.

All other paths will cross out of the region Θ in a finite time, leading to

the collapse of the system.

A steady state of D is called nontrivial if it lies in R3
++. For convenience,

let

ν :=
ρ

1 + ρ

[(
ησ

α

)1/(1−σ)

− 1

]
.

Clearly, ν > (=, <)1 if and only if α < (=, >)ησ
(
2 + ρ−1

)σ−1
.

Lemma 2. For the dynamical system D , there exists a unique nontrivial

steady state if and only if

1 + n

η
< min {1, ν} . (18)

We observe that when σ > 0, condition (18) implies that η is large,

whereas when σ > 0, condition (18) means that η lies within a certain

interval, neither too large nor too small.

In the sequel, we only consider the possible equilibrium paths satisfying

the limit condition: there exist k̂, ŝ, ẑ ∈ [0,∞] and ε ∈ [0, θ] such that

lim
t→∞

(kt, st, zt) = (k̂, ŝ, ẑ),

lim
t→∞

st − zt
z1−σt

=
θ − ε
γ

. (19)

This ε can be interpreted as a measure of the speed of resource harvesting,

referred to as the harvesting speed indicator, for short.

There are only three possible cases: (i) ŝ = ẑ = 0; (ii) ŝ, ẑ ∈ (0,∞); (iii)

ŝ = ẑ = ∞, and correspondingly, the equilibrium is called equilibrium of

type I, type II, and type III, respectively. And, obviously, if ŝ, ẑ ∈ (0,∞),

then, k̂ ∈ (0,∞).

Concerning the equilibrium of type II, from Lemma 2, one can easily

obtain
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Proposition 4. The Type II equilibrium exists uniquely if and only if

condition (18) is satisfied.

Concerning the efficiency, we have

Proposition 5. The type II equilibrium is Pareto efficient.

Therefore, the steady state equilibrium is always Pareto efficient if it

exists.

In the sequel, we will examine the existence and efficiency of type I and

type III equilibria in two distinct cases: σ ∈ (0, 1) and σ < 0. For the

sake of completeness, when presenting results regarding the existence of

equilibrium, we will also include type II equilibria.

5.2.1. σ ∈ (0, 1) sigma in (0,1)

For any k ≥ 0, define

π(k) = (1 + n)k (αkσ + β)
(σ−1)/σ

.

It is easy to verify that π is strictly increasing.

The meaning of π is as follows. For a type I equilibrium, there is a

ε ∈ [0, θ] such that condition (19) holds, and then, by letting t → ∞ in

(15), we obtain that the limit capital per capita k satisfies

k =
ε

1 + n
(αkσ + β)(1−σ)/σ,

which implies ε = π(k). Therefore, π represents the one-to-one relationship

between the harvesting speed indicator and the limit capital per capita,

and this relationship is positive. In other words, the faster the resource

extraction, the higher the limit capital per capita.

Concerning the existence of equilibrium, we have

Proposition 6. (i) No type III equilibrium exists.

(ii) If 1+n
η < min{1, ν}, then there exists unique equilibrium, which is of

type II.

(iii) If ν ≤ 1+n
η < 1, then there exists a unique type I equilibrium with

limit capital per capita being π−1(θ).

(iv) If 1+n
η ≥ 1, then there exists a continuum of type I equilibria. More

precisely, there exists an interval [z, z] such that any z0 ∈ [z, z] induces a

type I equilibrium. Accordingly, there exists a k ∈ (0, π−1(θ)] such that for
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any k ∈ [0, k], there is a type I equilibrium of with the limit capital per

capita being k. The more z0, the more the limit capital per capita k.

Remark 14. If the regeneration capacity is relatively large compared

with the population growth rate and there is no steady state, then there

is a unique equilibrium in which the resource is harvested as quickly as

possible (the harvesting speed indicator is θ) and finally the resource stock

tends to zero, and correspondingly, the capital per capita tends to the

largest possible value π−1(θ). If the regeneration capacity is relatively small

compared with the population growth rate, then there is a continuum of

equilibria.

Concerning the efficiency of equilibrium, we have the following results.

Proposition 7. (i) If η > 1 + n, then the unique equilibrium is Pareto

efficient.

(ii) If η ≤ 1 + n, then there exists a z∗ ∈ [z, z] such that for any z0 ∈
[z, z∗), the corresponding equilibrium of type I is Pareto efficient; for any

z0 ∈ (z∗, z], the corresponding equilibrium of type I is Pareto inefficient.

Accordingly, there exists a k ∈ (0, k] such that for any k ∈ [0, k), the

corresponding equilibrium of type I is Pareto efficient; for any k ∈ (k, k],

the corresponding equilibrium of type I is Pareto inefficient.

Remark 15. This implies that if the regeneration capacity is relatively

large compared with the population growth rate, then, the unique equilib-

rium is Pareto efficient.

If the regeneration capacity is relatively small compared with the popu-

lation growth rate, the resource stock per capita will tend to zero, and there

exists a threshold for the initial resource extraction z0 (accordingly, there

exist a threshold for the harvesting speed indicator ε and a threshold for

limit capital per capita k), below which the economy is Pareto efficient and

above which it becomes inefficient. In other words, the slower the resource

extraction, the higher the likelihood that the economy is Pareto efficient.

5.2.2. σ < 0

Denote

ε∗ := (1 + n)β(1− σ−1) [α(1− σ)]
−1/σ

,

α∗ := (1− σ)−1
[
(1 + n)(1− σ−1)

1 + ρ

ρ

]σ
.
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Clearly, θ > (=, <)ε∗ if and only if α < (=, >)α∗.

Concerning the existence of equilibrium, we have the following proposi-

tion.

Proposition 8. (i) If 1+n
η ≥ 1, then there exists a continuum of type I

equilibria, each with zero limit capital per capita.

(ii) If 1+n
η < min{1, ν}, then there exists a unique type II equilibrium.

(iii) If ν ≤ 1+n
η < 1, then if

α = α∗,
1 + n

η
≤ − σρ

1 + ρ
, (20)

or

α < α∗, ν =
1 + n

η
> − σρ

1 + ρ
, (21)

then there exists a unique type III equilibrium with harvesting speed indi-

cator θ; if

α < α∗, ν ≤ 1 + n

η
< − σρ

1 + ρ
, (22)

then there exists a continuum of type III equilibria. More precisely, there is

a ε∗ ∈ [ε∗, θ) such that for any ε ∈ [ε∗, θ], there is a type III equilibrium with

harvesting speed indicator ε. In all other cases, there is no equilibrium.

Concerning the efficiency of equilibrium, we have the following.

Proposition 9. (i) If η ≤ 1 + n, then any type I equilibrium is Pareto

efficient.

(ii) If ν ≤ 1+n
η < 1, then there are three cases.

First, if (20) holds, then the unique type III equilibrium is Pareto efficient

if −σ < 1+ρ
ρ ; it is Pareto inefficient if −σ > 1+ρ

ρ .

Second, if (21) holds, then the unique type III equilibrium is Pareto

efficient.

Third, if (22) holds, then there exists ε ∈ [ε∗, θ] such that the type

III equilibrium with harvesting speed indicator below ε is Pareto efficient;

whereas any type III equilibrium with harvesting speed indicator above ε

is Pareto inefficient.

Remark 16. When σ < 0, the natural resource is essential for produc-

tion, in the sense that output drops to zero in its absence.
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If the regeneration capacity of the resource is weak compared to the

population growth, the resource stock per capita will tend to zero, making

overaccumulation of the resource impossible. Additionally, because the

factors are complementary, capital and the resource are closely linked in

production, preventing over-accumulation of capital and thereby ensuring

the Pareto efficiency of the economy.

If the regeneration capacity of the resource is strong compared to the pop-

ulation growth and there is no steady state, the resource stock per capita

will tend to infinity. And, in general, similar to the case when σ ∈ (0, 1),

there exists a threshold for the harvesting speed indicator, below which

the economy is Pareto efficient, and above which it becomes inefficient. In

other words, the slower the resource extraction, the higher the likelihood

that the economy will be Pareto efficient. And this threshold, in principle,

is concerned with the marginal regeneration capacity.

Remark 17. As to the existence of equilibrium, typically when ν <
1+n
η < 1 and α > α∗, there is no equilibrium. This suggests that in a

typical scenario where the regeneration capacity of the resource is very

strong and the capital share excessively large, but the resource and the

capital are complementary in production, they cannot maintain a coherent

relationship, preventing the economy from following an equilibrium path.

5.2.3. Comparison Between Different σ

We know that σ ∈ (0, 1) indicates substitutability between the factors,

σ < 0 indicates complementarity between the factors, and σ = 0 represents

the midpoint between the two.

Here, we compare the behavior of the dynamical system D under different

values of σ, including σ = 0. Specifically, we examine how varying σ

influences the system’s trajectories, equilibrium types, and overall economic

efficiency. By contrasting these cases, we gain insight into the role that σ

plays in determining the stability and optimality of the dynamical system.

In the Cobb–Douglas case where σ = 0, the dynamical system D simpli-

fies to21

kt+1 =
1

1 + n
kαt z

γ−1
t [(θ + γ)zt − γst] ,

st+1 =
η

1 + n
(st − zt),

zt+1 =
η

α(1 + n)
[(θ + γ)zt − γst] .

21See also (12), (13) and (14).
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From the analysis of the Cobb–Douglas case in Section 5.1, we know that

when σ = 0, this dynamical system has a unique positive solution, and the

economy possesses a unique equilibrium, which can be of type I, type II,

or type III, depending on whether ηδ <,=, > 1 + n, respectively, and it is

socially optimal with respect to Wδ, and therefore Pareto efficient.

For the dynamical system D , including the case σ = 0, the system be-

havior changes as σ varies. Depending on other parameters, the system

may exhibit continuity in some cases, whereas in others, bifurcation may

occur.

First, for the nontrivial steady state: when σ 6= 0, it exists if and only

if condition (18) holds; when σ = 0, by Lemma 5, it exists if and only if

ηδ = 1 + n. For σ = 0, (18) reduces to

1 + n

η
< min

{
1,
θ

β

β + γ

α

}
,

which is satisfied naturally when ηδ = 1 + n. Therefore, regarding the

nontrivial steady state, the dynamical system D exhibits continuity with

respect to σ.

In the sequel, we present some examples to further illustrate the role of

σ in the dynamical system’s behavior.

Example 1. Suppose α < 1/(2e), and

ρ

1 + ρ

β + γ

α
<

1 + n

η
< δ.

For σ = 0, because ηδ > 1 + n, then there exists a unique trajectory

of D , along which each of kt, st, zt tends to infinity, all other trajectories

lead to system collapse within a finite time, and correspondingly, there is

a unique equilibrium of type III, which is of course Pareto efficient.

For σ > 0 near σ = 0 locally, because ν < 1+n
η < 1, there exists a unique

trajectory of D , along which (kt, st, zt) tends to (π−1(θ), 0, 0), all other tra-

jectories lead to system collapse within a finite time, and correspondingly,

there is a unique equilibrium of type I, which is Pareto efficient.

For σ < 0 near σ = 0 locally, we have ν < 1+n
η < 1. In addition, locally

near σ = 0, α∗ is sufficiently close to 1/e, and thus, locally near σ = 0, we

have α < α∗. But, locally near σ = 0, it does not hold that

1 + n

η
> − σρ

1 + ρ
.

Therefore, by Proposition 8, there is no equilibrium. All trajectories of D

lead to the collapse of the system in a finite time.
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Thus, in this case, bifurcation occurs at σ = 0.

Example 2. Suppose η < 1 + n. Then, locally near σ = 0, the system

exhibits continuity. In fact, regardless of the value of σ, D has trajectories

(possibly unique) converging to (k, 0, 0) for some (different) k, all other

trajectories exit the region Θ within a finite time. Correspondingly, for any

σ, the economy consistently exhibits type I equilibria. The efficiency of the

equilibria manifests differently: for σ ∈ (0, 1), there exists a threshold for

the harvesting speed indicator, below which the economy is Pareto efficient,

and above which it becomes inefficient; for σ ≤ 0, all equilibria are Pareto

efficient.

To sum up, roughly, if η > 1+n, then the system may exhibit bifurcation

at σ = 0; on the contrary, if η < 1 +n, then the system exhibits continuity

at σ = 0.

Additionally, in general, in most cases, the economy exhibits multiple

equilibria. However, in the Cobb-Douglas case, where all variables are in

fixed proportion, the set of equilibria reduces to a singleton.

The primary distinction between the cases σ > 0 and σ < 0 lies in the

behavior of the resource stock per capita. When σ > 0, the resource stock

per capita cannot tend to infinity and thus there is no type III equilibrium,

even if the resource regeneration capacity is very large. However, when

σ < 0, this becomes possible. Additionally, when σ < 0, the possibility of

nonequilibrium arises.

A key commonality between the cases σ ∈ (0, 1) and σ < 0 is that,

roughly speaking, the slower the resource extraction, the higher the like-

lihood that the economy will be Pareto efficient. This principle holds re-

gardless of whether the factors are substitutable or complementary. But,

more precisely, this principle applies to the case η < 1 + n when σ ∈ (0, 1)

(the resource stock per capita tends to zero) and to the case η > 1 + n

when σ < 0 (the resource stock per capita tends to infinity). The intuition

behind this principle, within the framework of general CES technology, is

that whether the factors are substitutable or complementary, they remain

interconnected through a weak proportional relationship. Faster resource

extraction leads to greater resource use in production, which increases the

demand for capital in the production process. Over time, this results in

higher capital accumulation, which raises the likelihood of capital overac-

cumulation, potentially leading to inefficiency.
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5.2.4. Comparison with Classical Diamond OLG Model

Our model in the general CES form reduces to the classical Diamond

OLG model22 without natural resources when γ = 0.

It is easy to see that in this Diamond model, there exists a unique equi-

librium, in which for any t ∈ N,

kt+1 =
θ

1 + n
(αkσt + β)

(1−σ)/σ
,

ωt = β (αkσt + β)
(1−σ)/σ

,

1 + rt = αkσ−1t (αkσt + β)
(1−σ)/σ

.

First, we consider the case, where σ ∈ (0, 1). It is easy to see that lim
t→∞

kt =

k̂, where k̂ is determined uniquely by

k̂ =
θ

1 + n

(
αk̂σ + β

)(1−σ)/σ
.

And hence,

lim
t→∞

(1 + rt) = (1 + n)
α

θ
k̂σ.

Therefore, by Corollary 4, the equilibrium is Pareto efficient (respectively

Pareto inefficient), if

k̂σ >
θ

α
(resp. k̂σ <

θ

α
),

or, equivalently,

n < n̂ (resp. n > n̂),

where

n̂ =
[
α
(
2 + ρ−1

)1−σ]1/σ − 1.

Thus, to obtain efficiency, the population growth rate must not be too

high, nor may the capital share be too low. Relative to the OLG economy

in Section 5.2.1, Proposition 7 shows that even when the population growth

rate is high, introducing a natural resource can render the economy Pareto

efficient—at least along some equilibrium paths in the presence of multiple

equilibria. Hence, the natural resource serves to promote efficiency.

22The “Diamond model” here is CES. Recall that the Diamond model in Remark 12
is Cobb–Douglas.
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In the sequel, we only consider the case where σ < 0. Define

n∗ :=
ρ [α(1− σ)]

1/σ

(1− σ−1) (1 + ρ)
− 1, n∗ :=

[
α

(
1 +

1 + ρ

ρ

)1−σ
]1/σ

− 1.

One can directly check that −1 < n∗ < n∗.

It is easy to verify that if n > n∗, then lim
t→∞

kt = 0. Therefore, as t→∞,

1

1 + rt+1

ωt+1Nt+1

ωtNt
=

1 + n

α

k1−σt+1

(αkσt + β)
(1−σ)/σ =

θ

α
k−σt+1 → 0,

which implies lim
t→∞

DtωtNt = 0. Then, by Theorem 3, the equilibrium is

Pareto efficient.

In the following, suppose n < n∗. Then, the limit capital per capita k

and the limit interest rate r satisfy

1 + r

1 + n
= x =

α

θ
kσ,

and x is the smaller of the two positive roots of the equation.

(1 + n)σx = α (x+ β/θ)
1−σ

.

If n ∈ (n∗, n
∗), then one can check that x > 1. Therefore, r > n.

In addition, the limit wage is positive. Therefore, by Corollary 4, the

equilibrium is Pareto efficient.

If n < n∗, then one can check that x < 1. Therefore, r < n. In addition,

the limit wage is positive. Therefore, by Corollary 4, the equilibrium is

Pareto inefficient.

However, in the case n < n∗, when natural resources are introduced into

the economy, as in our CES model, the economy becomes Pareto efficient,

provided that η < 1 + n.

In summary, regarding the effect of introducing natural resources on

economic efficiency, we find that, roughly speaking, substitutability implies

that stronger resource regeneration increases the likelihood of efficiency,

whereas complementarity implies that weaker regeneration does so. In

both cases, the mechanism is to mitigate capital overaccumulation.

At the end of this subsection, we point out that the sustainability issue in

this CES model is straightforward, and thus omitted from the discussion.
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5.3. Quadratic Regeneration Function

Assume G(x) = λx(1− x/B), and for any t ∈ N,

F t(K,L,R) = AtK
αLβRγ , Nt = (1 + n)t, At = (1 + g)t,

where n ≥ 0, g ≥ 0, λ > 0, B > S0, and ρ, α, β, γ ∈ (0, 1) are constants,

satisfying α+ β + γ = 1.

And assume λ and B are sufficiently large. Here, λ is the intrinsic growth

rate of the natural resource, and B is the environmental carrying capacity

for this natural resource.

As mentioned in the literature review, Krautkraemer (1999), in an OLG

economy with a natural resource but no physical capital, suggests that when

the resource’s output share is relatively small, steady-state equilibrium is

Pareto inefficient, but does not specify how small it must be. Here, for

an economy with capital, we provide a similar but more precise result

regarding the dynamic equilibrium.

5.3.1. Existence and Uniqueness of Equilibrium

It is easy to verify that an equilibrium exists if and only if the following

difference dynamical system for (Kt, St, Rt)t∈N with K0 = K0 and S0 = S0

has a positive solution:

Kt+1 =
Yt

1 + ρ

[
ρβ −

(
G(St −Rt)
G′(St −Rt)

+ ρ(St −Rt)
)
γ

Rt

]
, (23)

St+1 = G(St −Rt), (24)

Rt+1 =
RtG

′(St −Rt)
α(1 + ρ)

[
ρβ −

(
G(St −Rt)
G′(St −Rt)

+ ρ(St −Rt)
)
γ

Rt

]
,(25)

which, in turn, if and only if the planar dynamical system for (St, Rt)t∈N,

described by (24) and (25), with S0 = S0, has a positive solution.

This planar dynamical system has two steady states: (0, 0) and (S∗, R∗),

satisfying

R∗ = G(x∗)− x∗, S∗ = G(x∗),

where x∗ ∈ (0, B/2) is determined uniquely by

λ

(
α+

γ

1 + ρ

)(
1− x∗

B

)
−α =

ρβλ

1 + ρ

(
1− x∗

B/2

)[
λ

(
1− x∗

B

)
− 1− γ

β

]
.
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By the eigenvalue method23, one can see that (0, 0) is a source, to which

no feasible path converges; (S∗, R∗) is a saddle point, to which a unique

saddle path converges.

Therefore, there exists a unique R0 > 0 which induces a unique path

converging to this saddle. The unique equilibrium then follows.

Consequently, we obtain

Proposition 10. The equilibrium exists and is unique, and the corre-

sponding path of (St, Rt)t∈N converges to a saddle.

5.3.2. Pareto Efficiency

Let

κ :=
1 + ρ

ρ
α+

(
1

ρ
+

2(1 + ρ)

ρ(λ− 1)

)
γ,

which represents a weighted sum of the two capital shares: α and γ, and

hence, can be referred to as a composite capital index. Note that this

index only concerns the intrinsic growth rate of the natural resource, not

the carrying capacity.

Proposition 11. 24 The equilibrium is Pareto efficient if β < κ; it is

Pareto inefficient if β > κ.

Remark 18. The relative magnitude of the labor share plays a crucial

role. If the labor share is less than the composite capital index, the equilib-

rium is efficient; however, if the labor share exceeds the composite capital

index, the equilibrium becomes inefficient.

On the simplex A = {(α, β, γ)|α+ β + γ = 1, α, β, γ ∈ [0, 1]}, the line

segment β = κ has two endpoints, the coordinates of which are (α, β, 0)

and (0, β, γ), respectively, where

α :=
ρ

1 + 2ρ
, β :=

1 + ρ

1 + 2ρ
, β :=

1 + λ+ 2ρ

(1 + ρ)(1 + λ)
, γ :=

ρ(λ− 1)

(1 + ρ)(1 + λ)
.

Recall λ is sufficiently large, then β < β.

23The Jacobian matrix at the steady state (0, 0) has two eigenvalues bigger than 1.
Therefore, the steady state (0, 0) is a source. The Jacobian matrix at the steady state
(S∗, R∗) has two positive eigenvalues: one is smaller than 1, the other is greater than 1.
Therefore, (S∗, R∗) is a saddle.

24If γ = 0, then this result coincides with that in the classical Diamond OLG model.
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Clearly, if β < β, then β < κ; if β > β, then β > κ. And, of course,

if γ > γ, then β < β. Then, from Proposition 9, we can easily have the

following corollary.

Corollary 5. If β < β, the equilibrium is Pareto efficient; if β > β,

the equilibrium is Pareto inefficient.

From this corollary, we can say roughly that if the technology is capital-

intensive (either the physical capital or the natural capital), then the econ-

omy is efficient; on the contrary, if the technology is labor-intensive, then

the economy is inefficient.

In particular, suppose there is neither technical growth nor population

growth. Then Kt will converge to some K∗ > 0. If β = κ, K∗ = KGR,

where KGR is the so-called Golden Rule level of capital; if β < κ, K∗ <

KGR, and the economy is efficient; if β > κ, then K∗ > KGR, indicating

capital overaccumulation, and the economy is inefficient.

5.3.3. Sustainability

It follows from (23) that

yt+1 ∼
(

1 + g

(1 + n)γ

)t
yαt ,

where yy = Yt/Nt is the output per capita. Based on this, we can immedi-

ately derive the following result.

Proposition 12. If 1 + g < (1 + n)γ , the economy contracts; if 1 + g =

(1 + n)γ , the economy is sustainable in the long run; if 1 + g > (1 + n)γ ,

the economy grows without bound.

Remark 19. Whether the economy contracts depends solely on the

rate of technical progress, population growth, and the resource share. It is

independent of the distribution between capital and labor shares.

6. EXTENSION AND FURTHER DISCUSSION

6.1. Multiple Resources

The main results can be easily extended to the case of multiple natural

resources, where the regeneration capacities are independent of each other.

In other words, no cross-effects are present in their regeneration. More

specifically, the scenario is as follows.
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Consider multiple types of natural resources, labeled type-1, type-2,. . . ,type-

J , where J is some natural number.

For any j = 1, . . . , J , the regeneration function of type-j resource is Gj ,

being smooth, concave, and nonnegative, defined on [0,∞), with properties

Gj(0) = 0, G′j(0) ∈ (0,∞], G′j(x) > 0, ∀x > 0.

The dynamics of type-j resource are

Sjt+1 = Gj(S
j
t −R

j
t ),

where Sj and Rj represent the stock and extraction of type-j resource,

respectively.

In this context, the total value of assets at time t becomes

Vt = (1 + rt)Kt +

J∑
j=1

pjtS
j
t ,

where pjt is the price of type-j resource at time t. The generalized Hotelling

rule holds for every type of resources. That is, for any type-j resource, we

have

pjt+1G
′
j(S

j
t −R

j
t )

pjt
= 1 + rt+1, ∀t ∈ N.

In this case, the assumption A2 “the resource is important in production

relative to labor” should be modified to the condition “at least one of the

resources is important in production relative to labor.”

6.2. OLG with Land

Regarding the OLG economy with land, similar results hold true. Now,

the production function is F t(K,L,X), where X is the input of land.

In an equilibrium, let pt and qt be the corresponding price of land and

the rental of land at time t, respectively.

The no-arbitrage condition implies that for any t ∈ N,

pt =
pt+1 + qt+1

1 + rt+1
,

then, Dtpt = Dt+1pt+1+Dt+1qt+1. Therefore, lim
t→∞

Dtqt = 0, and (Dtpt)t∈N

is decreasing, and hence, there is β0 ≥ 0 such that lim
t→∞

Dtpt = β0, and for

any t ∈ N, pt = ft + βt, where

ft =
1

Dt

∞∑
s=t+1

Dsqs, βt =
β0
Dt
,
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are the fundamental and the bubble of land at t, respectively.

The total value of assets is Vt = (1 + rt)Kt + pt + qt, assuming that the

quantity of land is one unit. And the total income It coincides with wages

ωtNt.

Assumption A1 is not needed. In principle, Theorems 1–5 still hold. As

a corollary of Theorem 3, if

lim sup
t→∞

qt
ωtNt

> 0, (26)

that is, land is important in production relative to labor, then lim
t→∞

DtωtNt =

0. Therefore, the equilibrium is Pareto efficient.

Condition (26) is a bit weaker than the condition

lim inf
t→∞

qt
Yt

> 0,

which is used in Proposition 1 in Rhee (1991) to guarantee the Pareto

efficiency of the equilibrium.

6.3. OLG without Capital

An economy without capital can be viewed as a special case of the general

economy with capital, as discussed in Section 3. In this scenario, capital

remains at zero throughout, including the initial capital endowment of an-

cestors. However, the interest rate at any time t ≥ 1 still exists as a

reference for agents borrowing or lending at time t − 1, though in equi-

librium, the quantity of borrowing or lending is zero. In the definition of

equilibrium, the interest rate at time t = 0 can be ignored because it has

no impact on anyone. The generalized Hotelling rule (1) still holds.

From this perspective, all the main results from Sections 3 and 4 continue

to hold, except for Theorem 4, where the growth rate of capital is not well

defined and thus does not apply in this case.

As an application of Theorem 3, consider an example as follows. Suppose

the production functions are of the form: F t(L,R) = AtLf(R/L), where

At > 0 is a constant and f is smooth, concave, and satisfying f(0) = 0,

f ′(0+) ∈ (0,∞], and the regeneration function is linear: G(x) = ηx, where

η > 0 is a constant. The utility function satisfies the standard conditions

such as being smooth, concave, and meeting Inada conditions, etc. Then,

analogously to Olson and Knapp (1997), one can show that the equilibrium

exists (possibly multiple).

Take anyone of the equilibria. Since η−(t+1)St+1 = η−t(St−Rt), we have∑∞
t=0 η

−tRt ≤ S0, therefore lim
t→∞

η−tRt = 0.
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Denote the resource extraction and resource stock per capita as zt =:

Rt/Nt and st =: St/Nt, respectively.

Suppose

0 < lim
t→∞

η−tNt ≤ lim
t→∞

η−tNt <∞. (27)

Then, lim
t→∞

zt = 0.

In addition, since F t(Nt, Rt) = Ntat + Nt−1bt ≥ Nt−1bt = ptSt, and

pt = Atf
′(zt), then f(zt) ≥ f ′(zt)st. By letting t → ∞, and noticing

f(0) = 0, f ′(0+) ∈ (0,∞], we obtain lim
t→∞

st = 0. That is, along any

equilibrium path, the resource stock per capita converges to zero.

Now we consider the efficiency. By the generalized Hotelling rule, for

any t ∈ N, 1 + rt+1 = ηpt+1/pt, then Dt = η−tp0/pt. Therefore, as t→∞,

DtYt = η−t
p0

Atf ′(zt)
AtNtf(zt) = p0η

−tNt
f(zt)

f ′(zt)
→ 0,

which yields DtωtNt → 0. Then, by Theorem 3, the equilibrium is Pareto

efficient.

In some special cases, the condition (27) is superfluous. For example,

consider a special case of the example in section 5.1, where α = 0, K0 = 0.

In this case, the production function at time t is F t(L,R) = AtL
βRγ .

In this case, Propositions 1, 2, and 3 still hold. There exists a unique

equilibrium that is Pareto efficient. At equilibrium, for any t ∈ N,

Ntat =
β

1 + ρ
Yt, Nt−1bt = (θ + γ)Yt, Rt = τSt,

1 + rt+1 =
Yt+1

δYt
,

where Yt = AtN
β
t R

γ
t , τ = γ/(θ + γ), δ = 1− τ , θ = ρβ/(1 + ρ).

And, under assumption A4, the equilibrium allocation is socially optimal

with respect to the social welfare functional Wδ. That is, the equilibrium

allocation is the solution of the following social planner’s problem:

max

∞∑
t=0

δt (δ ln at + ρ ln bt) ,

s.t St+1 = η(St −Rt),
Ntat +Nt−1bt ≤ AtNβ

t R
γ
t .



804 BO ZHANG AND ZHIXIANG ZHANG

According to Olson and Knapp (1997, p.290): “OLG equilibria differ

substantially from the outcome under a social planning exercise, and there

does not exist a definitive relation between extractions and prices in the

two cases”. However, this assertion is incorrect. While the equilibrium

allocation may not be socially optimal with respect to Wρ, which is con-

sidered in Olson and Knapp (1997), it is socially optimal with respect to

Wδ. When evaluating social optimality, the individual discount rate should

be replaced by the social discount rate, which is embedded in the market

system.

7. CONCLUSION

In this paper, we consider a two-period OLG model with three factors of

production: physical capital, labor, and natural resources. We discuss the

issue of Pareto efficiency of the equilibrium allocation.

Our main contribution to the literature is that we present general suffi-

ciency conditions and general necessary conditions for the Pareto efficiency

of the equilibrium allocation in the OLG economies with natural resources

and physical capital. In principle, we compare the growth rates of capital,

income, or total asset value with the interest rate. Our findings suggest

that, broadly speaking, if any of these growth rates is lower than the in-

terest rate, the equilibrium is efficient. Conversely, if any of these growth

rates surpasses the interest rate, the equilibrium becomes inefficient.

A secondary contribution is the finding that, in the case where the re-

source regeneration function is linear and the production function follows

a CES form beyond Cobb–Douglas, there is generally a threshold for the

resource harvesting speed. If the harvesting speed is below this threshold,

the economy operates efficiently; if it exceeds the threshold, inefficiency

arises.

Another contribution is for the case where the resource regeneration

function is quadratic. We provide a precise composite capital index and

demonstrate that if the labor share is below this index, the economy oper-

ates efficiently, whereas if the labor share exceeds this index, the economy

becomes inefficient.

Moreover, our findings suggest that under certain conditions, natural

resources can enhance economic efficiency, largely through their interaction

with capital. This highlights the potential role of resource management in

improving economic outcomes.
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While our results offer important insights, they remain incomplete. We

have not provided general necessary and sufficient conditions for Pareto ef-

ficiency of equilibrium, leaving this as an open problem for future research.

Another promising direction for future work is to explore stochastic OLG

models that account for uncertainties arising from the random variability

of natural resources and environmental conditions. Furthermore, examin-

ing government or institutional interventions could be critical, particularly

in cases where resource use leads to pollution that exacerbates market in-

efficiencies.

APPENDIX A

We need the following three lemmas. The proofs of Lemma 3 and Lemma

4 are straightforward and hence omitted. One proof of Lemma 5 can be

found in Mourmouras (1991) or Farmer et al. (2010), which uses the eigen-

value method in the planar difference dynamical system. Here, we present

another proof, which has its own interest.

Lemma 3. A program {C∗t ,K∗t , S∗t , R∗t }t∈N is dynamically efficient if and

only if for any program {Ct,Kt, St, Rt}t∈N,

Ct ≥ C∗t , ∀t ≥ 1

implies

C∗0 ≥ C0.

Lemma 4. An allocation {a∗t , b∗t ,K∗t , S∗t , R∗t }t∈N is Pareto efficient if and

only if for any allocation {at, bt,Kt, St, Rt}t∈N,

U(at, bt+1) ≥ U(a∗t , b
∗
t+1), ∀t ≥ 0

implies

b∗0 ≥ b0.

Lemma 5. The following two statements about {St, Rt}t∈N with given

S0 > 0 are equivalent:
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(I) for any t ∈ N,

St+1 = η(St −Rt) ≥ 0,

Rt+1 =
η

α
[(θ + γ)Rt − γSt] ≥ 0;

(II) for any t ∈ N,

St = (ηδ)tS0,

Rt = τ(ηδ)tS0,

where δ, τ are defined in the beginning of Section 5.1.

Proof. One can easily verify that (II) implies (I). In the sequel, we prove

that (I) implies (II). First of all, we show that for any t ∈ N and any n ∈ N,

it holds that

xnSt ≤ Rt ≤ ynSt, (A.1)

where

xn+1 =
γ + αxn

θ + γ + αxn
, x0 = 0,

yn+1 =
γ + αyn

θ + γ + αyn
, y0 = 1.

We prove (A.1) by use of the method of mathematical induction with

respect to n. First, obviously, (A.1) holds for n = 0 and any t ∈ N. Now,

suppose that (A.1) holds for n and any t ∈ N. Then, for any t ∈ N, notice

that (A.1) holds for n and t+ 1, that is,

xnSt+1 ≤ Rt+1 ≤ ynSt+1,

which is equivalent to

xn+1St ≤ Rt ≤ yn+1St,

and hence, (A.1) also holds for n+ 1 and any t ∈ N. It follows that (A.1)

holds for any t ∈ N and any n ∈ N.

Next, clearly, {xn}n∈N is increasing and bounded above, and {yn}n∈N is

decreasing and bounded below, and hence, each of these two sequences has
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a limit. Let lim
t→∞

xt = x, lim
t→∞

yt = y. Then, x, y ∈ (0, 1) and satisfy

x =
γ + αx

θ + γ + αx
, y =

γ + αy

θ + γ + αy
,

which implies x = y = τ . Consequently, Rt = τSt, ∀t ∈ N, which yields (I)

immediately.

Proof of Theorem 1. By Lemma 3, it suffices to show that for any

program {C ′t,K ′t, S′t, R′t}t∈N, if C ′t ≥ Ct, ∀t ≥ 1, then C ′0 ≤ C0.

In fact, taking large T ∈ N arbitrarily, we have

C ′0 − C0

≤
T−1∑
t=0

Dt

[(
F t(K ′t, Nt, R

′
t)−K ′t+1

)
−
(
F t(Kt, Nt, Rt)−Kt+1

)]
+

T−1∑
t=0

Dt+1pt+1

[(
G(S′t −R′t)− S′t+1

)
− (G(St −Rt)− St+1)

]
≤

T−1∑
t=0

Dt

[
(1 + rt)(K

′
t −Kt) + pt(R

′
t −Rt)− (K ′t+1 −Kt+1)

]
+

T−1∑
t=0

Dt+1pt+1

{
G′(St −Rt) [(S′t − St)− (R′t −Rt)]−

(
S′t+1 − St+1

)}
=

T−1∑
t=0

[Dt−1(K ′t −Kt) +Dtpt(R
′
t −Rt)]−

T∑
t=1

Dt−1(K ′t −Kt)

+

T−1∑
t=0

Dtpt [(S′t − St)− (R′t −Rt)]−
T∑
t=1

Dtpt (S′t − St)

≤ DTVT .

Letting T →∞ (along some subsequence of natural numbers), we obtain

C ′0 ≤ C0.

Proof of Theorem 2. Suppose G(x) = ηx, where η > 0 is some

constant. Then η−(t+1)St+1 = η−t(St −Rt), ∀t ∈ N. Therefore,

∞∑
t=0

η−tRt ≤ S0,

and the sequence (η−tSt)t∈N is strictly decreasing and hence converges to

some nonnegative number θ.
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It must hold that θ = 0. Otherwise, the extra amount of resource can be

used in any period of time and produce more consumption goods, which

can be distributed to the people in that period, and all the other peri-

ods are not affected. Then the aggregate consumption in that period is

increased strictly, and the aggregate consumptions at any other times are

not changed. This contradicts the dynamic efficiency of the equilibrium

allocation. Thus, θ = 0.

The generalized Hotelling rule implies that Dtpt = η−tp0, ∀t ∈ N. There-

fore,

lim
t→∞

DtptSt = 0.

It is left to show lim
t→∞

DtKt+1 = 0. We know that for any t ∈ N,

Ct +Kt+1 = F t(Kt, Nt, Rt) = (1 + rt)Kt + ωtNt + ptRt,

where Ct = Ntat +Nt−1bt. Then,

DtCt +DtKt+1 = Dt−1Kt +DtωtNt +DtptRt.

Therefore,

t∑
s=0

DsCs +DtKt+1 = D−1K0 +

t∑
s=0

DsωsNs + p0

(
t∑

s=0

η−sRs

)
. (A.2)

Since
∞∑
s=0

η−sRs = S0,

and noticing assumption A2, we know that

∞∑
s=0

DsωsNs <∞,

and hence, by (A.2),

∞∑
s=0

DsCs <∞.

Then, once again, by (A.2), we get that lim
t→∞

DtKt+1 exists. We prove that

this limit is 0. Suppose not. Then there exist ε > 0 and T ∈ N such that
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for any t ≥ T ,

∞∑
s=t

DsCs < ε < DtKt+1.

For any t ≥ T , let

λt =
1

ε

∞∑
s=t

DsCs ∈ (0, 1).

Then, for any t ≥ T , we have

(λt − λt+1)DtKt+1 > DtCt.

Now, for any t ≥ T , let

K ′t = λtKt, R′t = λtRt, C ′t = F t(K ′t, Nt, R
′
t)−K ′t+1.

We have that for any t ≥ T ,

DtC
′
t = DtF

t(K ′t, Nt, R
′
t)−DtK

′
t+1

≥ λtDtF
t(Kt, Nt, Rt)− λt+1DtKt+1

≥ (λt − λt+1)DtKt+1 > DtCt.

Thus, C ′t > Ct, ∀t ≥ T .

Now construct a program (C ′t,K
′
t, S
′
t, R
′
t)t∈N as follows: for any t < T ,

let

(C ′t,K
′
t, S
′
t, R
′
t) = (Ct,Kt, St, Rt);

and for any t ≥ T , let (C ′t,K
′
t, R
′
t) be constructed as above, and (S′t)T≤t∈N

can be constructed recursively from (R′t)t∈N according to the recursive

equation S′t+1 = η(S′t −R′t), ∀t ∈ N.

We see that (Ct,Kt, St, Rt)t∈N is dynamically improved by (C ′t,K
′
t, S
′
t, R
′
t)t∈N.

This contradicts the assumption that (Ct,Kt, St, Rt)t∈N is dynamically ef-

ficient. And hence, lim
t→∞

DtKt+1 = 0.

Proof of Theorem 3. Suppose the equilibrium allocation A = (at, bt,Kt, St, Rt)t∈N
is not Pareto efficient. Then, by Lemma 4, there is another allocation

A′ = (a′t, b
′
t,K

′
t, S
′
t, R
′
t)t∈N such that

U(a′t, b
′
t+1) ≥ U(at, bt+1), ∀t ∈ N, (A.3)

and

b′0 > b0.
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Since N−1b0 = (1 + r0)K0 + p0S0, then we have

N−1b
′
0 > (1 + r0)K0 + p0S0 + ε (A.4)

for some ε > 0.

Now take t ∈ N arbitrarily. For an individual of generation-t, by the

definition of equilibrium, we have

(at, bt+1, (St −Rt)) ∈ arg max
(a,b,X)

U(a, b),

subject to

a+
b

1 + rt+1
≤ ωt +

1

Nt

(
pt+1G(X)

1 + rt+1
− ptX

)
,

then

(at, bt+1) ∈ arg max
(a,b)

U(a, b),

subject to

a+
b

1 + rt+1
≤ ωt +

1

Nt

(
pt+1G(St −Rt)

1 + rt+1
− pt(St −Rt)

)
.

By (A.3), we have

a′t +
b′t+1

1 + rt+1
≥ ωt +

1

Nt

(
pt+1G(St −Rt)

1 + rt+1
− pt(St −Rt)

)
.

In addition, since G is concave and holds the generalized Hotelling rule:

pt+1G
′(St −Rt)

1 + rt+1
= pt,

then the function pt+1G(X)
1+rt+1

− ptX of X, for given pt, pt+1, rt+1, takes its

maximum at X = (St −Rt).
Therefore,

pt+1G(St −Rt)
1 + rt+1

− pt(St −Rt) ≥
pt+1G(S′t −R′t)

1 + rt+1
− pt(S′t −R′t).

Noticing S′t+1 = G(S′t −R′t), we get

a′t +
b′t+1

1 + rt+1
≥ ωt +

1

Nt

(
pt+1S

′
t+1

1 + rt+1
− pt(S′t −R′t)

)
, ∀t ∈ N,
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and hence,

DtNta
′
t +Dt+1Ntb

′
t+1

≥ DtωtNt +
(
Dt+1pt+1S

′
t+1 −DtptS

′
t

)
+DtptR

′
t, ∀t ∈ N. (A.5)

Then, for sufficiently large τ , summing the inequality (A.4) and the

inequalities in (A.5) for t = 0 through t = τ − 1, yields

τ−1∑
t=0

Dt(Nta
′
t +Nt−1b

′
t) +DτNτ−1b

′
τ

≥ (1 + r0)K0 +

τ−1∑
t=0

Dt(ωtNt + ptR
′
t) +DτpτS

′
τ + ε. (A.6)

Noticing the zero maximum profit for any firm and the conditions of fea-

sibility, we have that for any t ∈ N,

(1 + rt)K
′
t + ωtNt + ptR

′
t ≥ F t(K ′t, Nt, R′t) ≥ Nta′t +Nt−1b

′
t +K ′t+1.

Therefore, for any t ∈ N,

Dt−1K
′
t +DtωtNt +DtptR

′
t

≥ DtNta
′
t +DtNt−1b

′
t +DtK

′
t+1. (A.7)

Summing the inequalities in (A.7) for t = 0 through t = τ , yields

(1 + r0)K0 +

τ∑
t=0

Dt (ωtNt + ptR
′
t)

≥
τ∑
t=0

Dt (Nta
′
t +Nt−1b

′
t) +DτK

′
τ+1. (A.8)

By summing (A.6) and (A.8), we obtain

DτωτNτ ≥ Dτ (Nτa
′
τ +K ′τ+1) +Dτpτ (S′τ −R′τ ) + ε ≥ ε.

Then we have

lim
τ→∞

DτωτNτ > 0.

We get a contradiction. Therefore the equilibrium is Pareto efficient.
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Proof of Theorem 4. Suppose (4) holds. We construct a Pareto

improvement of the equilibrium allocation. To this end, notice that for any

t ∈ N,

Ct +Kt+1 = F (Kt, BtNt, Rt),

where Ct = Ntat +Nt−1bt is the total consumption at time t. Let

ct =
Ct
BtNt

, kt =
Kt

BtNt
, zt =

Rt
BtNt

.

Then,

ct + µkt+1 = f(kt, zt).

In the sequel, fix (zt)t∈N. Let xt = µkt, φ(x, z) = f(x/µ, z). Then,

ct + xt+1 = φ(xt, zt), ∀t ∈ N.

By (4), there exist ε ∈ (0, 1) and τ ∈ N such that for any t ≥ τ ,

xtφx(xt, zt)

xt+1
< ε.

If we can construct a sequence (c′t, x
′
t)t∈N such that c′τ > cτ , c′t = ct,

∀t 6= τ , and x′t = xt, ∀t ≤ τ , and x′t > 0, ∀t > τ , then we can get a Pareto

improvement of the equilibrium allocation.

Now, fix (xt)t≤τ and (ct)t6=τ . Let xτ+1 decrease a bit, then accordingly,

cτ will increase strictly, and then, for any t > τ , xt+1 will decrease as well.

We attempt to prove that there exists a x′τ+1 ∈ (0, xτ+1) such that when

xτ+1 decreases to x′τ+1, then accordingly, for any t > τ , xt+1 will decreases

to some x′t+1 > 0.

In fact, first of all, by sup
t∈N

zt <∞, we know that there exists Z > 0 such

that zt ∈ [0, Z] for any t ∈ N.

In addition, lim
x→∞

φx(x, z) < 1 uniformly for z ∈ [0, Z] and either lim inf
t→∞

xt >

0 or φx(0, z) < ∞ for any z ≥ 0. It follows that there exist 0 ≤ x < x <

∞ such that (xt)t∈N is bounded in [x, x] and φx(x, z) is well defined in

[x, x]× [0, Z]; and min
t∈N

φx(xt, zt) ≥ min
t∈N

φx(x, zt) =: m > 0.

Take ε′ ∈
(
0,m(ε−1 − 1)

)
. Noticing the uniform continuity of φx(x, z)

in [x, x] × [0, Z], we have that there exists δ ∈ (0, x) such that for any

x, x′ ∈ [x, x],

|φx(x′, zt)− φx(x, zt)| ≤ ε′, ∀t ∈ N,
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if only |x′ − x| ≤ δ.
Now, take x′τ+1 such that

0 <
xτ+1 − x′τ+1

xτ+1
<
δ

x
.

Then, for any t > τ ,

0 <
xt+1 − x′t+1

xt+1
=
φ(xt, zt)− φ(x′t, zt)

xt+1
≤ φx(x′t, zt)(xt − x′t)

xt+1

=

[
φx(x′t, zt)− φx(xt, zt)

φx(xt, zt)
+ 1

]
· xtφx(xt, zt)

xt+1
· (xt − x′t)

xt

≤
[
φx(x′t, zt)− φx(xt, zt)

φx(x, zt)
+ 1

]
· xtφx(xt, zt)

xt+1
· (xt − x′t)

xt

≤
[
φx(x′t, zt)− φx(xt, zt)

m
+ 1

]
· xtφx(xt, zt)

xt+1
· (xt − x′t)

xt

≤ xt − x′t
xt

,

if only

0 <
xt − x′t
xt

<
δ

x
.

It follows that x′t > 0, ∀t > τ . Therefore, such a construction of Pareto

improvement of the equilibrium allocation is feasible.

Proof of Theorem 5. For any t ∈ N, by solving the utility maximiza-

tion problem for an individual of generation-t, we obtain

Ntat =
1

1 + ρ
It, Nt

bt+1

1 + rt+1
=

ρ

1 + ρ
It.

We know that there exist ε ∈ (0, 1) and T ∈ N such that for any t ≥ T ,

1 + rt
1 + it

< ε.

Now, for any t ≥ T , consider the function of θ ∈ [0, 1]:

ft(θ) = ln (at(1− θ)) + ρ ln

(
bt+1 +

Nt+1

Nt
at+1θ

)
.

It is easy to see that f ′t(θ) > 0 for any θ ∈ [0, θ∗t ), where

θ∗t =
ρ

1 + ρ

[
1− 1 + rt

1 + it

]
.
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Let

θ∗ =
ρ

1 + ρ
(1− ε).

Clearly, for any t ≥ T ,

θ∗t > θ∗.

And hence for any t ≥ T ,

ft(θ
∗) > ft(0).

Then we can construct an allocation (a′t, b
′
t,Kt, St, Rt)t∈N, a Pareto im-

provement of the equilibrium allocation (at, bt,Kt, St, Rt)t∈N, as follows:

for any t < T ,

a′t = at, b′t = bt;

and for any t ≥ T ,

a′t = at(1− θ∗), b′t = bt +
Nt
Nt−1

atθ
∗.

Proof of Corollary 1. Notice that Vt ≥ ptRt and Pareto efficiency is

stronger than dynamic efficiency. Then, by Theorem 2 and Theorem 3, we

get the required result.

Proof of Corollary 2. The generalized Hotelling rule implies that for

any t ∈ N,

Dt+1pt+1Rt+1 = DtptRt
Rt+1

RtG′(St −Rt)
.

Then, by (8), we get lim
t→∞

DtptRt = 0, which, by (9), yields lim
t→∞

DtωtNt =

0. Thus, by Theorem 3, we obtain the required result.

Proof of Corollary 3. Noticing that for any t ∈ N,

DtωtNt = K0
ωtNt

(1 + rt)Kt

t−1∏
s=0

1 + js
1 + rs

,

by (10) and (11), we get lim
t→∞

DtωtNt = 0. Then, by Theorem 3, we obtain

the required result.

Proof of Corollary 4. The case q < 1 follows from Corollary 3; the

case q > 1 follows from Theorem 4.
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Proof of Proposition 1. The required result follows easily from the

following Lemma 5.

Proof of proposition 2. Since for any t ∈ N, Kt+1 = αδYt, then

Dt+1Yt+1 =
1

α
Dt+1(1 + rt+1)Kt+1 =

1

α
DtKt+1 = δDtYt,

therefore lim
t→∞

DtYt = 0, which yields lim
t→∞

DtωtNt = lim
t→∞

βDtYt = 0. By

Theorem 3, we obtain the required result.

Proof of Proposition 3. The social planner’s problem (P) is

max

∞∑
t=0

δt (δ ln at + ρ ln bt) ,

s.t. Kt+1 = AtK
α
t N

β
t R

γ
t −Ntat −Nt−1bt, ∀t ∈ N,

St+1 = η(St −Rt), ∀t ∈ N,

and all variables are nonnegative, where K0, S0 are given. By transforma-

tion

Xt = ξ−tKt, Ht = ξ−1/γRt, Zt = ξ−1/γSt,

ξ−(t+1)Ntat =
δ

δ + ρ
ct, ξ−(t+1)Nt−1bt =

ρ

δ + ρ
ct,

where ξ =
(
(1 + g)(1 + n)β

)1/(1−α)
, (P) can be reduced to (P′):

max

∞∑
t=0

δt ln ct,

s.t. Xt+1 = Xα
t H

γ
t − ct, ∀t ∈ N,

Zt+1 = η(Zt −Ht), ∀t ∈ N,

and all variables are nonnegative, where X0, Z0 are given.

The Bellman equation for (P′) is

V (X,Z) = max
c,H
{ln c+ δV (XαHγ − c, η(Z −H))} .

One can verify directly that

V (X,Z) =
1

1− αδ

[
α lnX +

γ

τ
lnZ

]
+m, (A.9)
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with some constant m, satisfies the above Bellman equation, and corre-

spondingly, the unique solution for the optimization problem in the right-

hand side of the Bellman equation is

c = (1− αδ)τγXαZγ , H = τZ, (A.10)

which is a stationary Markovian strategy for (P′).
Denote the path of state variables by this strategy as (Xt, Zt)t∈N, which

obviously satisfies the TVCs (transversality conditions):

lim
t→∞

δtV (Xt, Zt) = lim
t→∞

δt [XtV1(Xt, Zt) + ZtV2(Xt, Zt)] = 0.

Thus, the above V in (A.9) is the value function of (P′), and the strategy

in (A.10) is the unique optimal Markovian strategy for (P′).
Consequently, the unique optimal Markovian strategy for (P) is as fol-

lows: for any t ∈ N,

at =
β

1 + ρ
Yt/Nt, bt =

(
α+

γ

τ

)
Yt/Nt−1, Rt = τSt,

where Yt = AtK
α
t N

β
t R

γ
t , and the corresponding dynamics of the state

variables are that for any t ∈ N,

Kt+1 = αδYt, St+1 = (ηδ)St.

We see that the trajectory (at, bt,Kt, St, Rt)t∈N induced by the strategy in

(A.10) is just the equilibrium allocation.

Proof of Proposition 5. Denote the steady state of the dynamical

system D as (k, s, z), and denote the limit wage and the limit interest rate

of the corresponding equilibrium as ω and r, respectively. We have

k =
1

1 + n
(αkσ + β + γzσ)

(1−σ)/σ
[
θ − γ(s− z)

z1−σ

]
,

αkσ + β + γzσ =
1

1 + n

( η
α

)1/(1−σ) [
θ − γ(s− z)

z1−σ

]
.

It follows that

ω = β (αkσ + β + γzσ)
(1−σ)/σ

> 0,

1 + r = αkσ−1 (αkσ + β + γzσ)
(1−σ)/σ

= η > 1 + n,
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which implies lim
t→∞

DtωtNt = 0. Then, by Theorem 3, this equilibrium is

Pareto efficient.

Proof of Proposition 6. First of all, no type III equilibrium exists.

In fact, otherwise, by (15), for large t, approximately, zt+1 = mz1−σt with

some constant m > 0, which yields zt must be bounded from above. This

is a contradiction.

If η > 1 + n, there dos not exist a type I equilibrium with harvesting

speed indictor below θ. In fact, otherwise, for large t, approximately, zt+1 =

(η/(1 + n))
1/(1−σ)

zt. Then zt 6→ 0 as t→∞. We get a contradiction. On

the other hand, it is easy to verify that there exists really a unique type

I equilibrium, and its harvesting speed indictor is θ, and correspondingly,

its limit capital per capita is π−1(θ).

Now, we suppose η ≤ 1 + n. Under this assumption, any type I equilib-

rium corresponds to a ε ∈ [0, θ] such that

lim
t→∞

stz
σ−1
t = (θ − ε)/γ, lim

t→∞
kt = k,

where k = π−1(ε). In addition, for large t, approximately, by (15) and (17),

zt+1 =
( η
α

)1/(1−σ) k

(αkσ + β)1/σ
zt.

Therefore, ( η
α

)1/(1−σ) k

(αkσ + β)1/σ
≤ 1,

or, equivalently,

kσ
(
ησ/(1−σ) − α1/(1−σ)

)
≤ βασ/(1−σ).

Otherwise, zt 6→ 0 as t→∞. This is a contradiction. Therefore, we define

θ = sup
{
ε ∈ [0, θ]

∣∣∣(π−1(ε))σ
(
ησ/(1−σ) − α1/(1−σ)

)
≤ βασ/(1−σ)

}
,

and define k = π−1(θ).

Thus, any type I equilibrium corresponds to a k ∈ [0, k] and a ε ∈ [0, θ]

with ε = π(k) such that along this equilibrium path, the limit capital per

capita is k, and the harvesting speed indicator is ε.

Proof of Proposition 7. Suppose η > 1 + n. If (19) holds, then by

Proposition 5, the unique type II equilibrium is Pareto efficient. If (19) does

not hold, then ν ≤ 1+n
η < 1, which implies α ≥ ησ

(
2 + ρ−1

)σ−1
. Thus, for
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the unique type I equilibrium, the limit capital per capita is k = π−1(θ),

the limit wage exists and is positive, while the limit interest rate r satisfies

1 + r

1 + n
=
α

θ
kσ = x,

and x satisfies

(1 + n)σx = α

(
x+

β

θ

)1−σ

.

From η > 1 + n, α ≥ ησ
(
2 + ρ−1

)σ−1
, we obtain

(1 + n)σ < α

(
1 +

β

θ

)1−σ

.

Therefore, x > 1. Then, by Corollary 4, this equilibrium is Pareto efficient.

Suppose η ≤ 1 + n. Taking k ∈ (0, k] and ε ∈ (0, θ] with ε = π(k)

arbitrarily. The type I equilibrium with limit capital per capita k satisfies

the assumption A3. Denote its limit interest rate as r, and let

φ =
1 + r

1 + n
.

From

1 + r = αkσ−1 (αkσ + β)
(1−σ)/σ

,

we obtain

(1 + n)σφ = α

(
φ+

β

ε

)1−σ

.

It is easy to see that there exists a θ ∈ (0, θ] such that φ > 1, if ε < θ;

φ < 1, if ε > θ. Denote k = π−1(θ). Then, by Corollary 4, this equilibrium

is Pareto efficient, if k < k; it is Pareto inefficient, if k > k.

Proof of Proposition 8. (i) Suppose η ≤ 1 + n. It is easy to see that

there is no equilibrium of type III, but there is a continuum of equilibria

of type I: for any ε ∈ [0, θ], there is an equilibrium of type I such that as

t→∞,

st − zt
z1−σt

→ (θ − ε)/γ, kt → 0.

(ii) Suppose η > 1 + n. First of all, there is no type III equilibrium with

harvesting speed indictor 0. In fact, otherwise, by (16), we have that for

large t, zt+1 ≤ zt/2, which contradicts zt →∞ as t→∞.
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If there is a type III equilibrium with harvesting speed indictor ε ∈ (0, θ]

and the limit capital per capita k > 0, then as t→∞,

st − zt
z1−σt

→ θ − ε
γ

, kt → k,

and

k =
ε

1 + n
(αkσ + β)

(1−σ)/σ
.

For simplicity, let x = α
ε k

σ. Then,

(1 + n)σx = α

(
x+

β

ε

)1−σ

. (A.11)

In addition, by (17), for large t, approximately,

zt+1 =
ε

1 + n

( η
α

)1/(1−σ) zt
αkσ + β

,

then it must hold that

1 ≤ ε

1 + n

( η
α

)1/(1−σ) 1

αkσ + β
=
( η
α

)1/(1−σ) 1

(1 + n)
[
x+ β

ε

] ,
or, equivalently,

η

α
≥ (1 + n)1−σ

[
x+

β

ε

]1−σ
= (1 + n)

x

α
,

that is,

x ≤ η

1 + n
. (A.12)

To sum up, there is a type III equilibrium with harvesting speed indicator

ε ∈ (0, θ], if and only if (38) has a solution satisfying (39).

For given ε, the equation (38) for x has a solution, if and only if ε ≥ ε∗,
which implies θ ≥ ε∗, or, equivalently, α ≤ α∗. In addition, since (19) is

not satisfied, then

η

1 + n

[(
ησ

α

)1/(1−σ)

− 1

]
≤ β

θ
.

With the above observations, the remainder of the results can be proven.
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Proof of Proposition 9. First, consider an equilibrium of type I. Since

for any t ∈ N,

1 + rt = αkσ−1t (αkσt + β + γzσt )
(1−σ)/σ

,

ωt = β (αkσt + β + γzσt )
(1−σ)/σ

,

then,

1

1 + rt+1

ωt+1Nt+1

ωtNt
=

1 + n

α

k1−σt+1

(αkσt + β + γzσt )
(1−σ)/σ

=
k−σt+1

α

[
θ − γ(st − zt)

z1−σt

]
≤ θ

α
k−σt+1 → 0, as t→∞,

which implies lim
t→∞

DtωtNt = 0. Then, by Theorem 3, the equilibrium is

Pareto efficient.

Next, for any type III equilibrium with the harvesting speed indicator

ε ∈ [ε∗, θ] and limit capital per capita k and limit interest rate r, we have

1 + r

1 + n
= x =

α

ε
kσ,

where x satisfies

(1 + n)σx = α

(
x+

β

ε

)1−σ

.

According to Corollary 4, this equilibrium is Parto-efficient if x > 1 and

Pareto inefficient if x < 1. Therefore, by determining whether x > 1 or

x < 1, one can prove the remainder of the result.

Proof of Proposition 11. It is easy to verify that if β < κ, then

x∗ ∈
(
0, B2

(
1− 1

λ

))
, which implies G′(x∗) > 1; if β > κ, then x∗ ∈(

B
2

(
1− 1

λ

)
, B2
)
, which implies G′(x∗) < 1.

For any t ∈ N, denote xt = St −Rt. Noticing that as t→∞,

xt → x∗, Rt → R∗, St → S∗,

and for any t ∈ N,

It = ωtNt +

[
pt+1G(xt)

1 + rt+1
− ptxt

]
= ωtNt + pt

[
G(xt)

G′(xt)
− xt

]
= Yt

{
β +

γ

Rt

[
G(xt)

G′(xt)
− xt

]}
,
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by (23) and (25), we have

lim
t→∞

1 + it
1 + rt

= lim
t→∞

It
(1 + rt)It−1

= lim
t→∞

Yt
(1 + rt)Yt−1

= lim
t→∞

Kt+1

(1 + rt)Kt
= lim
t→∞

Kt+1

αYt
= lim
t→∞

Rt+1

RtG′(xt)
=

1

G′(x∗)
.

If β > κ, then

lim
t→∞

1 + it
1 + rt

> 1,

thus, by Theorem 5, the equilibrium is Pareto inefficient.

If β < κ, then

lim
t→∞

Yt
(1 + rt)Yt−1

< 1,

therefore,

lim
t→∞

DtωtNt = β lim
t→∞

DtYt = 0,

thus, by Theorem 3, the equilibrium is Pareto efficient.
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